
International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

DOI:10.5121/ijcsit.2016.8501 1

PARALLEL GENERATION OF IMAGE LAYERS

CONSTRUCTED BY EDGE DETECTION USING

MESSAGE PASSING INTERFACE

Alaa Ismail Elnashar

Faculty of Science, Computer Science Department, Minia University, Egypt

Associate professor, Department of Computer Science, College of Computers and

Information Technology, Taif University, Saudi Arabia

ABSTRACT

Edge detection is one of the most fundamental algorithms in digital image processing. Many algorithms

have been implemented to construct image layers extracted from the original image based on selecting

threshold parameters. Changing theses parameters to get a high quality layer is time consuming. In this

paper, we propose two parallel technique, NASHT1 and NASHT2, to generate multiple layers of an input

image automatically to enable the image tester to select the highest quality detected edges. In addition, the

effect of intensive I/O operations and the number of parallel running processes on the performance of the

proposed techniques have also been studied.

KEYWORDS

Parallel programming, Message Passing Interface, performance, Image Processing, Edge Detection

1. INTRODUCTION

A digital image can be represented by a two-dimensional array having integer values.

Color digital images consist of a set of pixels; each pixel represents a combination of primary

colors. A channel is the grayscale image of the same size as a color image, made of just one of

these primary colors. A digital color image has three channels; red, green and blue while a

grayscale image has just one channel.

Digital image processing is the use of computer algorithms to perform image

processing on digital images. It has many advantages over analog image processing. It allows a

much wider range of algorithms to be applied to the input data and can avoid problems such as

the build-up of noise and signal distortion during processing. It also offers high performance

using simple tasks, and can implement methods which would be impossible by analog means.

Edge detection is a set of mathematical methods which aim at identifying points in a digital

image at which the image brightness changes sharply or has discontinuities. The points at which

image brightness changes sharply are typically organized into a set of curved line segments

termed edges. An edge within an image can be defined as discontinuities in image intensity from

one pixel to another. Edge detection is a fundamental tool in image processing, machine

vision and computer vision, particularly in the areas of feature detection and feature extraction

[1].

Many algorithms [2, 3, 4, 5, 6] were designed and implemented to capture such edges. The

purpose of edge detection algorithms is to reduce the amount of data in an image, while

preserving the structural properties to be used for further image processing .

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

2

In the ideal case, the result of applying an edge detector to an image may lead to a set of

connected curves that indicate the boundaries of objects, the boundaries of surface markings as

well as curves that correspond to discontinuities in surface orientation. Thus, applying an edge

detection algorithm to an image may significantly reduce the amount of data to be processed and

may therefore filter out information that may be regarded as less relevant, while preserving the

important structural properties of an image.

If the edge detection step is successful, the subsequent task of interpreting the information

contents in the original image may therefore be substantially simplified. However, it is not always

possible to obtain such ideal edges from real life images of moderate complexity [7].

Threshold is one of the most widely used methods for image segmentation. It is useful in

discriminating foreground from the background by selecting an adequate threshold value [8].

Several threshold techniques [9, 10, 11, 12, 13] have been implemented to adapt threshold values

to produce high quality edges. Some studies discussed edge detection parallelization to increase

the execution speedup [14, 15, 16, 17].

In [18] a comparison between loop-level parallelism and domain decomposition is presented.

Christos et al implemented a real- time edge detection parallel technique for FPGAs [19].

 A real-time interactive image processing parallel system designed for manipulating large size

images is described in [20].An inherent parallel scheme for 3D image segmentation of large

volume data on a GPU cluster is presented in [21].

Canny edge detector [26] has been implemented using CUDA system and achieved 50 times

speedup compared with CPU system [22]. Prakash et al proposed a technique that uses multi-

cores and GPU implementation through MPI and OpenCL to perform edge detection process for

multiple images in parallel [23].

A parallel framework for image segmentation using region based techniques is presented in [24].

The algorithm is based on performing several segmentations of the same image using a parallel

region-based algorithm. Moreover, these segmentations are also obtained in parallel.

All the mentioned studies focus on either image partitioning or parallelizing edge detection

components such as smoothing and suppression.

In this paper we introduce two parallel techniques, NASHT1 and NASHT2 that apply edge

detection to generate a set of layers for an input image. In addition, we study the effect of the

number of parallel running processes and image size on the performance of the proposed

techniques.

The paper is organized as follows: section 2 defines the research problem. In section 3, the

ordinary sequential image detection technique is presented. Section 4 presents the proposed

parallel techniques. The experiments carried out and results discussion are presented in Section 5.

2. PROBLEM DEFINITION

In edge detection process, the quality of the output image layer is very sensitive to the input

parameters thresholds [11]. The main drawback of Canny edge detection is that lowhigh TT , andσ

are set manually as input parameters, and it is possible to get a proper threshold after many

experiments based on the quality of the output edges. However, in practice, the highT and lowT often

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

3

change because the scenes and illumination change frequently [25]. So, the user choice is to

change the input parameters several times to generate an image layer that satisfies his needs.

Another choice is to plug the image detector engine into an iterative loop to get a set of layers to

select the required one(s) from this set. This solution may save time and effort consumed in

manual process.

The disadvantage of this solution is the intensive I/O operations required to generate a large

number of layers. This will lead to a dramatically execution time increase. The idea of our

proposed parallel technique is to divide the iterative process of generating successive layers

among several parallel processes to reduce the execution time.

3. SEQUENTIAL IMAGE LAYERS GENERATION TECHNIQUE

Canny algorithm [26] described in Figure 1, is one of the most famous edge detection algorithms.

It uses two functions "Read" and "Write" to read the input image and to write out the generated

layer, as shown in Figure 2 and Figure 3.

Algorithm Edge_Detector (Image_File_Name, Layer, Im_Rows, Im_Cols , lowhigh TT ,

 , σ)

/* Input: Image_File_Name, lowhigh TT , , σ */

/* Output: Imager Layer */

 01. Read (Image_File_Name, Im_Rows , Im_Cols);

 02. Apply Gaussian smoothing on the image using the input standard deviation σ ;

 03. Compute the first derivative in the x and y directions;

 04. Compute the magnitude of the gradient;

 05. Perform non-maximal suppression;

 06. Mark the edge pixels using highT and lowT ;

 07. Form Layer_File_Name based on lowhigh TT , and σ ;

 08. Call Write (Layer_File_Name, Layer, Im_Rows , Im_Cols);

 09. End

Figure 1: Canny Edge Detector Pseudo Code

Read(Image_File_Name, Image, Im_Rows , Im_Cols)

/* Input: Image_File_Name */

/* Output: image array Image, Im_Rows , Im_Cols */

 01. Allocate memory array Image to store the image data;.

 02. Open (Image_File_Name) for read;

 03. Read Image hearer;

 04. Im_Rows= rows;

 05. Im_Cols = columns;

 06. for i = 1 to Im_Rows

 07.{

 08. for j = 1 to Im_Cols

 09. {

 10. Read Image data;

 11. Image[i][j] = Image data;

 12. }

 13.}

 14. Close (Image_File_Name);

 15. Return Image, Im_Rows , Im_Cols ;

 16. End

Figure 2: Reading Image Pseudo Code

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

4

It computes the edges pixels based on specific statistics of the concerned image. In this algorithm,

edge detection process can be affected by image noise, it is very important to filter out the noise

to prevent false edge detection caused by noise. To smooth the image, a Gaussian filter [27], G, is

applied to convolve with the image. This step smoothes the image to reduce the effects of noise

by generating an array of smoothed data [] [] []jiIjiGjiS ,*;,, σ= , where []jiI , denotes an image of

size ji × and σ is the value of standard deviation that is used in image smoothing process [28].

The algorithm computes the first derivative in the x and y directions and finds the magnitude of

the gradient.

Non-maximum suppression for the gradient magnitude is then applied. Two input parameters

highT and lowT are used to detect and connect edges. Pixels with values greater than highT are

assigned the binary value 1 in the output, while pixels with values below lowT are assigned the

binary value 0. Pixels with values between lowT and highT are assigned the binary value 1 in the

binary output if they can be connected to any pixel with a value larger than highT through a chain

of other pixels with values larger than lowT . Finally, the algorithm writes out the edge image to the

output image layer file.

Algorithm 1 generates only one image layer based on the input values for lowhigh TT , andσ . The

algorithm can be invoked inside an iterative loop that modifies these values to generate multiple

image layers as shown in Figure 4.

Write (Layer_File_Name, Layer, Layer_File, Im_Rows , Im_Cols)

/* Input: Layer_File_Name, Layer array, Im_Rows , Im_Cols */

/* Output: Image Layer File */

 01. Open (Layer_File_Name) for write;

 02. write (Layer_File_Name) Im_Rows , Im_Cols;

 03. for i = 1 to Im_Rows

 04.{

 05. for j = 1 to Im_Cols

 06. {

 07. write (Layer_File_Name) Layer[i][j];

 08. }

 09.}

 10. Close (Layer_File_Name);

 11. End

Figure 3: Writing Image Layer Pseudo Code

Sequential Iterative Layers Generator (Image_File_Name, Layer, Im_Rows, Im_Cols

 , lowhigh TT , ,σ , Number_Of_Layers)

/*Input: Image_File_Name, initial values of lowhigh TT , and σ , Number_Of_Layers */

/* Output: Multiple Image Layers */

 01. for i = 1 to Number_Of_Layers;

 02.{

 03. Edge_Detector (Image_File_Name, Layer, Im_Rows, Im_Cols , lowhigh TT , , σ)

 04. Update lowhigh TT , , σ according to loop counter;

 05. }

 06. Close (Layer_File_Name);

 07. End

Figure 4: Sequential Iterative Layers Generator Pseudo Code

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

5

4. PROPOSED PARALLEL TECHNIQUES

Two parallel techniques with four versions were designed and implemented. The first goal of this

paper is to parallelize layers generation process by distributing layers generation iterations chunks

among several parallel processes. The second goal is to study the execution time reduction gained

from parallelization. The last goal is to study how the number of running parallel processes and

image size affect proposed techniques relative speedup.

4. 1 PARALLEL PLATFORM AND SOFTWARE

We used an experimental system consisting of the following hardware and software components:

1- PC1: Intel® Core i7 CPU @ 2.40GHz, 6.00 GB RAM, running on Windows 10 Pro.

2- PC2: Intel® Core i5 CPU @ 2.40GHz, 4.00 GB RAM, running on Windows 7 Ultimate.

3- PC3: Intel® Core i5 CPU @ 2.30GHz, 4.00 GB RAM, running on Windows 10 Pro.

4- Gigaset® SE551 WLAN Ethernet adaptor with LAN cables.

5- MicroSoft® Visual C++ 2010 Compiler.

6- MPICH2 for Microsoft Windows.

7- Jumpshot-4 visualization software.

Three personal computers PC1, PC2 and PC3 with the above specifications are selected randomly

to carry out running and evaluation experiments. For individuals, finding a set of such

heterogeneous systems is easier than finding a set of homogenous devices to be used in real work

environment. The three PCs are connected to each others by using an Ethernet adaptor as

described in figure 5. The proposed techniques were coded and complied by using MicroSoft®

Visual C++ 2010 Compiler.

MPICH2 [29] is a high performance portable implementation of Message Passing Interface. It

efficiently supports different computation and communication platforms. It also supports using of

C/C++ and FORTRAN programming languages.

The structure of MPICH2 is shown in figure 6. It uses an external process manager for scalable

startup of MPI jobs. The default process manager is called MPD, which is a ring of daemons on

the machines where MPI programs run. The CH3 device contains different internal

communication options called "channels". "Socket channel" is the traditional TCP sockets based

communication channel. It uses TCP/IP sockets for all communication including intra-node

communication [30].

Figure 5. Hardware Platform Figure 6. MPICH2 Structure

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

6

In contrast to MPICH2 for Windows, the implementation for UNIX and LINUX offers built-in

network topology support. This makes an easy use of MPICH2 on such platforms and hence little

attention has been focused on using the implementation on Microsoft Windows although it

provides the facilities of parallel execution and multi-threading.

MPICH2 for windows can be installed either on a single machine having single / multi-core

processors or an interconnected set of machines. In both cases, performance of MPI programs is

affected with various parameters such the number of cores (machines), number of running

processes and the programming paradigm which is used [31]. MPI offers two patterns of inter-

process communication, Point-to-point and Collective communication.

In point-to-point communication, a message is transmitted from a process to another one using a

buffer. After the data is packed into a buffer, the communication device is responsible for routing

the message to the proper location. The location of the message is defined by the process's rank.

Collective communication pattern is defined as communication that involves a group of

processes. MPI implements this pattern by using MPI_Bcast function which broadcasts a message

from the root process to all other processes including itself. This implies that the amount of data

sent must be equal to the amount received, pair wise between each process and the root. It blocks

until all processes have made a matching call to MPI_Bcast, at which point communication

occurs and execution continues.

To profile running executables and observe parallel processes communication graphically, we use

Jumpshot-4 [32]; a visualization software for the logfile format, SLOG-2, [33]. The graphical

symbols used in this paper with their icons, names and descriptors are shown in Table 1.

Table 1. Jumpshot-4 graphical symbols

Symbol Name Description

Message Message sent from one process to another one is represented by an

arrow directed from source process to destination one.

MPI_Barrier Yellow state, blocks until all processes have reached this routine.

MPI_Bcast Aqua state, broadcasts a message from the process with rank "root"

to all other processes

MPI_Send Blue state, sends a data message from a source process to a

distention one.

MPI_Receive Green state, receives a data message from a source process.

MPI_Finalize Terminates MPI execution environment.

4. 2 PARALLEL IMPLEMENTATIONS

Based on point-to point and collective communication patterns, we have implemented the

proposed techniques, NASHT1 and NASHT2. Two versions were developed for each technique.

Version1 implementation uses point-to-point communication pattern employing MPI "send" and

"receive" functions. Version2 uses collective communication pattern employing "MPI_Bcast"

functions.

4. 2 .1 PARALLEL TECHNIQUE1, NASHT1: SEND VERSION

In this technique, the root process with rank "identifier" Zero, is designated to read the contents of

an input image and then sends its data to all other processes. All processes except the root process

compute their iteration chunks and then perform edge detection task based on their own local

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

7

values of lowhigh TT , and σ . Once this task is finished, the generated image layers are sent to the

root process to be written. The steps of this technique are described in figure 7. A jump-shot time

line for inter-process communication is shown in Figure 8.

01. Initialize MPI environment;

02. Initialize edge detection parameters lowhigh TT , and σ ;

03. Read the number of layers (N_layers) to be generated;

04. Determine the number of MPI processes (Npr) and their ids;

/*Determine the number of generated layers (N_layers_Pr) for each process */

05. N_layers_Pr = N_layers / (Npr -1) ;

06. If id=master then

07. Read(Image_File_Name, Image, Im_Rows , Im_Cols);

08. Send Image rows (Im_Rows) to all processes;

09. Send Image columns (Im_Cols) to all processes;

10. Send Image array to all processes;

11. Receive the output Layer_File_Name from any other process ;

12. Receive Layer contents from any other process ;

13. Write (Layer_File_Name, Layer, Layer_File, Im_Rows , Im_Cols);

14. Else

/* All processes except "master" execute the following part */

15. Receive Image rows (Im_Rows) from master process;

16. Receive Image columns (Im_Cols) from master process;

17. Receive Image array from master process;

18. Update edge detection parameters based on id value;

19. for k = 1 to N_layers_Pr

20. {

21. Edge_Detector (Image_File_Name, Layer, Im_Rows, Im_Cols, lowhigh TT , ,σ) ;

22. Form the output Layer_File_Name based on lowhigh TT , and σ ;

23. Send the output Layer_File_Name to master process ;

24. Send Layer array to master process ;

25. }

26. EndIf /* If 1 */

26. Finalize MPI environment

27. End

Figure 7. Parallel Technique1, NASHT1: Send Version Pseudo Code

Figure 8. Parallel Technique1, NASHT1: Send Version Inter-Process Communication

4. 2 .2 PARALLEL TECHNIQUE1, NASHT1: MPI_BCAST VERSION

In this technique, the root process reads the contents of an input image. Then it broadcasts the

image data to all other processes. Each process then computes its own iteration chunk and

performs edge detection task based on its own local values of lowhigh TT , and σ . Once this task is

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

8

finished, the generated image layers are sent to the root process to be written. The steps of this

technique are described in Figure 9. A jump-shot time line for inter-process communication is

shown in Figure 10.

01. Initialize MPI environment;

02. Initialize edge detection parameters lowhigh TT , and σ ;

03. Read the number of layers (N_layers) to be generated;

04. Determine the number of MPI processes (Npr) and their ids;

/*Determine the number of generated layers (N_layers_Pr) for each process */

05. N_layers_Pr = N_layers / Npr ;

06. If id=master then

07. Read(Image_File_Name, Image, Im_Rows , Im_Cols);

08. Receive the output Layer_File_Name from any other process ;

09. Receive Layer array from any other process ;

10. Write (Layer_File_Name, Layer, Layer_File, Im_Rows , Im_Cols)

11. EndIf

/* All processes execute the following part */

12. Master broadcasts Image rows (Im_Rows) to all processes;

13. Master broadcasts Image columns (Im_Cols) to all processes;

14. Master broadcasts Image array to all processes;

15. Update edge detection parameters based on id value;

16. for k = 1 to N_layers_Pr

17. {

18. Edge_Detector (Image_File_Name, Layer, Im_Rows , Im_Cols, lowhigh TT , , σ) ;

19. Form the output Layer_File_Name based on lowhigh TT , andσ ;

20. Send the output Layer_File_Name to master process ;

21. Send Layer array to master process ;

22. }

23. Finalize MPI environment

24. End

Figure 9. Parallel Technique1, NASHT1: MPI_Bcast Version Pseudo Code

Figure 10. Parallel Technique1, NASHT1: MPI_Bcast Version Inter-Process Communication

4. 2 .3 PARALLEL TECHNIQUE2, NASHT2: SEND VERSION

In this technique, the root process reads the contents of an input image and then sends its data to

the odd ranked processes which compute their iteration chunks and perform edge detection task

based on their own local values of lowhigh TT , and σ . Once this task is finished within each process,

the generated image layers are sent to the neighbor even ranked process to be written. The root

process writes its generated layers by itself. The steps of this technique are described in Figure

11. A jump-shot time line for inter-process communication is shown in Figure 12.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

9

01. Initialize MPI environment;

02. Initialize edge detection parameters lowhigh TT , and σ ;

03. Read the number of layers (N_layers) to be generated;

04. Determine the number of MPI processes (Npr) and their ids;

/*Determine the number of generated layers (N_layers_Pr) for each process */

05. N_layers_Pr = (N_layers) / (int(0.5*Npr) + 1) ;

06. If id=master then /* If 1 */

07. Read(Image_File_Name, Image, Im_Rows , Im_Cols);

08. Send Image rows (Im_Rows) to all odd id processes;

09. Send Image columns (Im_Cols) to all odd id processes;

10. Send Image array to all odd id processes;

11. EndIf /* If 1 */

/* All odd id processes an master execute the following part */

12. If id is odd or master then /* If 2 */

13. if id <> master then /* If 3 */

14. Receive Image rows (Im_Rows) from master process;

15. Receive Image columns (Im_Cols) from master process;

16. Receive Image array from master process;

17. Send Image rows (Im_Rows) to process with id equals id+1 ;

18. Send Image columns (Im_Cols) to process with id equals id+1 ;

19. EndIf /* If 3 */

20. Update edge detection parameters based on id value;

21. for k = 1 to N_layers_Pr

22. {

23. Edge_Detector (Image_File_Name, Layer, Im_Rows , Im_Cols, lowhigh TT , , σ) ;

24. Form the output Layer_File_Name based on lowhigh TT , and σ ;

25. If id = master then /* If 4 */
26. Write (Layer_File_Name, Layer, Layer_File, Im_Rows , Im_Cols); Else

27. Send the output Layer file name and Layer array to process with id equals id+1 ;

28. EndIf /* If 4 */

29. }

30. EndIf /* If 2 */

31. If id is even then /* If 5 */

32. Receive Image rows (Im_Rows) from process with id equals id-1 ;

33. Receive Image columns (Im_Cols) from process with id equals id-1 ;

34. Receive the output Layer file name from process with id equal id-1 ;

35. Receive Layer contents from process with id equal id-1 ;

36. Write (Layer_File_Name, Layer, Layer_File, Im_Rows , Im_Cols)

37. EndIf /* If 5 */

38. Finalize MPI environment

39. End

Figure 11. Parallel Technique2, NASHT2 : Send Version Pseudo Code

Figure 12. Parallel Technique2, NASHT2: Send Version Inter-Process Communication

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

10

4. 2 .4 PARALLEL TECHNIQUE2, NASHT2: MPI_BCAST VERSION

In this technique, the root process reads the contents of an input image and broadcasts the image

data to all other processes. Each process computes its iteration chunk and then performs edge

detection task based on its own local values of lowhigh TT , and σ . Once this task is finished within

each process except the root process, the generated image layers are sent to the neighbor even

ranked process to be written. The root process in this technique writes its generated layers

directly after terminating edge detection task. The steps of this technique are described in Figure

13. A jump-shot time line for inter-process communication is shown in Figure 14.

01. Initialize MPI environment;

02. Initialize edge detection parameters lowhigh TT , and σ ;

03. Read the number of layers (N_layers) to be generated;

04. Determine the number of MPI processes (Npr) and their ids;

/*Determine the number of generated layers (N_layers_Pr) for each process */

05. N_layers_Pr = (N_layers) / (int(0.5*Npr) + 1) ;

06. If id=master then /* If 1 */

07. Read(Image_File_Name, Image, Im_Rows , Im_Cols);

08. EndIf /* If 1 */

/* All processes execute the following part */

09. Master broadcasts Image rows (Im_Rows) to all processes;

10. Master broadcasts Image columns (Im_Cols) to all processes;

11. Master broadcasts Image array to all processes;

/* All odd id processes and master execute the following part */

12. If id is odd or master then /* If 2 */

13. If id <> master then /* If 3 */

14. Send Image rows (Im_Rows) to process with id equals id+1 ;

15. Send Image columns (Im_Cols) to process with id equals id+1 ;

16. EndIf /* If 3 */

17. Update edge detection parameters based on id value;

18. for k = 1 to N_layers_Pr

19. {

20. Edge_Detector (Image_File_Name, Layer, Im_Rows , Im_Cols, lowhigh TT , , σ) ;

21. Form the output Layer_File_Name based on lowhigh TT , and σ ;

22. If id = master then /* If 4 */
23. Write (Layer_File_Name, Layer, Layer_File, Im_Rows, Im_Cols);

24. Else

25. Send the output Layer_File_Name to process with id equals id+1 ;

26. Send Layer array to process with id equals id+1 ;

27. EndIf /* If 4 */

28. }

29. EndIf /* If 2 */

30. If id is even then /* If 5 */

31. Receive the output Layer_File_Name from process with id equal id-1 ;

32. Receive Layer array from process with id equal id-1 ;

33. Write (Layer_File_Name, Layer, Layer_File, Im_Rows , Im_Cols);

34. EndIf /* If 5 */

35. Finalize MPI environment

36. End

Figure 13. Parallel Technique2, NASHT2: MPI_Bcast Version Pseudo Code

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

11

Figure 14. Parallel Technique2, NASHT2: MPI_Bcast Version Inter-Process Communication

5. RESULTS AND DISCUSSION

We carried out some experiments to examine the achievement of the three goals of this paper.

Regarding layers generation, we used three different images with various sizes ranging from

small sized images to large sized ones. Small size, "Brain" image 165x 158, medium size, "Lena"

image, 512 x 512 and large size "Picnic" image 1280 x 960.

The first experiment aims to examine the quality of the generated layers. All techniques were

tested using the three images. The input images and samples of generated layers from test

techniques are shown in Figure 15. The results show that there is no quality difference in the

generated layers compared with the layer generated from sequential technique. The advantage of

the proposed techniques demonstrated in this experiment is the generation of multiple layers in

only one run instead of a single generated layer in case of sequential technique.

Original Image Generated layers sample

Brain 165 x 158

Lena 512 x 512

Picnic1280 x 960

Figure 15. Input images and samples of generated layers

Experiment 2 was carried out to study whether any execution time reduction is gained from

parallelization. The experiment was designed to generate 720 layers for the input image in

parallel.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

12

Table 2 shows the serial execution time and the corresponding minimum parallel execution time

of running proposed techniques with several parallel processes on the described system using test

input images.

All recorded parallel execution time values demonstrate a significant execution time reduction

compared with the serial execution time values for the tested techniques regardless the percent of

reduction. This implies that all the proposed techniques had achieved execution acceleration

compared with the sequential implementation.

Table 2: Execution time reduction experimental results

Image, Serial

Execution Time

Parallel Techniques Minimum

Parallel Execution time (Sec.)

Technique1,

NASHT1

Technique2,

NASHT2

Send Bcast Send Bcast

Brain, 5.26 Sec. 3.81 4.02 1.22 2.07

Lena, 46.90 Sec. 18.49 19.25 13.72 19.84

Picnic, 215.64 Sec. 73.96 75.55 76.88 133.95

Depending only on comparing parallel execution time with the serial one is not an efficient

mechanism to study the behavior of the tested technique against specific parameters such as

number of running parallel processes and image size.

Experiment 3 was carried out to study the effect of the number of running parallel process and

image size on the relative speedup of the tested technique. Relative speedup is computed by the

formula, PS TTSpeedup /= , where ST is the execution time of sequential technique and PT is the

execution time of corresponding parallel one. This experiments has two folds, the first one is

studying the effect of the number of running parallel processes used in the technique execution on

the execution behavior.

The second one is to study how the image size affects the performance of tested technique. In this

experiment, the sequential versions that correspond to each parallel technique are executed with

an input image and the execution time is then recorded for each version.

Each parallel technique is repeatedly executed with the same input image increasing the number

of parallel processes in each run; the execution time and relative speedup of each run are then

computed and recorded for each version.

The same scenario is followed with other images having different sizes to observe the effect of

image size on execution behavior.

Table 3 shows the results of implementing this experiment. For readability, "npr", "ex" and "s"

denote the number of parallel processes, parallel execution time and relative speedup

respectively.

The results show that relative speedup of both versions of Technique1, in general, decreases as

the number of processes increases, since all processes send their generated layers to root process

to be written which leads to extra overhead on master process to finalize its amount of work.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

13

Table 3: Number of processes and Image size experimental results

Technique/

Version

Technique1,

NASHT1

Send

Technique1,

NASHT1

Bcast

 Technique2,

NASHT2 Send

Technique2,

NASHT1

Bcast

Brain

Image

npr ex s ex s npr ex s ex s

2 4.39 1.20 4.58 1.15 3 3.26 1.61 4.32 1.22

3 3.81 1.38 4.18 1.26 5 2.40 2.20 3.75 1.40

4 4.65 1.13 4.02 1.31 7 2.10 2.50 3.12 1.69

5 4.57 1.15 4.04 1.30 9 1.80 2.94 2.56 2.06

6 4.13 1.27 4.91 1.07 11 1.68 3.13 2.82 1.87

7 4.85 1.09 4.35 1.21 13 1.22 4.30 2.08 2.54

8 4.67 1.13 4.55 1.16

9 4.96 1.06 5.08 1.04

10 5.70 0.92 5.25 1.00

11 5.75 0.91 4.40 1.20

12 4.69 1.12 4.44 1.19

Technique/

Version

Technique1,

NASHT1

 Send

Technique1,

NASHT1

Bcast

 Technique2,

NASHT2 Send

Technique2,

NASHT2

Bcast

Lena

Image

npr ex s ex s npr ex s ex s

2 22.01 2.13 22.78 2.06 3 23.77 1.97 41.93 1.12

3 24.60 1.91 23.96 1.96 5 19.12 2.45 36.50 1.28

4 21.50 2.18 20.80 2.26 7 17.89 2.62 37.08 1.27

5 19.71 2.37 21.26 2.21 9 15.65 3.00 34.87 1.35

6 19.37 2.42 19.25 2.44 11 14.26 3.29 26.55 1.77

7 18.49 2.54 20.12 2.33 13 13.72 3.42 19.84 2.36

8 21.06 2.23 24.40 1.92

9 20.31 2.31 20.57 2.28

10 25.53 1.84 23.03 2.04

11 28.00 1.68 27.47 1.71

12 30.51 1.54 25.05 1.87

Technique/

Version

Technique1,

NASHT1

 Send

Technique1,

NASHT1

Bcast

 Technique2,

NASHT2 Send

Technique2,

NASHT2

Bcast

Picnic

Image

npr ex s ex s npr ex s ex s

2 104.75 2.06 104.32 2.07 3 110.5 1.95 194.3 1.11

3 109.53 1.97 109.87 1.96 5 88.49 2.44 170.7 1.26

4 83.08 2.60 85.45 2.52 7 90.20 2.39 169.2 1.27

5 91.69 2.35 90.72 2.38 9 90.21 2.39 155.6 1.39

6 75.18 2.87 75.55 2.85 11 76.88 2.80 133.9 1.61

7 73.96 2.92 79.14 2.72 13 97.87 2.20 127.2 1.70

8 83.69 2.58 84.04 2.57

9 77.12 2.80 78.28 2.75

10 104.77 2.06 103.16 2.09

11 105.58 2.04 116.84 1.85

12 95.97 2.25 97.80 2.20

In contrast, relative speedup of both versions of Technique1 increases as the image size increases

due to decreasing the computation/ communication ratio for larger images. Although the

performance of "Send" version is very close to that of "Bcast" version, the first version gained a

slight higher speedup value than the second one. These observations can be noticed in as shown

in Figure 16-a, Figure 17-a, and Figure 18- a.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

14

Concerning Technique2, relative speedup of both versions of Technique2 increases as the number

of process increases, since odd ranked processes send their generated layers to the neighbour

processes to be written which leads to less overhead on even ranked processes to finalize their

amount of work, this is obvious in Figure 16-b, Figure 17-b, and Figure 18- b.

Relative speedup of both versions of Technique2 decreases as the image size increases but still

increases as the number of processes increases.

It is also noticed that "Send" version performs better than "Bcast" version especially for small

sized images except in case of larger number of processes as shown in Figure 18-b.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12 14

Number of processes

S
p

e
e
d

 u
p

Send

Bcast

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14

Num ber of processes

S
p

e
e
d

 u
p

Send

Bcast

(a) NASHT1 : Version 1, Version 2 (b) NASHT 2: Version 1, Version 2

Figure 16. Brain 165x 158 – Serial: 5.26 Sec. – Max. Speedup : 1.38 – 1.31 , 4.29 -2.53

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

Number of processes

S
p

e
e
d

 u
p

Send

Bcast

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14

Number of processes

S
p

e
e

d
 u

p

Send

Bcast

(a) NASHT 1: Version 1, Version 2 (b) NASHT 2: Version 1, Version 2

Figure 17. Lena 512 x 512 – Serial : 46.90 Sec. – Max. Speedup : 2.54 – 2.44, 3.42 – 2.36

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14

Number of processes

S
p

e
e

d
 u

p

Send

Bcast

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

Number of processes

S
p

e
e

d
 u

p

Send

Bcast

(a) NASHT 1: Version 1, Version 2

(b) NASHT 2: Version 1, Version 2

Figure 18. Picnic 1280 x 960 – Serial: 215.64 Sec – Max. Speedup : 2.92 – 2.85, 2.80 – 1.70

From the above discussion, we can summarize the results as shown in Table 4 that guides to

recommend using of Technique2-"Send" version in case of small and medium sized images.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

15

Table 4: Image size – Relative speedup summary

Image,

Rows x Columns

Parallel Technique , Version

Maximum Relative Speedup

NASHT1 NASHT2

Send Bcast Send Bcast

Brain, 165x 158 1.38 1.31 4.29 2.53

Lena, 512x 512 2.54 2.44 3.42 2.36

Picnic,1280 x 960 2.92 2.85 2.80 1.70

Using of Technique1-"Send" version is recommended in case of large sized images. This does not

mean that the other versions of both techniques are not applicable or not recommended for use

since all of them generate valid image layers and gains notable relative speedup.

6. CONCLUSION AND FUTURE WORK

We introduced two parallel techniques not only to apply edge detection to generate a set of layers

for an input image but also to study the effect of the number of parallel running processes and

image size on the performance of the proposed techniques.

Our techniques can generate an arbitrary set of layers in a single parallel run instead of generating

a unique layer as in traditional case; this helps in selecting the layers with high quality edges

among the generated ones. Each presented parallel technique has two versions based on point to

point communication "Send" and collective communication "Bcast" functions. All of the

techniques gained higher speedup than that of sequential ones.

The effect of the number of running parallel processes and image size on the performance of the

proposed techniques was analyzed. In future, we plan to modify some communication patterns in

the proposed techniques to gain higher speedup. Extending the used hardware platform and

studying the effect of larger images are also to be examined.

REFERENCES

[1] Poonam, S. Deokar, (2015) “Implementation of Canny Edge Detector Algorithm using FPGA“ ,

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 No. 6, pp

112 - 115.

[2] Gholamali Rezai-Rad & Majid Aghababaie, (2006) “Comparison of SUSAN and Sobel Edge

Detection in MRI Images for Feature Extraction“, IEEE transaction on Information and

Communication Technologies, Vol. 1, pp 1103 - 1107.

[3] Raman Maini & Dr. Himanshu Aggarwal, (2009) “Study and Comparison of Various Image Edge

Detection Techniques“, International Journal of Image Processing (IJIP), Vol. 3, No. 1, pp 1-12.

[4] LS. Davis, (1975) “A survey of edge detection techniques“, Computer Graphics and Image

Processing, Vol. 4, No. 3, pp 248-260.

[5] Tarek A. Mahmoud & Stephen Marshall, (2008) “Medical Image Enhancement Using Threshold

Decomposition Driven Adaptive Morphological Filter“, 16th European Signal Processing Conference

(EUSIPCO 2008), EURASIP.

[6] P.Subashini & M.Krishnaveni & Suresh Kumar Thakur, (2010) “Quantitative Performance

Evaluation on Segmentation Methods for SAR ship images“, Proceedings of the Third Annual ACM

Bangalore Conference,.

[7] Saurabh Singh & Dr. Ashutosh Datar, (2013) “EDGE Detection Techniques Using Hough

Transform“, International Journal of Emerging Technology and Advanced Engineering, Vol. 3, NO. 6,

pp 333 - 337.

[8] Salem Saleh Al-amri & N.V. Kalyankar & Khamitkar S.D, (2010) “ Image Segmentation by Using

Thershod Techniques“, Journal of Computing, Vol. 2, No. 5, MAY, pp 83 - 86.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

16

[9] Alexander Drobchenko & Jarkko Vartiainen & Joni-Kristian Kämäräinen & Lasse Lensu &

Heikki Kälviäinen, (2011) “ Thresholding Based Detection of Fine and Sparse Details“, Frontiers of

Electrical and Engineering, China, Vol. 6, No. 2, , pp 328 - 338.

[10] Derek Bradley & Gerhard Roth, (2007) “Adaptive Thresholding using the Integral Image“, Journal

of Graphics, GPU, and Game Tools, Vol. 12, No. 2, pp 13-21.

[11] Simranjit Singh Walia & Gagandeep Singh, (2014) “Color based Edge detection techniques– A

review “, International Journal of Engineering and Innovative Technology (IJEIT), Vol. 3, No. 9,

March, pp 297-301.

[12] S. Jansi & P. Subashini, (2012) “Optimized Adaptive Thresholding based Edge Detection Method for

MRI Brain Images“, International Journal of Computer Applications, Vol. 51, No.20, pp 1-8.

[13] Li, J. & Ding, S., (2011) “A research on improved canny edge detection algorithm“, in International

Conference on Applied Informatics and Communication, pp 102-108.

[14] Ghassan F. Issa & Hussein Al-Bahadili& Shakir M. Hussain, (2012) “ Development and

Performance Evaluation of A Lan-Based Edge-Detection Tool“, International Journal on Soft

Computing (IJSC) Vol.3, No.1, pp 121-135.

[15] Mohd Azam Osman & Muqhtar Yassin Mohamad & Rosni Abdullah, (2008)“ Parallelizing an

Edge Detection Algorithm for Image Recognition to Classify Paddy and Weeds Leaf on Sun Fire

Cluster System“, 7th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems

(SEPADS '08), University of Cambridge, UK, pp 56-60.

[16] Chandrashekar N.S. & Dr. K.R. Nataraj, (2012) “A Distributed Canny Edge Detector and Its

Implementation on FPGA“, International Journal Of Computational Engineering Research

(ijceronline.com) Vol. 2, No. 7, pp 177-181.

[17] A. Z. Brethorst & N. Desai, D. P. Enright & R. Scrofano, (2011) “Performance evaluation of

Canny edge detection on a tiled multicore architecture,“ in Society of Photo-Optical Instrumentation

Engineers (SPIE) ConferenceSeries, Vol. 7872, pp. 1–8.

[18] Taieb Lamine Ben Cheikh & Giovanni Beltrame & Gabriela Nicolescu & Farida Cheriet & Sofi`ene

Tahar,(2012) “Parallelization Strategies of the Canny Edge Detector for Multi-core CPUs and Many-

core GPUs“, Conference Proc. of the 10th IEEE Intl. NEWCAS Conference, pp 49-52.

[19] Christos Gentsos & Calliope- LouisaSotiropoulou & Spiridon Nikolaidis Nikolaos Vassiliadis (2010)

“Real-Time Edge Detection Parallel Implementation for FPGAs“, 17th IEEE International

Conference on Electronics, Circuits, and Systems, ICECS 2010, Athens, Greece, pp 499-502.

[20] Jones, Donald R. & Elizabeth R. Jurrus & Brian D. Moon & Kenneth A. Perrine, (2003)“Gigapixel-

size Real-time Interactive Image Processing with Parallel Computers,“ Parallel and Distributed

Processing Symposium.

[21] Aaron Hagan & Ye Zhao, (2009)“ Parallel 3D Image Segmentation of Large Data Sets on a GPU

Cluster“, 5th International Symposium, ISVC 2009, Las Vegas, NV, USA, pp. 960–969

[22] Luis H.A. Lourenc¸o & Daniel Weingaertner & Eduardo Todt,(2012)“ Efficient implementation of

Canny Edge Detection Filter for ITK using CUDA“, 13th Symposium on Computer Systems, pp

960–969.

[23] Prakash K. Aithal & U. Dinesh Acharya & Rajesh Gopakumar, (2015)“Detecting the Edge of

Multiple Images in Parallel“, International Journal of Computer, Electrical, Automation, Control and

Information Engineering Vol.9, No.7, pp 1442–1445.

[24] Juan C. Pichel & David E. Singh & Francisco F. Rivera, (2007)“ A Parallel Framework for Image

Segmentation Using Region Based Techniques“, Vision Systems: Segmentation and Pattern

Recognition, I-Tech, Vienna, Austria, pp 81-98.

[25] J. Gao & N. Liu, (2012)“An Improved Adaptive Threshold Canny Edge Detection Algorithm “, in

Computer Science and Electronics Engineering (ICCSEE), International Conference on, pp. 164-168.

[26] J. F. Canny, (1986) “A computational approach to edge detection“, IEEE Trans. Pattern Analysis and

Machine Intelligence, Vol., No. 6, pp. 679-698.

[27] Samir Kumar Bandyopadhyay, (2011)“Edge Detection in Brain Images“, International Journal of

Computer Science and Information Technologies, Vol. 2, No.2, pp 884-887.

[28] R.A. Haddad & A.N. Akansu, (1991) “A Class of Fast Gaussian Binomial Filters for Speech and

Image Processing,“ IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 39, March,

pp 723-727.

[29] W. Gropp, (2002) “MPICH2: A New Start for MPI Implementations“, In Recent Advances in PVM

and MPI: 9th European PVM/MPI Users’ Group Meeting, Linz, Austria.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

17

[30] Bernd Mohr & Jesper Larsson Träff & Joachim Worringen & Jack Dongarra, (2006)“Recent

Advances in Parallel Virtual Machine and Message Passing Interface“, 13th European PVM/MPI

User's Group Meeting Proceedings, Bonn, Germany, pp 17-20.

[31] Alaa Ismail El-Nashar, (2011) “Performance of MPI Sorting Algorithms on Dual–core Processor

Windows-based Systems“, International Journal of Distributed and Parallel Systems (IJDPS) Vol.2,

No.3, pp 1–14.

[32] A. Chan D. Ashton & R. Lusk, and W. Gropp, (2007)“Jumpshot-4 Users Guide“ Mathematics and

Computer Science Division, Argonne National Laboratory.

[33] Omer Zaki, Ewing Lusk & William Gropp & Deborah Swider, (1999) “Toward Scalable Performance

Visualization with Jumpshot“, International Journal of High Performance Computing Applications,

Vol. 13, No. 3 pp 277 – 288.

AUTHOR

Alaa I. Elnashar was born in Minia, Egypt, on November 5, 1967. He received his B.Sc.

and M.Sc. from Faculty of Science, Department of Mathematics (Math. & Comp. Science),

and Ph.D. from Faculty of Science, Department of Computer Science, Minia University,

Egypt, in 1988, 1994 and 2005. He is an associate professor in Faculty of Science,

Computer Science Dept., Minia University, Egypt.

Dr. Elnashar was a postdoctoral fellow at Kanazawa University, Japan. His research interests are in the area

of Software Engineering, Software Testing, and parallel programming.

Now, Dr. Elnashar is an associate professor, Department of Information Technology, College of Computers

and Information Technology, Taif University, Saudi Arabia

