Open Access Open Access  Restricted Access Subscription Access

Resource Provisioning and Utilization in 5G Network Slicing: A Survey of Recent Advances, Challenges, and Open Issues


Affiliations
1 Department of Telecommunication Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
 

The increasing demands for higher bandwidth and lower latency in modern telecommunications networks have led to the exploration of network slicing as a means to meet these requirements more efficiently in next-generation 5G networks. Despite substantial academic interest in resource allocation and management in network slicing, existing research is dispersed and fragmented. This study presents a categorization and assessment of the latest research on resource allocation and optimization techniques in 5G network slicing. It also shows how advanced machine learning techniques can support resource management in sliced wireless networks. The present paper offers a complete overview and analysis of current solutions for resource allocation and management in 5G network slicing, outlines open research challenges, and suggests future research directions for researchers and engineers in this field.

Keywords

Network Slicing, Resource Allocation, 5G Network, Management, Optimization, SDN, NFV.
User
Notifications
Font Size

  • M. A. Siddiqi, H. Yu, and J. Joung, “5G ultra-reliable low-latency communication implementation challenges and operational issues with IoT devices,” Electronics (Switzerland), vol. 8, no. 9. pp. 1–18, 2019. doi: 10.3390/electronics8090981.
  • G. Kalem, O. Vayvay, B. Sennaroglu, and H. Tozan, “Technology Forecasting in the Mobile Telecommunication Industry: A Case Study Towards the 5G Era,” Engineering Management Journal, vol. 33, no. 1, pp. 15–29, Jan. 2021, doi: 10.1080/10429247.2020.1764833.
  • R. K. Gupta Akhil Jha, “A Survey of 5G Network : Architecture and Emerging Technologies,” IEEE Access, vol. 3, p. 27, 2015.
  • NGMN Alliance, “Description of Network Slicing Concept by NGMN Alliance,” Ngmn 5G P1, vol. 1, no. September, p. 19, 2016, [Online]. Available: https://www.ngmn.org/uploads/media/160113_Network_Slicing_v1_0 .pdf
  • 5GPPP, “View on 5G Architecture,” 5G Architecture White Paper, no. February, p. 182, 2020, doi: 10.5281/zenodo.3265031.
  • T. Cisco and A. Internet, “Cisco: 2020 CISO Benchmark Report,” Computer Fraud & Security, vol. 2020, no. 3, pp. 4–4, Jan. 2020, doi: 10.1016/S1361-3723(20)30026-9.
  • K. Cengiz and M. Aydemir, “Next-Generation infrastructure and technology issues in 5G systems,” Journal of Communications Software and Systems, vol. 14, no. 1, pp. 33–39, 2018, doi: 10.24138/jcomss.v14i1.422.
  • J. Long and O. Büyüköztürk, “Collaborative duty cycling strategies in energy harvesting sensor networks,” Computer-Aided Civil and Infrastructure Engineering, vol. 35, no. 6, pp. 534–548, Jun. 2020, doi: 10.1111/mice.12522.
  • N. Salhab, R. Langar, and R. Rahim, “5G network slices resource orchestration using Machine Learning techniques,” Computer Networks, vol. 188, no. August 2020, p. 107829, 2021, doi: 10.1016/j.comnet.2021.107829.
  • A. Gausseran, “Optimization algorithms for Network Slicing for 5G,” 2021.
  • A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges,” Computer Networks, vol. 167, no. 2020, 2020, doi: 10.1016/j.comnet.2019.106984.
  • L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open, Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road Ahead,” Computer Networks, vol. 182, no. July. Elsevier B.V., p. 107516, 2020. doi: 10.1016/j.comnet.2020.107516.
  • M. O. Ojijo and O. E. Falowo, “a Survey on Slice admission Control Strategies and Optimization Schemes in 5G Network,” IEEE Access, vol. 8, pp. 14977–14990, 2020, doi: 10.1109/aCCESS.2020.2967626.
  • W. Ejaz, S. K. Sharma, S. Saadat, M. Naeem, A. Anpalagan, and N. A. Chughtai, “A comprehensive survey on resource allocation for CRAN in 5G and beyond networks,” Journal of Network and Computer Applications, vol. 160, no. March. Elsevier Ltd, p. 102638, 2020. doi: 10.1016/j.jnca.2020.102638.
  • A. Mughees, M. Tahir, M. A. Sheikh, and A. Ahad, “Towards energy efficient 5G networks using machine learning: Taxonomy, research challenges, and future research directions,” IEEE Access, vol. 8, pp. 187498–187522, 2020, doi: 10.1109/ACCESS.2020.3029903.
  • N. Slamnik-Kriještorac, H. Kremo, M. Ruffini, and J. M. MarquezBarja, “Sharing Distributed and Heterogeneous Resources toward End-to-End 5G Networks: A Comprehensive Survey and a Taxonomy,” IEEE Communications Surveys and Tutorials, vol. 22, no. 3, pp. 1592–1628, 2020, doi: 10.1109/COMST.2020.3003818.
  • O. Idowu-bismark, O. Kennedy, R. Husbands, and M. Adedokun, “5G Wireless Communication Network Architecture and Its Key Enabling Technologies,” vol. 12, no. April, pp. 70–82, 2019.
  • P. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, “Design considerations for a 5G network architecture,” IEEE Communications Magazine, vol. 52, no. 11, pp. 65–75, Nov. 2014, doi: 10.1109/MCOM.2014.6957145.
  • K. M. S. Huq, S. A. Busari, J. Rodriguez, V. Frascolla, W. Bazzi, and D. C. Sicker, “Terahertz-Enabled Wireless System for Beyond-5G Ultra-Fast Networks: A Brief Survey,” IEEE Netw, vol. 33, no. 4, pp. 89–95, 2019, doi: 10.1109/MNET.2019.1800430.
  • O. O. Erunkulu, “5G Mobile Communication Applications : A Survey and Comparison of Use Cases,” IEEE Access, vol. 9, pp. 97251– 97295, 2021, doi: 10.1109/ACCESS.2021.3093213.
  • M. Vaezi and Y. Zhang, “Virtualization and Cloud Computing,” Wireless Networks (United Kingdom), pp. 11–31, 2017, doi: 10.1007/978-3-319-54496-0_2.
  • G. Brown, “Service-Oriented 5G Core Networks,” Huawei, no. February, p. 12, 2017, [Online]. Available: www-file.huawei.com/- /media/CORPORATE/PDF/white paper/Heavy Reading WhitepaperService-Oriented 5G Core Networks.pdf
  • K. V. Cardoso, C. B. Both, L. R. Prade, C. J. A. Macedo, and V. H. L. Lopes, “A softwarized perspective of the 5G networks,” Jun. 2020, Accessed: Jul. 16, 2022. [Online]. Available: http://arxiv.org/abs/2006.10409
  • V. Thirupathi, C. Sandeep, S. Naresh Kumar, and P. Pramod Kumar, “A comprehensive review on sdn architecture, applications and major benifits of SDN,” International Journal of Advanced Science and Technology, vol. 28, no. 20, pp. 607–614, 2019.
  • S. H. Haji et al., “Comparison of Software Defined Networking with Traditional Networking,” Asian Journal of Research in Computer Science, no. May, pp. 1–18, 2021, doi: 10.9734/ajrcos/2021/v9i230216.
  • T. Bakhshi, “State of the art and recent research advances in software defined networking,” Wirel Commun Mob Comput, vol. 2017, p. 36, 2017, doi: 10.1155/2017/7191647.
  • S. Yadav and S. Singh, “SDN and NFV in 5G : Advancements and Challenges,” International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN, vol. 7, no. 5, pp. 101–110, 2018, [Online]. Available: www.ijcsmc.com%0AInternational
  • X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell : Scalable and Flexible Cellular Core Network Architecture Categories and Subject Descriptors,” no. 163, pp. 163–174.
  • D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “DeepCog: Optimizing Resource Provisioning in Network Slicing with AI-Based Capacity Forecasting,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 2, pp. 361–376, 2020, doi: 10.1109/JSAC.2019.2959245.
  • S. van Rossem et al., “Deploying elastic routing capability in an SDN/NFV-enabled environment,” 2015 IEEE Conference on Network Function Virtualization and Software Defined Network, NFV-SDN 2015, pp. 22–24, 2016, doi: 10.1109/NFV-SDN.2015.7387398.
  • A. O. Nyanteh, M. Li, M. F. Abbod, and H. Al-Raweshidy, “CloudSimHypervisor: Modeling and Simulating Network Slicing in Software-Defined Cloud Networks,” IEEE Access, vol. 9, pp. 72484– 72498, 2021, doi: 10.1109/ACCESS.2021.3079501.
  • ETSI, “Network Functions Virtualisation ( NFV ) Release 3 ; Evolution and Ecosystem ; Report on Network Slicing Support with ETSI NFV Architecture Framework,” 2017. [Online]. Available: https://ipr.etsi.org/
  • M. Chahbar, G. Diaz, A. Dandoush, C. Cerin, and K. Ghoumid, “A Comprehensive Survey on the E2E 5G Network Slicing Model,” IEEE Transactions on Network and Service Management, vol. 18, no. 1, pp. 49–62, 2021, doi: 10.1109/TNSM.2020.3044626.
  • B. NGMN Alliance, R. el Hattachi, and J. Erfanian, “NGMN 5G White Paper,” 2015.
  • D. Ficzere, “Complex network theory to model 5G Network Slicing,” pp. 19–22, 2022.
  • A. Papageorgiou, A. Fernández-Fernández, S. Siddiqui, and G. Carrozzo, “On 5G network slice modelling: Service-, resource-, or deployment-driven?,” Comput Commun, vol. 149, no. June 2019, pp. 232–240, 2020, doi: 10.1016/j.comcom.2019.10.024.
  • T. Specification and G. Services, “3gpp ts 28.530,” 2021.
  • X. Li et al., “Network Slicing for 5G: Challenges and Opportunities,” IEEE Internet Comput, vol. 21, no. 5, 2018, doi: 10.1109/MIC.2018.326150452.
  • J. Mei, “An intelligent self-sustained RAN slicing framework for diverse service provisioning in 5G-beyond and 6G network s A pattern recognition framework for detecting changes Triboelectric nanogenerators enabled internet of things : A survey Network Vehicles :,” vol. 1, no. 3, pp. 281–294, 2020, doi: 10.23919/ICN.2020.0019.
  • O. Mauricio, C. Rendon, and S. Member, “Scalability and Performance Analysis in 5G Core Network slicing,” vol. 8, 2020, doi: 10.1109/ACCESS.2020.3013597.
  • Z. Kotulski, T. W. Nowak, M. Sepczuk, and M. A. Tunia, “5G networks: Types of isolation and their parameters in RAN and CN slices,” Computer Networks, vol. 171, 2020, doi: 10.1016/j.comnet.2020.107135.
  • R. Singh et al., “Analysis of Network Slicing for Management of 5G Networks Using Machine Learning Techniques,” vol. 2022, 2022.
  • R. A. Addad, G. S. Member, D. Leonel, and C. Dutra, “Toward Using Reinforcement Learning for Trigger Selection in Network Slice Mobility,” vol. 39, no. 7, pp. 2241–2253, 2021.
  • S. Sridharan, “A Literature Review of Network Function Virtualization ( NFV ) in 5G Networks,” vol. 68, no. 10, pp. 49–55, 2020, doi: 10.14445/22312803/IJCTT-V68I10P109.
  • Z. Kotulski, T. W. Nowak, M. Sepczuk, and M. A. Tunia, “5G networks : Types of isolation and their parameters in RAN and CN slices,” vol. 171, 2020, doi: 10.1016/j.comnet.2020.107135.
  • and J.-L. G. Mat´ıas Richart, Javier Baliosian, Joan Serrat, “End-toend network slicing enabled through network function virtualization,” in 2017 IEEE Conference on Standards for Communications and Networking (CSCN), Sep. 2017, pp. 30–35. doi: 10.1109/CSCN.2017.8088594.
  • A. Abdulghaffar and A. Mahmoud, “Modeling and Evaluation of Software Defined Networking Based 5G Core Network Architecture,” pp. 10179–10198, 2021, doi: 10.1109/ACCESS.2021.3049945.
  • L. Ma, X. Wen, L. Wang, Z. Lu, and R. Knopp, “An SDN / NFV Based Framework for Management and Deployment of Service Based 5G Core Network,” no. October, pp. 86–98, 2018.
  • T. Lin, S. Marinova, and A. Leon-Garcia, “Towards an end-to-end network slicing framework in multi-region infrastructures,” in Proceedings of the 2020 IEEE Conference on Network Softwarization: Bridging the Gap Between AI and Network Softwarization, NetSoft 2020, 2020, pp. 413–421. doi: 10.1109/NetSoft48620.2020.9165408.
  • R. A. Addad, M. Bagaa, T. Taleb, D. Leonel, and C. Dutra, “Optimization Model for Cross-Domain Network Slices in 5G Networks,” vol. 19, no. 5, pp. 1156–1169, 2020.
  • G. Dandachi, A. de Domenico, and D. T. Hoang, “An Artificial Intelligence Framework for Slice Deployment and Orchestration in 5G Networks,” vol. 6, no. 2, pp. 858–871, 2020.
  • D. Irawan, N. R. Syambas, A. A. N. Ananda Kusuma, and E. Mulyana, “Network Slicing Algorithms Case Study:Virtual Network Embedding,” in 2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA, Nov. 2020, pp. 1–5. doi: 10.1109/TSSA51342.2020.9310856.
  • R. A. Addad, M. Bagaa, T. Taleb, D. Leonel, and C. Dutra, “Optimization Model for Cross-Domain Network Slices in 5G Networks,” vol. 19, no. 5, pp. 1156–1169, 2020.
  • J. Khamse-Ashari, G. Senarath, I. Bor-Yaliniz, and H. Yanikomeroglu, “An agile and distributed mechanism for inter-domain network slicing in next-generation mobile networks,” IEEE Trans Mob Comput, 2021, doi: 10.1109/TMC.2021.3061613.
  • R. Wen et al., “On robustness of network slicing for next-generation mobile networks,” IEEE Transactions on Communications, vol. 67, no. 1, pp. 430–444, 2019, doi: 10.1109/TCOMM.2018.2868652.
  • Q. T. Luu, S. Kerboeuf, A. Mouradian, and M. Kieffer, “A CoverageAware Resource Provisioning Method for Network Slicing,” IEEE/ACM Transactions on Networking, vol. 28, no. 6, pp. 2393– 2406, 2020, doi: 10.1109/TNET.2020.3019098.
  • Q. Luu, S. Kerboeuf, M. Kieffer, and S. Member, “Uncertainty-Aware Resource Provisioning for Network Slicing,” vol. 18, no. 1, pp. 79–93, 2021.
  • Q.-T. Luu, S. Kerboeuf, and M. Kieffer, “Foresighted Resource Provisioning for Network Slicing,” in 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Jun. 2021, vol. 2021-June, no. 1, pp. 1–8. doi: 10.1109/HPSR52026.2021.9481832.
  • N. Kazemifard and V. Shah-Mansouri, “Minimum delay function placement and resource allocation for Open RAN (O-RAN) 5G networks,” Computer Networks, vol. 188, no. May 2020, p. 107809, 2021, doi: 10.1016/j.comnet.2021.107809.
  • A. S. D. Alfoudi, S. H. S. Newaz, A. Otebolaku, G. M. Lee, and R. Pereira, “An Efficient Resource Management Mechanism for Network Slicing in a LTE Network,” IEEE Access, vol. 7, pp. 89441–89457, 2019, doi: 10.1109/ACCESS.2019.2926446.
  • Y. Shi, Y. E. Sagduyu, and T. Erpek, “Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing,” 2020.
  • S. M. A. Kazmi and R. Hussain, “Effects of Differentiated 5G Services on Computational and Radio Resource Allocation Performance,” vol. 18, no. 2, pp. 2226–2241, 2021.
  • D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs, and X. Costa-Perez, “Network Slicing Meets Artificial Intelligence: An AI-Based Framework for Slice Management,” IEEE Communications Magazine, vol. 58, no. 6, pp. 32–38, 2020, doi: 10.1109/MCOM.001.1900653.
  • Z. Wang, Y. Wei, F. Richard Yu, and Z. Han, “Utility Optimization for Resource Allocation in Multi-Access Edge Network Slicing: A Twin-Actor Deep Deterministic Policy Gradient Approach,” IEEE Trans Wirel Commun, pp. 1–14, 2022, doi: 10.1109/TWC.2022.3143949.
  • P. Borylo, M. Tornatore, P. Jaglarz, N. Shahriar, P. Chołda, and R. Boutaba, “Latency and energy-aware provisioning of network slices in cloud networks,” Comput Commun, vol. 157, no. October 2019, pp. 1–19, 2020, doi: 10.1016/j.comcom.2020.03.050.
  • F. Fossati, S. Moretti, P. Perny, S. Secci, and S. Member, “MultiResource Allocation for Network Slicing,” vol. 28, no. 3, pp. 1311– 1324, 2020.
  • Y. Li et al., “Understanding the ecosystem and addressing the fundamental concerns of commercial MVNO,” IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp. 1364–1377, 2020, doi: 10.1109/TNET.2020.2981514.
  • M. Gharbaoui, B. Martini, and P. Castoldi, “Programmable and Automated Deployment of Tenant-Managed SDN Network Slices,” Proceedings of IEEE/IFIP Network Operations and Management Symposium 2020: Management in the Age of Softwarization and Artificial Intelligence, NOMS 2020, 2020, doi: 10.1109/NOMS47738.2020.9110302.
  • H. Yang et al., “Data-Driven Network Slicing from Core to RAN for 5G Broadcasting Services,” IEEE Transactions on Broadcasting, vol. 67, no. 1, pp. 23–32, 2021, doi: 10.1109/TBC.2020.3031742.
  • B. I. N. Han, J. I. Lianghai, and S. Member, “Slice as an Evolutionary Service : Genetic Optimization for Inter-Slice Resource Management in 5G Networks,” IEEE Access, vol. 6, pp. 33137–33147, 2020, doi: 10.1109/ACCESS.2018.2846543.
  • A. Mpatziakas, S. Papadopoulos, A. Drosou, and D. Tzovaras, “Multiobjective Optimisation for Slice-aware Resource Orchestration in 5G Networks,” no. Icin, pp. 79–86, 2020.
  • B. B. Haile and E. Mutafungwa, “A Data-Driven Multiobjective Optimization Framework for Hyperdense 5G Network Planning,” pp. 169423–169443, 2020, doi: 10.1109/ACCESS.2020.3023452.
  • R. A. Addad, M. Bagaa, T. Taleb, D. L. C. Dutra, and H. Flinck, “Optimization model for cross-domain network slices in 5g networks,” IEEE Trans Mob Comput, vol. 19, no. 5, pp. 1156–1169, 2020, doi: 10.1109/TMC.2019.2905599.
  • A. A. Abdellatif, A. Mohamed, A. Erbad, and M. Guizani, “Dynamic Network Slicing and Resource Allocation for 5G-and-Beyond Networks,” pp. 262–267, 2022.
  • H. Fourati, R. Maaloul, and L. Chaari, A survey of 5G network systems : challenges and machine learning approaches, no. 0123456789. Springer Berlin Heidelberg, 2020. doi: 10.1007/s13042- 020-01178-4.
  • L. A. Garrido, A. Dalgkitsis, K. Ramantas, and C. Verikoukis, “Machine Learning for Network Slicing in Future Mobile Networks: Design and Implementation,” 2021 IEEE International Mediterranean Conference on Communications and Networking, MeditCom 2021, pp. 23–28, 2021, doi: 10.1109/MeditCom49071.2021.9647571.
  • H. Chergui and C. Verikoukis, “Big Data for 5G Intelligent Network Slicing Management,” no. August, pp. 56–61, 2020.
  • F. Debbabi, R. Jmal, L. C. Fourati, and A. Ksentini, “Algorithmics and Modeling Aspects of Network Slicing in 5G and Beyonds Network: Survey,” IEEE Access, vol. 8, pp. 162748–162762, 2020, doi: 10.1109/ACCESS.2020.3022162.
  • D. Yan, X. Yang, and L. Cuthbert, “Regression-based K nearest neighbours for resource allocation in network slicing,” Wireless Telecommunications Symposium, vol. 2022-April, 2022, doi: 10.1109/WTS53620.2022.9768174.
  • Y. Liu, J. Ding, Z. Zhang, and X. Liu, “CLARA : A Constrained Reinforcement Learning Based Resource Allocation Framework for Network Slicing,” pp. 1427–1437, 2021.
  • B. Han, D. Feng, and H. D. Schotten, “A Markov Model of Slice Admission Control,” IEEE Networking Letters, vol. 1, no. 1, pp. 2–5, 2018, doi: 10.1109/lnet.2018.2873978.
  • C. Ssengonzi, O. P. Kogeda, and T. O. Olwal, “A survey of deep reinforcement learning application in 5G and beyond network slicing and virtualization,” Array, vol. 14, no. April, p. 100142, 2022, doi: 10.1016/j.array.2022.100142.
  • M. Yan, G. Feng, J. Zhou, Y. Sun, and Y. Liang, “Intelligent Resource Scheduling for 5G Radio,” IEEE Trans Veh Technol, vol. 68, no. 8, pp. 7691–7703, 2019, doi: 10.1109/TVT.2019.2922668.
  • H. Chergui, C. Verikoukis, and S. Member, “Offline SLA-Constrained Deep Learning for 5G Networks Reliable and Dynamic End-to-End Slicing,” vol. 38, no. 2, pp. 350–360, 2020.
  • Q. Xu, J. Wang, and K. Wu, “Learning-Based Dynamic Resource Provisioning for Network Slicing with Ensured End-to-End Performance Bound,” vol. 7, no. 1, pp. 28–41, 2020.
  • A. Gharehgoli, A. Nouruzi, S. Member, N. Mokari, P. Azmi, and M. R. Javan, “AI-based Robust Resource Allocation in End-to-End Network Slicing under Demand and CSI Uncertainties,” no. Ml, pp. 1– 18.
  • A. Othman and N. A. Nayan, “Automated Deployment of Virtual Network Function in 5G Network Slicing Using Deep Reinforcement Learning,” vol. 10, pp. 61065–61079, 2022.
  • I. Afolabi, J. Prados-Garzon, M. Bagaa, T. Taleb, and P. Ameigeiras, “Dynamic resource provisioning of a scalable E2E network slicing orchestration system,” IEEE Trans Mob Comput, vol. 19, no. 11, pp. 2594–2608, 2020, doi: 10.1109/TMC.2019.2930059.
  • C. Marquez et al., “Resource Sharing Efficiency in Network Slicing,” IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, vol. 16, no. 3, pp. 909–923, 2019, doi: 10.1109/TNSM.2019.2923265.
  • S. T. Arzo, R. Bassoli, F. Granelli, S. Member, F. H. P. Fitzek, and S. Member, “Study of Virtual Network Function Placement in 5G Cloud Radio Access Network,” vol. 17, no. 4, pp. 2242–2259, 2020.
  • M. Maule, J. Vardakas, and C. Verikoukis, “5G RAN Slicing: Dynamic Single Tenant Radio Resource Orchestration for eMBB Traffic within a Multi-Slice Scenario,” IEEE Communications Magazine, vol. 59, no. 3, pp. 110–116, 2021, doi: 10.1109/MCOM.001.2000770.
  • A. A. Gebremariam, M. Chowdhury, M. Usman, A. Goldsmith, and F. Granelli, “SoftSLICE: Policy-based dynamic spectrum slicing in 5G cellular networks,” IEEE International Conference on Communications, vol. 2018-May, no. February, 2018, doi: 10.1109/ICC.2018.8422148.
  • S. R. A. N. Slicing, H. Chergui, L. Blanco, C. Verikoukis, and S. Member, “Statistical Federated Learning for Beyond 5G,” 2021, doi: 10.1109/TWC.2021.3109377.
  • X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning,” IEEE Netw, vol. 33, no. 5, pp. 156–165, 2019, doi: 10.1109/MNET.2019.1800286.
  • H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. M. Leung, “Network Slicing Based 5G and Future Mobile Networks : Mobility , Resource Management , and Challenges,” no. January, 2017, doi: 10.1109/MCOM.2017.1600940.

Abstract Views: 180

PDF Views: 2




  • Resource Provisioning and Utilization in 5G Network Slicing: A Survey of Recent Advances, Challenges, and Open Issues

Abstract Views: 180  |  PDF Views: 2

Authors

Simon Atuah Asakipaam
Department of Telecommunication Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Jerry John Kponyo
Department of Telecommunication Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Kwame Oteng Gyasi
Department of Telecommunication Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract


The increasing demands for higher bandwidth and lower latency in modern telecommunications networks have led to the exploration of network slicing as a means to meet these requirements more efficiently in next-generation 5G networks. Despite substantial academic interest in resource allocation and management in network slicing, existing research is dispersed and fragmented. This study presents a categorization and assessment of the latest research on resource allocation and optimization techniques in 5G network slicing. It also shows how advanced machine learning techniques can support resource management in sliced wireless networks. The present paper offers a complete overview and analysis of current solutions for resource allocation and management in 5G network slicing, outlines open research challenges, and suggests future research directions for researchers and engineers in this field.

Keywords


Network Slicing, Resource Allocation, 5G Network, Management, Optimization, SDN, NFV.

References





DOI: https://doi.org/10.22247/ijcna%2F2023%2F220736