
International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

DOI:10.5121/ijcsit.2016.8605 49

REDUCING COMPETITIVE CACHE MISSES IN

MODERN PROCESSOR ARCHITECTURES

Milcho Prisagjanec and Pece Mitrevski

Faculty of Information and Communication Technologies,

University “St. Kliment Ohridski”, Bitola, Republic of Macedonia

ABSTRACT

The increasing number of threads inside the cores of a multicore processor, and competitive access to the

shared cache memory, become the main reasons for an increased number of competitive cache misses and

performance decline. Inevitably, the development of modern processor architectures leads to an increased

number of cache misses. In this paper, we make an attempt to implement a technique for decreasing the

number of competitive cache misses in the first level of cache memory. This technique enables competitive

access to the entire cache memory when there is a hit – but, if there are cache misses, memory data (by

using replacement techniques) is put in a virtual part given to threads, so that competitive cache misses are

avoided. By using a simulator tool, the results show a decrease in the number of cache misses and

performance increase for up to 15%. The conclusion that comes out of this research is that cache misses

are a real challenge for future processor designers, in order to hide memory latency.

KEYWORDS

Memory-Level Parallelism, Cache Memory, Competitive Cache Misses, Multicore Processor,

Multithreading

1. INTRODUCTION

The main objective in the development of a processor is its performance increase, and the

bottlenecks are being eliminated by implementation of different types of techniques in the

architecture itself. By following this timeline historically, one can note that the frequency

increase, the implementation of out-of-order execution of the instruction stream, the enlargement

of the instruction window, and the Instruction-Level Parallelism (ILP), all contributed to

increasing the performances of processors in some periods of time [1].

But, according to some authors, the gap between processor and memory speeds, which has

existed since the very appearance of computers, despite many offered techniques (some of which

have been already implemented in commercial processors), is the reason for performance decline

[2]. An instruction that accesses memory, until it is complete with memory data, blocks the

processor resources at the same time and thus decreases performance. When the processor needs

memory data, and data are found in the first level cache, one says that there is a hit. Otherwise, a

cache miss occurred and the memory system starts a procedure of elimination, which may take

several hundred cycles [3].

The main reasons for performance decline and increased number of cache misses in modern

processor architectures are the memory shared among cores, as well as the drift towards

implementation of larger number of cores and threads in the processor itself. Some of the

techniques that are intended to help in reducing cache misses (prefetching, for example), even

contribute to the appearance of such competitive cache misses and decrease performance.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

50

The aim is to find a technique which would enable for reducing memory latency and the number

of cache misses in commercial processors. There are many papers in which authors contribute to

the increase of Memory-Level Parallelism, but none of these has been implemented in

commercial processors to date. Others go even further, stating that it is necessary to abandon

Instruction-Level Parallelism and that researchers should completely turn to Memory-Level

Parallelism instead [4].

Taking that into consideration, after we review related work in Section 2 and analyze the

performance impact of competitive cache misses in Section 3, we propose a technique for

reducing competitive cache misses. The suggestion is every single thread to have its own

“virtual” cache memory in the first level during block replacement, while using the entire cache

memory during loading. On the positive side are the easy way of implementation, and the fact

that it does not “revolutionary” change the present architecture of the processor. But, on the

negative side, one should note that the cache memory is used far below par in the first level

during not very intensive processor workload, as we will demonstrate in Section 4. Section 5

concludes the paper.

2. RELATED WORK

The research made by many authors showed that cache misses reduce the processor performance

even up to 20%. Even more significant information is that the gap between the processor and

memory speeds is getting deeper and bigger through time, which contributes to a larger number

of cache misses. This was the main motivation for various efforts to design techniques that reduce

cache misses. For example, the prefetching technique [5], which has been implemented in

commercial processors, supplies memory data by fetching them into the cache memory before the

processor needs them. Some other authors [6] have given ideas of a virtual enlargement of the

instruction window, so that it would be possible to unlock the processor’s resources in the

window and to load in advance memory data which are to be used by the processor in the near

future. They provide a technique for virtual extension of the instruction window, which is called

runahead execution. The idea is to enable continued operation of the processor when its resources

are blocked by a long latency instruction. In this manner, memory data prefetching from the first

level cache is enabled.

The idea for the improvement of processor performance by implementing Memory-Level

Parallelism (MLP) techniques has been used in a number of research papers. Models that reduce

memory latency and/or the number of cache misses are given herewith. Continual Flow Pipelines

[7] aim to remove the long latency instruction together with its dependent instructions, so that

resources would be released and the processor could execute the independent instructions. In [8],

the author suggests a Recovery-Free Value Prediction technique, whose idea relates to speculative

execution in order to load memory data from the first level cache. Out-of-order commit [9] is a

technique which enables the execution of the instructions in the absence of a reordering buffer. In

other words, by increasing the instruction window, there is a need for a constant increase of the

reordering buffer which, in turn, increases the complexity of the processor. This technique allows

to completely leave out the reordering buffer.

3. COMPETITIVE CACHE MISSES AND PERFORMANCE IMPACT

The lack of ability to burst through the technological cutbacks in processor design, changes the

course in their development. That means that the idea is to design an architecture which would

perform multiple numbers of instructions at the same clock frequency. The first-hand concept is

based on a system in supercomputers known beforehand, where many computers execute their

workload in parallel. This architecture is modified by using more processor cores placed on one

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

51

silicon crystal. Each of the cores is a processor itself, but the new architecture significantly

reduces energy dissipation. The trends of increasing the number of cores and threads are more

present in modern processor architectures – they impose the necessity of a larger instruction

window. By doing so, there is an increasing number of instructions which have greater need of

memory data, whose latency is too big and causes stagnation in the work of the processor.

3.1. PERFORMANCES OF MULTI CORE PROCESSORS

In the best case, dual core processor should complete a programmer’s code twice as fast,

compared to a single core processor. But the practical cases so far showed that it does not really

happen, and that the double core processor is only 1.5 times faster than a single core processor.

Surprisingly, in some scenarios, single core processors even show better performances – one of

the reasons are cache misses.

In [10], by means of a simulator, a single core processor has been designed. First level (L1) of

cache memory is composed of instructional cache and data cache (2 x 64 Kbytes), L2 cache

memory with a size of 256 Kbytes and L3 cache memory with a size of 512 Kbytes. The

remaining parameters are configured according to the parameters of the commercial processors.

The tests have been performed in architectures of one-level, two-level, and three-level cache

memory. The results of the experimental tests are shown in Table 1. They show that there are

misses at every level of cache memory: in L1 cache memory there are 88% hits and 12% misses.

From the misses in L1 cache memory, 8.7% are next level cache memory misses (i.e. L2),

whereas 5.3% of these misses are from the last (L3) cache memory level. The analysis shows that

with the development of the new commercial architectures of processors and with the increase in

the number of cores, there is also an increase in the number of cache misses, which reduce the

performances of the processor.

Table 1. Cache misses in presence of memory hierarchy.

Architecture

of cache

memory

Cache memory

Number of accesses

Cache misses

in L1

Cache misses

in L2

Cache misses

in L3

2x64+256+512 20000 2560 224 12

An analysis of the cache misses has been done depending on the number of the cores. By using a

simulator, a multicore processor has been designed with only L1 cache memory with capacity of

512 Kbytes (i.e. 256 Kbytes of instruction cache and 256 Kbytes of data cache). The bus supports

MESI protocol for maintaining memory coherence. The main memory capacity is 1 GB.

Benchmarks of the designed processor have been executed by changing the number of processor

cores. The results are shown in Fig. 1.

Figure 1. How the number of processor cores affects cache misses

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

52

One can see that the number of cache misses for the simulated architecture is 10% of the number

of memory accesses. But it can also be concluded that by increasing the number of cores above

16, the number of cache misses increases as well, which has a negative effect on processor

performance. One of the reasons for that is the competitive cache misses.

3.2. COMPETITIVE CACHE MISSES

In modern processor architectures, a number of cores and threads share the same memory, and the

workload that the processor has to undertake is divided into processes and threads. Every process

needs certain memory data, and if it cannot provide them from the first level cache, it loads them

from the memory subsystem by using a certain method for changing the blocks. This methods do

not usually check if a block, which is currently being changed, would be used in near future by

some other processes. Namely, it leads to removal of some memory blocks, which might be

needed by some other active processes in subsequent cycles. As a result, it would cause a

decrease in processor performance.

This situation would become even worse if prefetching was used to load memory data from the

first level cache. If every process would use this technique to load memory data from the first

level of cache memory, which it would need in near future, due to the restricted capacity of the

cache memory and its shared use, would cause competitive memory access and mutual removal

of the blocks of data for the processes. The possibility of appearance of the competitive cache

memory access grows with processor workload, with the increasing of the number of cores and

threads that share the same memory, and finally because of the restricted capacity of the cache

memory of the processor.

4. REDUCING COMPETITIVE CACHE MISSES – TECHNIQUE AND BENEFITS

To avoid competitive access of the threads, we suggest the technique of a one-way shared cache

memory. The first level cache is shared to as many parts as the number of threads. All threads

competitively access the memory. If a thread contains an instruction that accesses the memory, a

check is performed whether the required memory data are available. Therefore, if these data can

be found in the first level cache, then they are being loaded. So far, it is the same as in all the

modern processor architectures. If the data cannot be found in the first level of the cache memory,

then it is necessary to be loaded from another level of the memory subsystem. The loading of the

memory block is completed by using one of the known replacement techniques, but by doing so

the block can be loaded only in the part of the cache memory, which belongs to the thread. That

means that, during loading memory data, the thread uses all the shared cache memory from the

first level. But if certain data do not exist in the first level, then it loads them from the memory

subsystem, but only in its own “virtual” part of the cache memory.

The prefetching technique, which is frequently used in modern processor architectures, is another

reason for the appearance of competitive cache misses. Principally, this technique is implemented

in order to decrease memory latency and the number of cache misses. In order to get a picture for

the benefits of using the data prefetching technique, a processor has been tested and the number

of cache misses depending on the number of prefetched data has been determined by using a

simulator tool. In Fig. 2 it can be seen how the number of cache misses changes according to the

number of prefetched instructions – in the interval of 4 to 6 prefetched instructions the number of

cache misses is very close to 0.

With the results in this part we have further confirmed the efficiency of data prefetching in

reducing the number of cache misses. However, this efficiency is optimal only if the prefetching

system makes a correct prediction of the memory data that should be fetched and when to start the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

53

fetching process. This means that, for the instructions that access the memory, this technique

makes early loading of memory data and places them in the first level cache. At the moment of

execution of the instruction the memory data are already in the cache memory and the processor

just takes them from there with minimum delay. But, in modern processor architectures, there is

competitive access of the threads to the first level cache with the prefetching technique. That is

the reason for competitive access to the same memory address while loading the memory data

from the upper levels of the cache memory.

Figure 2. Number of cache misses depending on the number of prefetched instructions

4.1. SIMULATION ENVIRONMENT

In order to get measurable and comparable performance evaluation results, we designed a

processor simulator by using the Python programming language [11]. SimPy (Simulation in

Python) [12] is an object-oriented, process-based discrete-event simulation language based on

standard Python, which provides the modeler with components of a simulation model including

“Processes” (active components) and “Resources” (passive components) and provides monitor

variables to assist in gathering statistics. Discrete-event simulation (DES) utilizes a

mathematical/logical model of a physical system that portrays state changes at precise points in

simulation time. Both the nature of the state changes and the time at which the changes occur,

require precise description. Within DES, time advances not at equal size time steps, but rather

until the next event can occur, so that the duration of activities determines how much the clock

advances. “Process Execution Methods” (PEMs) use the “yield hold” command to temporarily

delay process objects’ operations. Figs. 3-7 show the program codes of the “RAM Memory” and

“Instruction Pointer” resources, as well as the “Decoding”, “Execution” and “Cache” processes,

respectively.

Figure 3. Program code of the “RAM Memory” resource in SimPy

Figure 4. Program code of the “Instruction Pointer” resource in SimPy

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

54

Figure 5. Program code of the “Decoding” process in SimPy

Figure 6. Program code of the “Execution” process in SimPy

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

55

Figure 7. Program code of the “Cache” process in SimPy

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

56

4.2. PERFORMANCE BENEFITS

Next we tested the performances of an ideal processor without cache misses, a multithreaded

processor, and a processor where we implemented the proposed technique for non-competitive

access to the cache memory in the first level. The results gained from the tests are shown in

Fig. 8. The offered technique is implemented in a single core multithreaded processor with 4

threads. The simulator makes parallel execution of the instructions in all of the threads. When the

simulator comes to an instruction with access to the memory, it checks whether data can be found

in the L1 cache memory. If there is a hit, it loads memory data and completes the instruction. But,

if a miss in L1 cache memory occurs, the simulator searches these memory data in the upper

levels of the memory hierarchy. The simulator uses the technique of block replacement and loads

the memory data only in the virtual part of L1 cache memory, which belongs to the matching

thread.

According to the results shown, the technique offered makes the time of execution of a program

shorter for 15%. The source of this finding is the decreased number of competitive cache misses

in the first level cache. The good side of the offered technique is that it does not “revolutionary”

change the architecture of the processors. It can be implemented very easily: the change comes

only in the technique of block replacement in the first level cache. A tag is used for marking

which block belongs to which thread. While replacing the memory block, this tag is used to

virtually divide cache memory by the number of threads that access the memory.

The prefetching technique is not something novel: the change only means that this technique

early loads memory data in the second level of the cache memory, to avoid competitive access to

the first level. It does not increase processor complexity, and so, it does not cause additional

energy dissipation. The disadvantages of this technique, however, are the low exploitation of the

first level cache during a poor workload of the processor. In cases with a small number of

processes that reduces the number of active threads, as well, it effectively reduces the available

capacity of the first level cache.

Figure 8. Graphical overview of the performances of three types of processors

5. CONCLUSIONS

The simulation results showed again the huge impact of cache misses on processor performance –

the decreased processor performance due to cache misses cannot be ignored. The offered

technique succeeds in decreasing the number of cache misses for about 15%, and it increases

processor performance. Different studies have come to a conclusion that the number of cache

misses in modern processor architectures is still outsized. On the other side, the direction in which

they develop (by increasing the number of cores and threads, and by using shared cache memory),

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

57

brings about the appearance of bigger number of cache misses even more, and decreases

processor performance. Our research certified again that the cache misses significantly reduce

performances, and that decreasing the number of cache misses is a great challenge to future

research and processor designers.

REFERENCES

[1] Tullsen, Dean M. & Brown, Jeffery A. (2001) “Handling long-latency loads in a simultaneous

multithreading processor”, Proc. of 34th annual ACM/IEEE international symposium on

Microarchitecture, IEEE Computer Society, pp. 120-122.

[2] Carvalho, C (2002) “The gap between processor and memory speeds”, Proc. of IEEE International

Conference on Control and Automation.

[3] Hennessy, J. L., & Patterson, D. A. (2012) Computer architecture: a quantitative approach, Elsevier.

[4] Glew, Andrew (1998) “MLP Yes! ILP No! Memory Level Parallelism, or Why I No Longer Care

about Instruction Level Parallelism”, ASPLOS Wild and Crazy Ideas Session.

[5] Kim, D., Liao, S. S. W., Wang, P. H., Cuvillo, J. D., Tian, X., Zou, X., ... & Shen, J. P. (2004)

“Physical experimentation with prefetching helper threads on Intel's hyper-threaded processors”,

Proc. of the international symposium on Code generation and optimization: feedback-directed and

runtime optimization, IEEE Computer Society.

[6] Mutlu, O., Stark, J., Wilkerson, C., & Patt, Y. N. (2003) “Runahead execution: An alternative to very

large instruction windows for out-of-order processors”, Proc. of the Ninth International Symposium

on High-Performance Computer Architecture, IEEE, pp. 129-140.

[7] Srinivasan, S. T., Rajwar, R., Akkary, H., Gandhi, A. & Upton, M. (2004) “Continual Flow

Pipelines”, ACM ASPLOS’04, Boston, Massachusetts, USA.

[8] Zhou, H., & Conte, T. M. (2005) “Enhancing memory-level parallelism via recovery-free value

prediction”, IEEE Transactions on Computers, 54(7):897-912.

[9] Adrian, Cristal, Ortega, Daniel, Llosa, Josep & Valero, Mateo (2004) “Out-of-order commit

processors”, Software, IEE Proceedings-, IEEE, pp. 48-59.

[10] Prisaganec, M. & Mitrevski, P. (2013) “Cache misses challenge to modern processor architectures”,

Proc. of the XLVIII International Scientific Conference on Information, Communication and Energy

Systems and Technologies (ICEST 2013), Vol. 1, pp. 273-276, Ohrid, Macedonia.

[11] URL < http://www.python.org/>

[12] URL < http://simpy.sourceforge.net/>

Authors

Milcho Prisagjanec received his BSc degree in Electrical Engineering from the Faculty of

Electrical Engineering and Information Technologies at the Ss. Cyril and Methodius

University in Skopje, and the MSc degree from the Faculty of Technical Sciences,

University “St. Kliment Ohridski” – Bitola, Republic of Macedonia. He is currently a system

administrator and a PhD student at the Faculty of information and Communication

Technologies. His field of interest is performance and reliability analysis of computer and

communications systems.

Pece Mitrevski received his BSc and MSc degrees in Electrical Engineering and Computer

Science, and the PhD degree in Computer Science from the Ss. Cyril and Methodius

University in Skopje, Republic of Macedonia. He is currently a full professor and Dean of

the Faculty of Information and Communication Technologies, University “St. Kliment

Ohridski” – Bitola, Republic of Macedonia. His research interests include Computer

Architecture, Computer Networks, Performance and Reliability Analysis of Computer

Systems, e-Commerce, e-Government and e-Learning. He has published more than 100 papers in journals

and refereed conference proceedings and lectured extensively on these topics. He is a member of the IEEE

Computer Society and the ACM.

