
International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

DOI:10.5121/ijcsit.2016.8506 73

MODIGEN: MODEL-DRIVEN GENERATION OF

GRAPHICAL EDITORS IN ECLIPSE

Markus Gerhart
1
and Prof. Dr. Marko Boger

2

1
Department of Applied computer science, University of Applied Sciences, Konstanz

2
 Department of Applied computer science, University of Applied Sciences, Konstanz

ABSTRACT

Domain-specific modeling is more and more understood as a comparable solution compared to classical

software development. Textual domain-specific languages (DSLs) already have a massive impactin contrast

tographical DSLs, they still have to show their full potential. The established textual DSLs are normally

generated from a domain specific grammar or maybe other specific textual descriptions. And advantage of

textual DSLs is thatthey can be development cost-efficient. In this paper, we describe asimilar approach for

the creation of graphical DSLs from textual descriptions. We present a set of speciallydeveloped textual

DSLs to fully describe graphical DSLs based on node and edge diagrams. These are, together with an EMF

meta-model, the input for a generator that produces an eclipse-based graphical Editor. The entire project

is available as open source under the name MoDiGen.

KEYWORDS

Model-Driven Software Development (MDSD), Domain-Specific Language (DSL), Xtext, Eclipse Modeling

Framework (EMF), Metamodel Model-Driven Architecture (MDA), Graphical Editor

1. INTRODUCTION

Domain-Specific Languages (DSLs) have a crucial importance in Model-Driven Engineering

(Also known as Model Driven Software Development (MDSD) or Model Driven Development

(MDD)) (MDE) and Model-Driven Architecture (MDA). A survey of MDE practitioners [24]

shows that MDE users make use of multiple modelling languages. Nearly 40% of participants had

used specially design custom DSLs, 25% had used off-the-shelf DSLs and only UML had been

used more widely than DSLs (used by 85% of participants). Despite the significant assumption of

specially designed DSLs for MDE, we think that existing MDE/MDA solutions for the definition

of custom DSLs areunsuitable. In particular, for the design and generation of a node-and-edge

based graphical DSL.

Despite the significant adoption of custom DSLs for MDE, we think that existing MDE/MDA

solutions for implementing custom DSLs and supporting tool chains are unsuitable for designing

and developing a new node-and-edge graphical DSL. This is due to the high complexity and the

range of applications of existing solutions. There is currently no solution which uses MDSD for

the specific domain of the generation of domain-specific graphical editors.

Eclipse has become one focus point of tooling for model driven approaches. Projects like Eclipse

Modeling Framework (EMF) [2] and Xtext [3] have become very popular in the modelling

community. But most of the current success in Eclipse modelling has been centered around

textual modelling environments. While Eclipse is designed for textual languages it can play out

its textual nature very nicely for this approach. But it is a difficult environment to create graphical

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

74

modelling tools. The basic APIs provided by the Eclipse framework; GraphicalEditing

Framework (GEF) [5] and Draw2D [4]; are low level and grant no direct connection to the

semantic and abstract level of a model.

The Eclipse Modelling Frameworkis often used for the semantic part, but offers no specific

support for graphical modelling. A project that attempt to bridge the gap between GEF and EMF

is the Graphical Modeling Framework (GMF) which is now part of the Graphical Modeling

Project (GMP) [6]. It proposes a model-driven approach for the development of domain specific

graphical modeling tools on the basis of GEF and EMF. But the domain specific models

including thedescription of the editor are to be so complex that projects evolved to create these

needed models from a higher perspective (abstract models). The resulting generated artifacts

(program code) was very complex and very difficult to extend for additionally custom

enhancements which could not be designed inside the model. The development environment was

brittle and cumbersome. The GMP provides currently no specific textual or graphic language to

associate a Metamodel with a predefined textual description with the aim to generate a domain

specific Graphical editor.

We present in this paper a generative approach for the creation of graphical modeling tools in

Eclipse. Instead of using the low level APIs of GEF and Draw2D directly, we use the relatively

young Java framework Graphiti [7] which is in the meantime also part of the Graphical Modeling

Project. Graphiti provides a API to build graphical editors in Eclipse and hides the complexity of

the low level tools such as GEF and Draw2D. However, while it is nearly perfectly possible to

create a graphical modeling environmentwith the Graphiti framework, we also think that the API

is well design to generate against it from a higher abstraction level. We developed a set of textual

modeling languages, which serve as input for a generator. The output of the generator is nearly

plain Java code for the API provided by Graphiti as well as all other needed files for the Eclipse

plugin mechanism. The result is a graphical modeling tool in Eclipse for custom-designed node-

and-edge-type diagrams.

With this approach we can reduce the effort to develop a graphical modeling tool so much that the

development of a graphical DSL becomes cost-efficient. Acomparable graphical modeling

environment that is manually developed with the Graphiti framework might require about 20.000

lines of code, our approach generates the needed code-artefacts from only about 500 lines of the

different textual model descriptions. Thus the cost to develop a graphical modeling tool is

reduced so much, that it may be a viable alternative to a textual DSL. Overall we hope to foster

the use of graphical DSLs in MDE-projects and to make the model-driven approach to software

development more attractive in general.

The paper first provides a short overview of the used technologies in the Section 2.Subsequently

the paper reviews related work in the field in Section 3, which is mostly other tools and

techniques for the generation of modeling tools. Our general approach for the model driven

creation of the domain specific editors and the overall architecture of our framework is described

in Section 4. The core contribution of this publication are the developed DSLs to define our own

graphical elements, styles for the graphical elements and the graphical editor itself which are

described in the sub chapters of the general approach. Section 5 illustrates the results of our

approach from different angles. Finally, we summarize the limitations of our research and draw

conclusions in Section 6.

2. BACKGROUND

This section explains shortly the referred techniques, libraries and frameworks.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

75

The Model-Driven Engineering (MDE) is concerned with the automation of software production.

This means that as many artifacts of a software system are derived from formal generative

models. (inspired by [32])

Model-Driven Architecture (MDA) is a concrete approach of the Object Management Group

(OMG) [14], which describes a model-driven approach using its own standards (e.g. UML, MOF,

XMI).

A Domain Specific Language (DSL) [34] or application-specific language is a formal language,

which is designed and implemented for a specific problem area (the so-called domain). The main

goal of the design is to achieve a high degree of problem specificity. The DSL should be able to

represent all the problems of the domain and nothing outside of the domain.

The Eclipse Modeling Framework (EMF) [35] is a framework based on the Eclipse platform, that

is primarily used for model-based code generation. It ranks as the most important component of

the Eclipse Modeling Project, which covers the top level Project from Eclipse the field of model-

based development.

Graphical Editing Framework (GEF) [36] is a low level framework based on the Eclipse platform

for creating graphical editors within Eclipse. Furthermore, GEF helps to create graphical editors

based of an existing data model, which could be design inside of the Eclipse Modeling

Framework. GEF uses the Draw2d-Toolkit for the graphical representation.

Draw2d[37] is a lightweight framework for displaying graphical elements within the Eclipse

environment based on SWT Canvas.Lightweight means in this case that all graphical elements,

which Draw2d calls figures, are simple java objects with different functions for modification and

no corresponding resource in the operating system.The design goal of Draw2d is the creation of

vector graphics withinthe Eclipse ecosystem. The framework is part of GEF, but can also be used

independently.

Graphiti[38] combines the functionality of EMF and GEF, but hides the complexity of using

GEF behind a lightweight but not so powerfulAPI.The diagrams are described by a metamodel

and the diagram data is strictly separated from the actual data. This enables the opportunity of

rendering an existing diagram in different environments without having direct access to the

actualmetamodel instance data.

The Eclipse Graphical Modeling Project (GMP) [39] provides a set of generative components

and runtime infrastructures for developing graphical editors based on EMF and GEF.Thus, the

Graphical Modeling Project represents the collection of all provided frameworks and

technologiesby Eclipse, which are required for the generation of a model-driven solution. This

project combines all model driven approaches by eclipse in one single project.

Xtext[40] is aeclipse plugin for the development and creation of textual domain-specific

languages or simple programming languages.The Pluginusesparts from the Eclipse Modeling

Project such as EMF, GMF, M2T and parts of EMFT. Thedevelopment with Xtext is easy to learn

and provides a smooth start into the model driven engineering.

3. RELATED WORK

Graphical Modeling has received a lot of attention with the standardization of UML and BPMN

as a way to design or document technical systems. However, they pose the problem that the

systems tend to change independent from the models and eventually diverge. Model-driven

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

76

approaches alleviates this dilemma by making the model source, generating code from the model.

Thus model-driven software engineering has been an active field of research and development.

An obvious approach is to use UML or BPMN directly, but it turns out that these general

modeling languages are often not specific enough to catch all cases of a domain. For this reason,

the UML version 2.0 included a mechanism to extend the metamodel through stereotypes and

profiles. Such extensions have to be built on the basis of the predefined UML metamodel

elements. This makes it difficult to address the model instances from the generator and makes the

generator difficult to maintain. The tools most used for this approach are Enterprise Architect [9]

and Magic Draw [11]. However, most generator technologies are centered around Eclipse, and

building a solid tool chain can be challenging.

Tools that allow for the development of domain specific graphical modeling languages include

MetaEdit+ [31] and Poseidon for DSL [8]. The integration into an Eclipse-based tool chain is

achieved by an export of the resulting model into a serialized form, usually as XMI.

Eclipse has traditionally been a difficult environment to integrate graphics. Tools and frameworks

to build graphical modeling tools based on Eclipse exist. The fundamental frameworks are GEF

and Draw2D. Building such tools directly on GEF and Draw2D provides very little infrastructure

support and is accordingly very work intensive. The aforementioned GMF improves this through

a generative approach against these APIs. However, the DSLs, the generator and the generated

code of GMF have themselves high complexities. Extending GMF beyond the default generated

behavior can become particularly painful. Tools like Kybele [33] or Eugenia [27][28] also use a

generative approach to build graphical editors for Eclipse. The generated code of these solutions

is difficult to expand and to understand as these build on the low-level APIs GEF or Draw2d.

Their cost-effectiveness drops if the desired functionality is not provided by the default behavior.

The non-commercial tool Meta Programming System (MPS) [12] of the manufacturer Jet brains

provides a range of opportunities and freedoms in the design of their own meta-models. However,

due to the variety of possibilities the complexity of the tool is very high.

Another approach is to drop the use of a graphical modeling environment and instead use a

textual language to express the DSL models. This approach seems to be very successful in

practice. Most known tools are Xtext [3], Spoofax[26] and EMFtext [25].

This paper advocates the approach to build graphical editors directly in Eclipse. We also use a

generative approach, similar to GMF, Kybele or Eugenia, but in contrast to these we avoid to

generate directly against the fundamental libraries GEF and Draw2D. Instead we use a framework

called Graphiti. It is relatively young and has been developed by SAP [13]. The framework hides

the complexity of GEF and Draw2D and adds a high level graph-oriented API. It was intended for

the manual creation of graphical editors inside Eclipse, but it naturally lends itself to a generative

approach. This is what our project proposes. The focus of this paper is on the input to the

generator. This consists of a set of languages to describe node-and-edge-type graphical modeling

languages.

We have identified a similar approach with the project called IMES [10]. The aim of the publicly

funded project is to build graphical editors based on Graphiti for functional nets and other

systems. The project also uses DSLs and model-driven development (MDD) for the generative

creation of the graphical editors. Currently the project is not open source, wasn't presented to the

public and there was no further development since 2011, so it is difficult to compare our approach

with the IMES project.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

4. APPROACH

The MoDiGen project consists of several DSLs, a generator and a runtime environment. The

development environment is Eclipse with a set of plugins. All

homepage of the project, together with installation instructions. For

the generator, we use a language

developed for the purpose of generating code

Graphiti and some extensions which

not part of Graphiti. The core contribution

are needed for the development of

generated code or the runtime libraries. The DSLs are developed using Xtext.

MoDiGen [1] currently contains

in Figure 1, with different design goals

very simple domain specific graphical editors, this DSL is sufficient. It defines the mapping of

simple shapes, styles and the behavior of elements

complexthan a rectangle or circle

todesign complex shapes which consist of

Additionally, it’s possible to configure

of shapes, like color and font, can be

description. In both cases the Style

Figure1.A Model

The role of the Styles DSL is similar to how

Markup Language (HTML). Defined style descriptions

Every time any of these models is saved, the

all neededartefacts and configurations

Plugin mechanism. The Graphical Editor within Eclipse

The three designed languages are describ

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

The MoDiGen project consists of several DSLs, a generator and a runtime environment. The

development environment is Eclipse with a set of plugins. All essentialtools can be found on the

homepage of the project, together with installation instructions. For the main part of the project,

we use a language which is similar to Javaand was specifically designed and

for the purpose of generating code artefacts, called Xtend[3]. The runtime consists of

which we have to develop, because this functionality iscurrently

core contribution of this paper is on the designed textual DSLs

ment of a domain specific graphical editor and not directly

code or the runtime libraries. The DSLs are developed using Xtext.

 three different DSLs- MoDiGen Core, Shape and Style

, with different design goals. The central DSL is the MoDiGen Core language. For

graphical editors, this DSL is sufficient. It defines the mapping of

the behavior of elements to metamodel classes. For shapes that

or circle shape, the Shape DSL is used. The Shape DSL

which consist of primitive forms like rectangles and ellipses.

Additionally, it’s possible to configure placings, resizing policy’s and nesting. The

of shapes, like color and font, can be defined inline in the Shape or separated

tyle language is used to design the layout of the elements

A Model-Driven approach for Graphical Editors

The role of the Styles DSL is similar to how Cascading Style Sheets (CSS) relates to

anguage (HTML). Defined style descriptions can be referenced from all other DSLs.

Every time any of these models is saved, the Model-Driven Generation is triggered and generates

and configurations –Java Code, XML files and Properties - for the Eclipse

Graphical Editor within Eclipse is then ready to use as plugin in Eclipse.

languages are described below in detail.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

77

The MoDiGen project consists of several DSLs, a generator and a runtime environment. The

can be found on the

main part of the project,

designed and

. The runtime consists of

this functionality iscurrently

textual DSLs, which

directly on the

Style as shown

. The central DSL is the MoDiGen Core language. For

graphical editors, this DSL is sufficient. It defines the mapping of

. For shapes that are more

 is developed

forms like rectangles and ellipses.

and nesting. The actual design

or separated in a style

to design the layout of the elements.

heets (CSS) relates to Hypertext

can be referenced from all other DSLs.

and generates

for the Eclipse

is then ready to use as plugin in Eclipse.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

4.1. THE MODIGEN CORE LANGUAGE

The most fundamental properties of a graphical editor are defined in the MoDiGen Core

language. This is a simple text file with the ending

such a file initially with some example code. Due to the file

offers features like code completion

makes the languages easy to learn

At the beginning of the MoDiGen model

declaration of the diagram type, followed by aunique

Figure 2). This class serves as the root class for all

used in the generated code as the name of the Graphiti diagram. Afterwards the

EReferenceof the metamodel are mapped to their

the diagram. The mapping is initiatedby

or EReferencedescription. This is mapped to a shape, which can be done in one of two ways. For

simple cases the MoDiGen Core D

and lines. For more elaborate shapes the mapping can reference a shape defined in the Shape

DSL. These defined shapes can be referenced by their

later in the paper. It is recommended to define the shapes in t

result, the clear separation between behavior (M

(style DSL) is observed. Only for very small projects, it is useful to break this rule.

Figure

After the definition of some

somebehaviors of the different shapes

example the creation behavior, which defines

or the palette behavior which specifics the categorization of the elements in the generated editor

Also custom behaviors can be defined. For this, the necessary structural code is generated, the

code defining the behavior needs to be written in Java manually.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

ANGUAGE

The most fundamental properties of a graphical editor are defined in the MoDiGen Core

language. This is a simple text file with the ending.modigen. The MoDiGen project wizard creates

such a file initially with some example code. Due to the file extension the Xtext environment

code completion, syntax highlighting and different other conveniences, which

learn.

of the MoDiGen model description the diagram keyword initializes the

the diagram type, followed by aunique identifier of the EMFmetamodel

the root class for all further defined classes. The diagram type is

used in the generated code as the name of the Graphiti diagram. Afterwards the

metamodel are mapped to their defined appearance and associated

initiatedby the keyword class followed by the fully qualified EClass

. This is mapped to a shape, which can be done in one of two ways. For

MoDiGen Core DSL allows the definition of shapes consisting of rectangles,

and lines. For more elaborate shapes the mapping can reference a shape defined in the Shape

can be referenced by their unique description. This will be explained

. It is recommended to define the shapes in the appropriate shape language. As a

r separation between behavior (MoDiGen core DSL), form (shape DSL) and design

(style DSL) is observed. Only for very small projects, it is useful to break this rule.

Figure2.MoDiGen File Example content

 shapes for the new graphical editor, it’s possible to define

of the different shapes. Therefore there are different types of

, which defines in which metamodel Attribute the instance is saved

or the palette behavior which specifics the categorization of the elements in the generated editor

can be defined. For this, the necessary structural code is generated, the

needs to be written in Java manually.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

78

The most fundamental properties of a graphical editor are defined in the MoDiGen Core

. The MoDiGen project wizard creates

the Xtext environment

other conveniences, which

keyword initializes the

metamodelEClass (see

classes. The diagram type is

used in the generated code as the name of the Graphiti diagram. Afterwards the EClass and

associated behavior on

followed by the fully qualified EClass

. This is mapped to a shape, which can be done in one of two ways. For

consisting of rectangles, text

and lines. For more elaborate shapes the mapping can reference a shape defined in the Shape

unique description. This will be explained

he appropriate shape language. As a

en core DSL), form (shape DSL) and design

it’s possible to define

types of behaviorsfor

in which metamodel Attribute the instance is saved

or the palette behavior which specifics the categorization of the elements in the generated editor.

can be defined. For this, the necessary structural code is generated, the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

4.2. DEFINITION OF SHAPES

The core MoDiGen DSL allows the

complexity are needed there is a

some degree a similarity to SVG

DSL allows also primitive shapes like

be combined to complex shape structures

While the shape DSL is based on a context

respectively more opportunities

fast learning and not machine readability

had requirements which SVG

parameters totext fieldsor resizing policies or the programmatic

sizing can be influenced with the

false). In addition, it is also possible to only allow proportional resizing. Shapes can be nested,

allowing for complex graphical elements

can be defined by the attribute

horizontal, and fit (according to an algorithm). Shapes can make use of nesting by re

existing shapes or by in-place definition.

nesting consistently throughout the DSL. All forms except for lines, polylines and text

arbitrarily be nested. The Shape DSL is consistently used for

well as for connections. The following section explains the definition of shapes in detail

4.2.1. DEFINITION OF SHAPES

The definition of a shape starts always

unique shape identification (in Figure

identification is used as name of the generated Java class

special characters. This class implements a marker interface

class. The interface description

the ContainerShape and the second one

container which is added

aconcretePictogramElement and all its

configuration information such

functionthatoffers the PictogramElement

because anContainerShape does not allow to save more than one element on the

top layer always contains an invisible rectangle which is able to save multiple child's

actual size of the invisible rectangle

Figure3

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

MoDiGen DSL allows the definition of simple (basic) forms, but if figures

there is a special DSL for the creation of shapes. The shape DSL has to

to SVG, but the design goal differs. Similar to SVG is, that

primitive shapes like polygons,ellipses, rectangles, lines and polylines

omplex shape structures. The biggest difference is that SVG is based on XML.

DSL is based on a context-free grammar. This gives us more freedom in design

 for future enhancements. The two main goalsare readability and

not machine readability for the fast programmatic processing. Furthermore, w

 currently cannot satisfy, like the definition of the passing of

resizing policies or the programmatic analysis of prope

influenced with the attribute stretching in horizontal and vertical orientation (true or

false). In addition, it is also possible to only allow proportional resizing. Shapes can be nested,

allowing for complex graphical elements. The behavior of nested elements in regards to scaling

an be defined by the attribute layout. It can have the values fixed (no adjustment), vertical,

horizontal, and fit (according to an algorithm). Shapes can make use of nesting by re

ce definition. Opening and closing curly brackets and are used to

nesting consistently throughout the DSL. All forms except for lines, polylines and text

be nested. The Shape DSL is consistently used for the description of node elements as

The following section explains the definition of shapes in detail

starts always with the predefined keyword shapeand is followed by a

(in Figure 3 the Shape is called BPMN_Event_Mail). This

as name of the generated Java class, therefore is recommended to use no

. This class implements a marker interface IShape and extends the

description provides two differentgetShape()functions: the first one

second one the PictogramElement. The ContainerShape

container which is added as a “placeholder” to the diagram. It

and all its possible nested elements. It is also possible

information such as anchor definitions for the connection anchor options

PictogramElement always contains on the root level an invisible rectangle

does not allow to save more than one element on the top

an invisible rectangle which is able to save multiple child's

invisible rectangle is calculated from contained shapes on every different

3.Creation of a Shape as mail event (BPMN)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

79

 with a higher

The shape DSL has to

that the Shape

polylines which can

The biggest difference is that SVG is based on XML.

us more freedom in design

readability and

Furthermore, we

the passing of

of properties. The re-

in horizontal and vertical orientation (true or

false). In addition, it is also possible to only allow proportional resizing. Shapes can be nested,

. The behavior of nested elements in regards to scaling

. It can have the values fixed (no adjustment), vertical,

horizontal, and fit (according to an algorithm). Shapes can make use of nesting by re-using

are used to mark

nesting consistently throughout the DSL. All forms except for lines, polylines and text can

node elements as

The following section explains the definition of shapes in detail.

is followed by a

). This shape

, therefore is recommended to use no

and extends the DefaultShape

the first one returns

ContainerShapeserves as a

to the diagram. It contains

 to save more

ons for the connection anchor options. The

an invisible rectangle,

top layer. So the

an invisible rectangle which is able to save multiple child's in it. The

on every different layer.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

The example in Figure 3 describes how to create an envelope for the

Process Model and Notation (BPMN)

circle. The circle is built with an ellipse

circle is a rectangle, which defines

expressed relative to the surrounding ellipse.

4.2.3. ANCHORAGE ON SHAPES

Anchor points are an important aspect for

where connections can be attached to a shape.

definition of anchor points. There are two predefined anchor types which are called

corners (see Figure 4). The keyword

definition attaches the connection end point

connection line and its decoration

keyword of an anchor type is corners

of the invisible rectangle as well as on the

Figure 4 shows the different anchor types.

After the keyword anchor the predef

curly bracket is used to define

defined inside the curly brackets. The custom anchor points can be

x and y) or to a relative position (using

exactlythe defined position within the

relation to the size of the shape with values between 0.0 (

(xoffset - right or yoffset - bottom). The lower part of Figure

the edges of the rhombus for the

side the same anchor point can be defined fixed or relative.

4.2.4. CONNECTIONS AND PLACINGS

A connection always contains a line,

connection must have always a source and a target anchor

a shape. Additionally, connections can have decorationse.g. arrowheads or any kind of a

The example of BPMN describes

has two different decorations. At the one end

also possible to place text fields

e.g. cardinalities or connection descriptions

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

describes how to create an envelope for the mail event of the

otation (BPMN) [29] with the Shape DSL. The entire figure is inside a

an ellipse with the samevalue for width and height. Nested into this

defines the border of the envelope. The position of the rectangle is

expressed relative to the surrounding ellipse. Finally, a polygon completes the entire

important aspect for the design of shapes. Anchor points serve as points

connections can be attached to a shape. The Shape DSL offers four different options

definition of anchor points. There are two predefined anchor types which are called

keyword center is comparable to the Chopbox anchor

attaches the connection end point always to the center of the figure/shape

decoration ends on the outermost shapes border. The second predefined

corners.This predefined value creates anchor points on all corner

as well as on the middle point of the four border sides of the shape.

Figure 4 shows the different anchor types.

the predefined anchor valuescenter or corners can be declared or a

curly bracket is used to define custom anchor positions. Any number of anchor points can be

defined inside the curly brackets. The custom anchor points can be set to fixed coordinates (using

relative position (using xoffset and yoffset). Fix point anchors are placed at

defined position within the created shape. The relative anchor definitions

relation to the size of the shape with values between 0.0 (xoffset - left or yoffset -

bottom). The lower part of Figure 4 shows the creation of anchors on

the edges of the rhombus for the XOR-Gateway in BPMN. As shown in the Figure 4 on the right

e defined fixed or relative.

Figure4. Anchorage on Shapes

LACINGS

a line, which connects two different or also the same shape

always a source and a target anchor point, which attaches the connection

onnections can have decorationse.g. arrowheads or any kind of a

describes a conditional connection, shown in Figure 5. This conn

different decorations. At the one end the arrowhead and the rhombus at the other

fields directly on the connection to define diagram types which needs

cardinalities or connection descriptions.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

80

of the Business

entire figure is inside a

width and height. Nested into this

of the envelope. The position of the rectangle is

entire envelope.

serve as points

different options for the

definition of anchor points. There are two predefined anchor types which are called center and

the Chopbox anchor in [5]. This

to the center of the figure/shape.But the

. The second predefined

on all corners

sides of the shape.

can be declared or a

anchor points can be

coordinates (using

). Fix point anchors are placed at

tive anchor definitions are placed in

- top) and 1.0

shows the creation of anchors on

4 on the right

shape(s). Any

the connection to

onnections can have decorationse.g. arrowheads or any kind of a shape.

. This connection

the arrowhead and the rhombus at the other end. It’s

to define diagram types which needs

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

Figure

In Shape DSL connections are defined using the keyword

routing type. Two routing types are

routing. The Manhattan routing is auto

corners. The free form connection is

which can be customized by the user

Placings can be definedon or around a connection

decoration on the connection. The actual

different required attributes (offset, angle and

the line where the decoration owns it’s starting point

(beginning) and 1.0 (end). Additionally,

the definition of the angle(0-360 degrees)

on the line, these values have to be zero.B

shapesaround the line, this is very

starting at the offset on the line. This vector

Figure 6 shows such a vector.

Figure

The example in Figure 5 shows

There are two placings on the connection. The first is located at the end (offset=1.0) and is an

arrowhead, drawn as a filled polygon. The other is a rhombus placed at

(offset=0.0).

4.2.5. DEFINITION OF STYLES

Alayout definition with the style

makes such a style reusable via a

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

Figure5.Connection-Shapes and their Placings

In Shape DSL connections are defined using the keyword connection. It can be followed by a

routing type. Two routing types are currently predefined, the free form and the Manhattan

uting. The Manhattan routing is auto-layouted in vertical and horizontal lines and uses rounded

corners. The free form connection is the easiest routing option because it’s just a straight line,

by the user by adding bend points to the connection.

on or around a connection. Therefore, a placing is a definition for a

The actual position of a placing on a connection depends on

offset, angle and radius). The offset defines the relative

owns it’s starting point. This relative value ranges between 0.0

Additionally, the placing can be positioned around the connection

360 degrees)and radiusattribute. For graphical decorations directly

have to be zero.But for the positioning of text fields or maybe other

very helpful. The combination of angle and radius define a vector

. This vector points to the place where the placing is drawn. The

Figure6. Positioning of placings on Connections

shows aconditional sequence connectionwhich is part of the

There are two placings on the connection. The first is located at the end (offset=1.0) and is an

arrowhead, drawn as a filled polygon. The other is a rhombus placed at the beginning

Alayout definition with the style DSL allows to declare a number of attributes for shapes and

makes such a style reusable via a unique identifier. Common attributes such as background

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

81

. It can be followed by a

defined, the free form and the Manhattan

layouted in vertical and horizontal lines and uses rounded

just a straight line,

placing is a definition for a

on a connection depends on three

relative position on

ranges between 0.0

around the connection with

decorations directly

fields or maybe other

d radius define a vector

is drawn. The

which is part of the BPMN.

There are two placings on the connection. The first is located at the end (offset=1.0) and is an

the beginning

of attributes for shapes and

such as background-color

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

or line-style can be defined. It’s possible to reference

the style attributes can be set individual

rectangle or polygon. If no style

style declaration. For each level of nesting the style

above. It’s possible to override the i

offers the possibility of a very detailed definition

it makes it easy to change or extend the general appearance of the diagram very quickly.

Figure

A style definition is described in a

with the keywordstyle and

BlackAndWhiteStyle). This style is generated to a Java class with the same unique style name.

This class implements the interface

class to implement the functiongetStyle()

This procedure maps all defined

definition can contain many different

The line style attribute is responsibl

are predefined solid, dot, dash

definitionspecifies attributes like

attributes of each section, this is just a selection.

Figure 8

The underlining of fonts is currently

feature is at the moment not been reflected in the DSL as well, but

enhancement which should be provided in the near future

definition of colors, because Graphiti

color. Graphiti contains only one color definition

colordefines, according to Graphiti,

In MoDiGen we solved thisproblem with a workaround

every style called getFontColor()

color for the font. The usage of

possible options to use them. The first

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

’s possible to reference a defined stylefromany of the three DSLs

can be set individual for shapes or single shape elements such as ellipse,

rectangle or polygon. If no style definition is referenced or specified, the generator usesa

. For each level of nesting the style information is inherited from the next level

It’s possible to override the individual style attributes on each different nesting level. This

detailed definition on the look and feel of the shape. Furthermore,

makes it easy to change or extend the general appearance of the diagram very quickly.

Figure 7. Style File Example content

e definition is described in a text file with the suffix.style. The description of a style begins

and a unique style name see Figure 7 (in the example

). This style is generated to a Java class with the same unique style name.

class implements the interface ISprayStyle. This specified interface forces the generated

getStyle() which returns an instantiation of the Graph

defined values of the style definition to the Graphiti Style class.

different attributes e.g. line attributes like line-width

responsible for the visual appearance of a line and the following options

dash, dash-dot anddash-dot-dot. The font section

attributes like font-size, font-color and font-name.There are a variety of other

, this is just a selection.

8. Example description of style Inheritance

currently not implementedin the Graphiti Framework. Therefore, this

not been reflected in the DSL as well, but this is

which should be provided in the near future. Another problem of Graphiti is

Graphiti does not allow to differentiate between a font

one color definition - the foreground-color. The

defines, according to Graphiti, everything which is drawn like the line border and the fonts.

we solved thisproblem with a workaround, by generating a different

getFontColor(). This functionreturns a different foreground-color

for the font. The usage of the colors is quite simple, because there are just two different

. The first option is to use the predefined color values like

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

82

a defined stylefromany of the three DSLs or

shapes or single shape elements such as ellipse,

specified, the generator usesa default

is inherited from the next level

nesting level. This

. Furthermore,

makes it easy to change or extend the general appearance of the diagram very quickly.

. The description of a style begins

(in the example

). This style is generated to a Java class with the same unique style name.

interface forces the generated

which returns an instantiation of the Graphiti style class.

the Graphiti Style class. A style

 or line-color.

of a line and the following options

. The font section of a style

There are a variety of other

Framework. Therefore, this

 an important

Another problem of Graphiti is the

does not allow to differentiate between a font- and a line-

. The foreground-

the line border and the fonts.

different methods for

color as the line-

simple, because there are just two different

to use the predefined color values like white,

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

black, gray and many more. The second

provides the definition of the intensity of the red, green and the blue color individually wit

value range between 0 and 255. Therefore,

addition to the color attribute there is an attribute for transparency. A

transparency is between1.00 and 0.00. 1.0

the opposite. If no background-color

In this case the filled attribute value of the

visibility is the same approach as for the

inherit from each other. The root

ISprayStyle followed by a default implementation called

implementation defines all default style attributes

approach can be used in the DSL as well.

and only just a few attributes

BlackAndYellowStyle inherits from the

changed to yellow.

This inheritance mechanism gives the freedom that

addition, it’s also possible to program a style definition

implement the interface theISprayStyle

Shapes and for inheritance. Some nice enhancements as color

be added in the near future and will share the same properties.

4.2.6. INTEGRATION OF STYLES

The style definitioncan be defined in aspecific

definition. For this purpose, the style keyword is used and the

inside the round brackets. With this approach it’s possible to override or define

attributes. This opportunity has only an

elements or other forms on the same layer. This

background-color is set to the blue color for the rectangle.

Figure 9. The different t

The second optionoffers the possibility

use this option, the style class must be

The middle part of the Figure 9

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

. The second option is to use the RGB-structure. This possibility

the intensity of the red, green and the blue color individually wit

range between 0 and 255. Therefore, the designer is able to create nearly any color.

color attribute there is an attribute for transparency. A valid value

is between1.00 and 0.00. 1.0 means that the object is fully visible and 0.00

color is intended, the color can be set to transparent.

value of the Graphiti Style class is declared to false. For the line

the same approach as for the background-color used. Styles offer the possibility to

inherit from each other. The root element of the style inheritance hierarchy is the interface

followed by a default implementation called DefaultSprayStyle. This default

defines all default style attributes if no style is specified by the user

approach can be used in the DSL as well. It’s also possible that a style inherits from another style

 are changed. Figure 8 describes exactly this case. T

inherits from the BlackAndWhiteStyle and just the background

gives the freedom that all attributes of the style DSL are optional.

it’s also possible to program a style definition manually in Java. It just needs

ISprayStyle and the style is available for referencing in MoDiGen or

nce. Some nice enhancements as color gradients and element shadows will

be added in the near future and will share the same properties.

TYLES INTO SHAPES/CONNECTIONS

can be defined in aspecific external style description or can be part of a

style keyword is used and the different style attributes are defined

With this approach it’s possible to override or define one or more

opportunity has only an effect on the corresponding element and not

elements or other forms on the same layer. This behavior is shown in Figure

is set to the blue color for the rectangle.

The different types of Style Integration and inheritance within shapes

optionoffers the possibility to inherit a style definition for a whole shape.

must be referenced by its unique identifier after the keyword style.

9 uses the style class BlackAndYellowStyle for the whole shape.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

83

This possibility

the intensity of the red, green and the blue color individually with a

the designer is able to create nearly any color. In

value range for the

means that the object is fully visible and 0.00 is exactly

.

to false. For the line-

offer the possibility to

inheritance hierarchy is the interface

. This default

if no style is specified by the user. But this

from another style

describes exactly this case. The style

and just the background-color is

all attributes of the style DSL are optional. In

manually in Java. It just needs to

and the style is available for referencing in MoDiGen or

gradients and element shadows will

part of a shape

style attributes are defined

one or more style

not to the nested

shown in Figure 9. There the

hapes

whole shape. In order to

after the keyword style.

uses the style class BlackAndYellowStyle for the whole shape.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

84

The complete shape gets with this definition a yellow background. If the same approach is used at

the beginning of the rectangle, then the entire envelope would become yellow, but not the circle.

As shown in the right part of the Figure 9 these two methods can be mixed. The inline defined

attributes of a shape will always overwrite the attributes of the referenced style definition. In

Figure 9 the whole shape is yellow apart from the rectangle, which overrides the color attribute

with the value blue. In our experience, this mixing is very useful.

4.3. THE GENERATED GRAPHICAL EDITOR

The generated graphical editor is a set of fully functional Eclipse Plugin’s. The editor consists of

four divisions. The left area contains the package explorer which contains the different created

diagrams with the option to create new diagram instances. The right area contains the elements

described with the shape DSL in the previous step. In the lower area is the Property View, which

displays properties of elements according to the defined properties in the MoDiGen core DSL.

The area in the center is the main area to draw the new diagram according to the previous defined

Metamodel. Figure 10 shows the editor with an example Diagram of the BPMN.

Figure10. The generated domain-specific graphical editor in Eclipse

5. EVALUATION

The presented generative approach reduces the needed effort to develop a domain specific

graphical modeling tool for the Eclipse framework considerably compared to coding such a

solution manually in Java against the Graphiti API. For every domain object requires the Graphiti

framework a set of features. The generator creates this required Add-, Create-, Layout- and an

UpdateFeature (a lot more planned), which altogether consist of at least 400 lines of code per

domain object. These can be generated from MoDiGen from about 10 lines of code. The factor in

terms of code between the MoDiGen DSLs (10 lines) and the generated Graphiti Code (350 lines)

is approximately 35. For several implemented examples we consistently observed this factor, with

exception of very small diagrams. Figure 11 shows the number of required lines of code in

MoDiGen respectively Java (generated) based on the five diagram types “Petri-Net”, “BPMN”,

“Event-driven Process Chain” (EPC), “Piping and instrumentation Diagram” (P&ID) and “Basic

Class Editor”. The biggest difference of generated Java-Code and additional files (60154 lines of

code) to MoDiGen (1784 lines of code) is evidenced in the business process modeling language

“BPMN”. This can be mainly attributed to the variety of different graphical elements. The

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

smallest factor of about 30 results for the very simple chart type “Basic Class Editor”. It consists

of only two Graphical elements ‘(shape and connection) and does not have any complex logic.

Figure11. Lines of Code: MoDiGen vs. Java (Generated)

The division of the lines of code on the three developed languages is shown in Figure

be observed that the main effort lies in the description of graphical elements, which

demonstrated in the use case of “BPMN” which consists of about 70 Shapes and connections. The

number of lines of code for the styles cannot be directly measured, since this depends on the level

of detail that the domain expert wishes to reach. For simpl

sufficient, more complex styles can take up several hundred lines of code. In these examples we

merely created quite basic styles, which is usually inherited to all elements. The real benefit can

be represented by the ratio of the lines of code necessary in MoDiGen and the generated Java

code, which is shown in Figure 13

Figure

The smallest factor is observed for the Basic Class Editor with a factor of 30. The highest factor

within our set of examples is observed for the Petri

are considered, this results in a mean factor of 36 (Blue

mean factor without the highest and lowest value included, respectively. If the largest and

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

smallest factor of about 30 results for the very simple chart type “Basic Class Editor”. It consists

‘(shape and connection) and does not have any complex logic.

Lines of Code: MoDiGen vs. Java (Generated)

The division of the lines of code on the three developed languages is shown in Figure

be observed that the main effort lies in the description of graphical elements, which

demonstrated in the use case of “BPMN” which consists of about 70 Shapes and connections. The

number of lines of code for the styles cannot be directly measured, since this depends on the level

of detail that the domain expert wishes to reach. For simple styles as few as 10 lines can be

sufficient, more complex styles can take up several hundred lines of code. In these examples we

merely created quite basic styles, which is usually inherited to all elements. The real benefit can

io of the lines of code necessary in MoDiGen and the generated Java

13.

Figure 12. Lines of Code in different DSLs

The smallest factor is observed for the Basic Class Editor with a factor of 30. The highest factor

within our set of examples is observed for the Petri-Net with a factor of 49. If all five examples

are considered, this results in a mean factor of 36 (Blue line). The green and red lines show the

mean factor without the highest and lowest value included, respectively. If the largest and

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

85

smallest factor of about 30 results for the very simple chart type “Basic Class Editor”. It consists

‘(shape and connection) and does not have any complex logic.

The division of the lines of code on the three developed languages is shown in Figure 12. It can

be observed that the main effort lies in the description of graphical elements, which is

demonstrated in the use case of “BPMN” which consists of about 70 Shapes and connections. The

number of lines of code for the styles cannot be directly measured, since this depends on the level

e styles as few as 10 lines can be

sufficient, more complex styles can take up several hundred lines of code. In these examples we

merely created quite basic styles, which is usually inherited to all elements. The real benefit can

io of the lines of code necessary in MoDiGen and the generated Java

The smallest factor is observed for the Basic Class Editor with a factor of 30. The highest factor

Net with a factor of 49. If all five examples

line). The green and red lines show the

mean factor without the highest and lowest value included, respectively. If the largest and

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

smallest values are not considered, there is a mean factor of above 34. This is indeed a huge

benefit. We believe the generated code to be quite comparable to code that is hand written against

the Graphiti API directly. In addition, the generated code solves a number of issues with the

Graphiti code, that would need to be solved individually in each project otherwise, resultin

additional complexity.

Figure13. Ratio Lines of Code MoDiGen vs. Java(Generated)

A quite representational DSL is the P

water or gas pipes. It was developed for

Challenge in 2012. It consists of 20 domain objects and was described in MoDiGen in about 400

lines of code. This generates about 80 Java Classes with altogether about 15000 lines of code.

Thus we argue that our approach

Eclipse by a significant factor. This should make the development of graphical

for the Eclipse framework much more attractive

The applications BPMN Modeler 2.0

Editor were used as comparable applications and

applications were both generated and written by

hand written and generated tools are possible. Table 1

application. The number of lines of code w

Lines of Code include on the one hand only t

Code of the different Eclipse plugins (red). The

application. This is because many parts of the application are written in HTML, which is not

considered in the calculation of the JAVA files. In the other cases, the difference is very small,

because only configuration files are added.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

smallest values are not considered, there is a mean factor of above 34. This is indeed a huge

ted code to be quite comparable to code that is hand written against

the Graphiti API directly. In addition, the generated code solves a number of issues with the

Graphiti code, that would need to be solved individually in each project otherwise, resultin

Ratio Lines of Code MoDiGen vs. Java(Generated)

e representational DSL is the P&ID, describing pipes and other plumbing for the domain of

water or gas pipes. It was developed for the Modelling Challenge of the Language Workbench

Challenge in 2012. It consists of 20 domain objects and was described in MoDiGen in about 400

lines of code. This generates about 80 Java Classes with altogether about 15000 lines of code.

t our approach reduces the development time for developing a graphical DSL in

Eclipse by a significant factor. This should make the development of graphical modelling

much more attractive and useful than in the past.

The applications BPMN Modeler 2.0 [15] [16] , EPC Tools [17], ePNK[18] and Basic Class

Editor were used as comparable applications and analyzed with respect to lines of code. These

applications were both generated and written by hand, slight differences in the functionality of the

ated tools are possible. Table 1 displays the Lines of Code (LOC) per

application. The number of lines of code was determined by the tool CLOC [19] [20]

Lines of Code include on the one hand only the JAVA files (black) and, secondly, all the Lines of

Code of the different Eclipse plugins (red). The difference is quite severe for the ECP Tools

application. This is because many parts of the application are written in HTML, which is not

he calculation of the JAVA files. In the other cases, the difference is very small,

because only configuration files are added.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

86

smallest values are not considered, there is a mean factor of above 34. This is indeed a huge

ted code to be quite comparable to code that is hand written against

the Graphiti API directly. In addition, the generated code solves a number of issues with the

Graphiti code, that would need to be solved individually in each project otherwise, resulting in

&ID, describing pipes and other plumbing for the domain of

the Modelling Challenge of the Language Workbench

Challenge in 2012. It consists of 20 domain objects and was described in MoDiGen in about 400

lines of code. This generates about 80 Java Classes with altogether about 15000 lines of code.

the development time for developing a graphical DSL in

modellingplugins

and Basic Class

with respect to lines of code. These

the functionality of the

displays the Lines of Code (LOC) per

as determined by the tool CLOC [19] [20]. The shown

he JAVA files (black) and, secondly, all the Lines of

quite severe for the ECP Tools

application. This is because many parts of the application are written in HTML, which is not

he calculation of the JAVA files. In the other cases, the difference is very small,

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

 MoDi

Gen

Generate

d

by

MoDiGen

BPMN 1.784 56.263

(60.154)

EPC 436 14.165

(14.761)

P&ID 418 13.659

(14.965)

Petri-

Net

99 4.056

(4.923)

Basic

Class

Editor

60 1.680

(1.819)

The tools BPMN Modeler 2.0 and Basic Class Editor were developed with the help of the

Graphiti Framework and are therefore a very good comparison of generated and manually written

Java (Graphiti) code. The Basic Class Editor is of particular importance. Th

a graphical element and a connection. From Table

manually written code are very close together with respect to the number of lines of code. This

shows that the generated and manually writt

generated and handwritten code can be found at

In addition, the developed languages were evaluated

participants were divided into four

Each participant of the different

MoDiGen. After the short workshop

different tasks sequentially with increasing degree of difficulty

(Task 1), shape (Task 2) and style (Task 3) language separately and in total in the final task.

Figure14. Achieved correct results and Assistance requi

Figure 14 (left side) shows that 90

3 and 80% Task 4 correctly. The right diagram in Figure

without assistance. 55% of the participants did not need

Task 2, 57.5% Task 3 and 65% at Task 4.

approximately 75% and only 35

the definition of complex figures by a textual description requires more exercise

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

Table 1. Lines of Code – CLOC

Generate

MoDiGen

BPMN

Modeler 2.0

EPCTools ePNK Basic

Class

Editor

56.263

(60.154)

117.255

(128.170)

- - -

14.165

(14.761)

- 8.868

(85.151)

- -

13.659

(14.965)

- - - -

(4.923)

- - 36.322

(37.406)

-

(1.819)

- - - 1.732

(1.872)

The tools BPMN Modeler 2.0 and Basic Class Editor were developed with the help of the

Graphiti Framework and are therefore a very good comparison of generated and manually written

Java (Graphiti) code. The Basic Class Editor is of particular importance. This editor only includes

a graphical element and a connection. From Table 1 it can be seen that the generated and the

manually written code are very close together with respect to the number of lines of code. This

shows that the generated and manually written code are comparable. The eclipse projects of the

generated and handwritten code can be found at [21].

the developed languages were evaluated with 40 participants. The

four groups (Bachelor and Master Student, Developers and Others

participant of the different groups received a 4-hour introduction to meta-modeling and in

the short workshop and a lunch break, each participant had to

with increasing degree of difficulty. The tasks were to use the diagram

(Task 1), shape (Task 2) and style (Task 3) language separately and in total in the final task.

Achieved correct results and Assistance required

(left side) shows that 90% of participants could solve Task 1, 72.5% Task 2, 95% Task

% Task 4 correctly. The right diagram in Figure 14 shows that the tasks could be

% of the participants did not need help with the editing of Task 1, 35%

% Task 3 and 65% at Task 4. The second Task could only be processed

35% of the participants did not need help.This is probably because

the definition of complex figures by a textual description requires more exercise and is not such

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

87

Basic

Class

Editor

1.732

(1.872)

The tools BPMN Modeler 2.0 and Basic Class Editor were developed with the help of the

Graphiti Framework and are therefore a very good comparison of generated and manually written

is editor only includes

it can be seen that the generated and the

manually written code are very close together with respect to the number of lines of code. This

en code are comparable. The eclipse projects of the

with 40 participants. The different

er Student, Developers and Others).

modeling and in

break, each participant had to complete 4

. The tasks were to use the diagram

(Task 1), shape (Task 2) and style (Task 3) language separately and in total in the final task.

ipants could solve Task 1, 72.5% Task 2, 95% Task

shows that the tasks could be finished

with the editing of Task 1, 35%

processed correctly by

probably because

and is not such

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

as easy with a graphical editor. This

illustration of the defined element

Figure 15 shows the processing time for each user group and task with the fastest, slowest

(perhaps cancelled) and average value. The values are distributed almost homogeneously.

allows the conclusion, that the languages have

almost everybody is able to learn the

29.75 minutes for Task 1, 41,25 minutes for Task 2, 22,25 minutes for Task 3 and 59,5 minutes

for Task 4.

Figure15

The evaluation of the dsl shows that the languages

approaches and the users can use

proved by the high rate of successfully completed tasks.

of CSS within the style language, the evaluation members find their

The creation of graphic elements

possibilities were not directly

processing of the task. After the training, the Diagram languages were considered to be very

compact.

Nevertheless, the evaluation sh

approach. For example, a live preview of the

be very useful. However, this is not an issue of the languages but is an extension of the editor and

tooling. The keyword "ask for"

must be considered whether a renaming is

groups was entirely ignored. Therefore, the question arises whether these are useful or the use

must be described in more detail. The full evaluation plan and report is available at

From this evaluation we conclude that the pr

development of a graphical editor in Eclipse considerably compared to manually written code

against Graphiti, under the constraint that the requirements are met by the generated editor. We

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

. This assumption is supported by the comment that a graphical

defined element would have been very helpful.

shows the processing time for each user group and task with the fastest, slowest

) and average value. The values are distributed almost homogeneously.

that the languages have a certain complexity, especially the shape dsl, but

is able to learn the different languages. On average the participants needed

29.75 minutes for Task 1, 41,25 minutes for Task 2, 22,25 minutes for Task 3 and 59,5 minutes

15. Processing time to completion or abort

shows that the languages includes and combinesa lot ofuseful

use the languages very well separated and in combination

by the high rate of successfully completed tasks. With the integration of some approaches

of CSS within the style language, the evaluation members find their way around very quickly.

of graphic elements with the shape dslwas initially very unfamiliar and the

directly recognized. This problem could be solved with increasing

processing of the task. After the training, the Diagram languages were considered to be very

Nevertheless, the evaluation showed that some weaknesses are present within the presented

or example, a live preview of the defined graphical elements with the shape dsl

. However, this is not an issue of the languages but is an extension of the editor and

tooling. The keyword "ask for" was not understood by a lot of participants. For this

must be considered whether a renaming is meaningful. The diagram language part of the

herefore, the question arises whether these are useful or the use

must be described in more detail. The full evaluation plan and report is available at [22][23]

From this evaluation we conclude that the presented approach reduces the effort for the

development of a graphical editor in Eclipse considerably compared to manually written code

against Graphiti, under the constraint that the requirements are met by the generated editor. We

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

88

that a graphical live

shows the processing time for each user group and task with the fastest, slowest

) and average value. The values are distributed almost homogeneously. This

, especially the shape dsl, but

languages. On average the participants needed

29.75 minutes for Task 1, 41,25 minutes for Task 2, 22,25 minutes for Task 3 and 59,5 minutes

includes and combinesa lot ofuseful

separated and in combination. This is

With the integration of some approaches

way around very quickly.

nitially very unfamiliar and the

with increasing

processing of the task. After the training, the Diagram languages were considered to be very

within the presented

with the shape dsl would

. However, this is not an issue of the languages but is an extension of the editor and

For this reason, it

part of the action

herefore, the question arises whether these are useful or the use

[22][23].

esented approach reduces the effort for the

development of a graphical editor in Eclipse considerably compared to manually written code

against Graphiti, under the constraint that the requirements are met by the generated editor. We

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

89

have indications that the use of Graphiti reduces the effort compared to the use of GEF and

Draw2D, but have no formal evaluation for that.

6. CONCLUSIONS

In this paper we have presented that the development of a graphical DSL with the usage of the

open source framework MoDiGen can be very efficient. We presented an approach for the model

driven generation of graphical modelling tools as part of the Eclipse framework. The

modellingenvironment can be adjusted to the needs of a specific domain. Thisresults in a set of

Eclipse plugins,which supports the defined graphical domain-specific language. It’s not necessary

to be an expert of the field of metamodeling, to develop a domain specificgraphical modelling

tool, because the presented DSLs are quite easy to learn, read and write. The meta model and the

DSLs can be tailored to the specific needs of the domain, therefore the models can be very

specific. In this paper we showed some example elements, but its although possible to use the

same approach for various domain-specific modelling languages.

The described project is currently not finished and still lacks a number of important features

before its use could be recommended in the context of productive development. But this will

improve over time. Examples of such features are improved support for text, the inclusion of

shadowsand the use of rapid buttons. More important is the question of the limitations of the

approach. We see no constrains regarding the graphical editor itself and the provided API by

Graphitiwith respect to the model-driven approach. Unfortunately, the Graphiti Framework did

not provide a lot of features we had expected. For example, Graphiti currently does not support

the design of text like underling. This feature is essential for a class diagram which is part of the

UML. Another limitation is the standard zooming function within Graphiti diagrams and the hole

eclipse environment. The eclipse ecosystemespecially Graphiti zooms by resizing all sizes of the

elements, including the border-size of any element. This leads to a confusing functionality of the

editor.

The generative approach is currently reduced to the cases which are often needed by domain

developers (node and edge diagrams).In UML most diagram types fit into this category. But the

other diagram types such as sequence and the timing diagram could not be implemented

currently. They cannot be described with the presented DSLs without considerable

extensions.Therefore, the generator and the metamodel fit to this cases. Corner cases could be

covered by the manual extension of the generated code. The generated code is well prepared for

this case.

The real limitation is more the development environment in the form of the Eclipse framework.

The aim of Eclipse is to develop a tool for the textual software development.An example of this is

that the storage of a change in a file must be triggered explicitly.This approach is not possible for

the real-time evaluation of model data.This requires a continuous storage for each

change.However, this is hard to achieve in Eclipse.

Other topics, like multi-user collaborative modelling environments, evolution of Metamodels, or

diffing and merging changes in versions of graphical models remain topics of research and are

independent of Eclipse or a model driven approach.

REFERENCES

[1] MoDiGen - A Quick Way of Creating Graphiti (2016). https://www.modigen.de

[2] The Eclipse Foundation: Eclipse Modeling Framework Project (EMF) (2016).

http://www.eclipse.org/modeling/emf/

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

90

[3] Itemis AG (2016). http://www.eclipse.org/Xtext

[4] The Eclipse Foundation: Draw2d (2016). http://www.eclipse.org/gef/draw2d/

[5] The Eclipse Foundation: Graphical Editing Framework (GEF) (2016). http://www.eclipse.org/gef/

[6] The Eclipse Foundation: Graphical Modeling Project (GMP).

(2016)http://www.eclipse.org/modeling/gmp/

[7] The Eclipse Foundation: Graphiti: A Graphical Tooling Infrastructure.

(2016)http://www.eclipse.org/graphiti/

[8] Poseidon for DSLs. (2016)http://www.gentleware.com/poseidon-for-dsls.html

[9] Sparx Systems: Enterprise Architect. (2016)http://www.sparxsystems.com/

[10] A DSL for Graphiti Editors (IMES), Research Project.

(2016)http://5ise.quanxinquanyi.de/2011/08/18/a-dsl-for-graphiti-editors/

[11] No Magic Inc.: MagicDraw (2016). https://www.magicdraw.com/

[12] MPS Meta Programming System (2016). http://www.jetbrains.com/mps/

[13] Software Developer SAP (2016). http://www.sap.de

[14] Object Management Group (2016). http://www.omg.org/

[15] Eclipse - BPMN2 Modeler (2016). https://www.eclipse.org/bpmn2-modeler/

[16] GIT Repository - BPMN2 Modeler (2016). https://github.com/eclipse/bpmn2-modeler

[17] Uni Paderborn –EPCTools (2016). http://www2.cs.uni-paderborn.de/cs/kindler/research/EPCTools/

[18] Technical University of Denmark – EPNK (2016). http://www.imm.dtu.dk/ekki/projects/ePNK/

[19] Count Lines of Code – CLOC (2016). http://cloc.sourceforge.net/

[20] Count Lines of Code - CLOC Git (2016). https://github.com/AlDanial/cloc

[21] Implementation Basic Class Editor MoDiGen and JAVA (2016).

http://www.modigen.de/BasicClassEditor/

[22] Evaluation Plan (2016). http://www.modigen.de/evaluation/Evaluierungsplan-MoDiGen-DSLs.htm

[23] Evaluation Report (2016). http://www.modigen.de/evaluation/Evaluationsbericht-MoDiGen-

DSLs.htm

[24] Hutchinson, J., Whittle, J., Rouncefield, M., &Kristoffersen, S. (2011, May). Empiricalassessmentof

MDE in industry. In Proceedingsofthe 33rd International Conference on Software Engineering (pp.

471-480). ACM.

[25] Johannes, J., & Aßmann, U. (2010, October). Concern-based (de) compositionof model-

drivensoftwaredevelopmentprocesses. In International Conference on Model Driven Engineering

Languagesand Systems (pp. 47-62). Springer Berlin Heidelberg.

[26] Kalleberg, K. T., & Visser, E. (2007, March). Spoofax: An

interactivedevelopmentenvironmentforprogramtransformationwithStratego/XT. In A. Johnstone, & T.

Sloane (Eds.), Workshop on Language Descriptions, Tools, andApplications (LDTA 2007) (pp. 47-

50).

[27] Kolovos, D. S., Rose, L. M., Paige, R. F., & Polack, F. A. (2009, May). Raisingthelevelofabstraction

in thedevelopmentof GMF-basedgraphicalmodeleditors. In Proceedingsofthe 2009 ICSE Workshop

on Modeling in Software Engineering (pp. 13-19). IEEE Computer Society.

[28] Kolovos, D. S., Rose, L. M., Abid, S. B., Paige, R. F., Polack, F. A., &Botterweck, G. (2010,

October). Taming EMF and GMF usingmodeltransformation. In International Conference on Model

Driven Engineering Languagesand Systems (pp. 211-225). Springer Berlin Heidelberg.

[29] Object Management Group: Business Process Model and Notation, Speci_cation V2.0.

http://www.omg.org/spec/BPMN/2.0/PDF, Needham, Massachusetts, VereinigteStaaten (2011).

Accessed 2015-01-22

[30] Rubel, D., Wren, J., &Clayberg, E. (2011). The EclipseGraphicalEditing Framework (GEF). Addison-

Wesley Professional.

[31] Smolander, K., Lyytinen, K., Tahvanainen, V. P., &Marttiin, P. (1991, May). MetaEdit—a flexible

graphicalenvironmentformethodologymodelling. InInternational Conference on Advanced

Information Systems Engineering (pp. 168-193). Springer Berlin Heidelberg.

[32] Pietrek, G., & Trompeter, J. (2007). Modellgetriebene Softwareentwicklung-MDA und MDSD in der

Praxis; entwickler. press. Frankfurt am Main.

[33] Vara, J. M., & Marcos, E. (2012). A frameworkfor model-drivendevelopmentofinformationsystems:

Technical decisionsandlessonslearned. Journal of Systems and Software, 85(10), 2368-2384.

[34] Mernik, M., Heering, J., &Sloane, A. M. (2005). Whenandhowtodevelop domain-specificlanguages.

ACM computingsurveys (CSUR), 37(4), 316-344.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

91

[35] Steinberg, D., Budinsky, F., Merks, E., &Paternostro, M. (2008). EMF: eclipsemodelingframework.

Pearson Education.

[36] Rubel, D., Wren, J., &Clayberg, E. (2011). The EclipseGraphicalEditing Framework (GEF). Addison-

Wesley Professional.

[37] Draw2D, E. Project Homepage.

[38] Refsdal, I. (2011). Comparisonof GMF and Graphiti based on experiencesfromthedevelopmentofthe

PREDIQT tool. University of Oslo.

[39] Gronback, R. C. (2009). Eclipsemodelingproject: a domain-specificlanguage (DSL) toolkit. Pearson

Education.

[40] Moritz Eysholdt and Heiko Behrens. (2010). Xtext: implement your language faster than the quick

and dirty way. In Proceedings of the ACM international conference companion on Object oriented

programming systems languages and applications companion (OOPSLA '10). ACM, New York, NY,

USA, 307-309.

AUTHORS

Markus Gerhart studied business computer science with a focus on Software

Engineering at the University of applied science Konstanz. He then completed a master's

degree in the study program with a focus on business processes modelling and model

driven software development and is currently a PhD student of Prof. Dr. Marko Boger in

the area of the model-driven software development.

Prof. Dr. Marko Boger studied in Karlsruhe (Germany) and Toulouse (France) and

received his doctor degree in Aachen and Hamburg (both Germany). Then he founded the

company Gentleware, which was in the area of graphical modeling one of the leading

tools in 2002. He was actively involved in the standardization of UML 2 as a head of the

working group. Since 2009 he is professor of software engineering and software

architecture at the University of applied science Konstanz.

