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ABSTRACT  

 

New implementations for parallel processing applications using reversible systolic networks and the 
corresponding nano and field-emission controlled-switching components is introduced. The extensions of 
implementations to many-valued field-emission systolic networks using the introduced reversible systolic 
architectures are also presented. The developed implementations are performed in the reversible domain to 
perform the required parallel computing. The introduced systolic systems utilize recent findings in field 
emission and nano applications to implement the function of the basic reversible systolic network using 
nano controlled-switching. This includes many-valued systolic computing via carbon nanotubes and carbon 
field-emission techniques. The presented realization of reversible circuits can be important for several 
reasons including the reduction of power consumption, which is an important specification for the system 
design in several future and emerging technologies, and also achieving high performance realizations. The 
introduced implementations for non-classical systolic computation are new and interesting for the design 
within modern technologies that require optimal design specifications of high speed, minimum power and 
minimum size, which includes applications in adiabatic low-power signal processing. 
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1. INTRODUCTION 
 

In current and emerging future design techniques, reversible computing will have wider 
utilization in synthesizing modern computer circuits and systems [1, 20, 34, 36]. This is due to the 
fact that reversible logic leads to the design of computer systems that consume much less power 
and occupy much less space [1, 3, 9, 20, 29, 32, 34], where it was shown that if all physical sub-
circuits were designed to be reversible then the whole system composed of inter-connecting these 
reversible sub-systems will minimize its operational need for power consumption [29]. For this  
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purpose, various important technologies have been investigated to implement reversibility such as 
adiabatic CMOS circuits [36], optical computing [4] and quantum computation circuits and 
systems [1, 2, 4, 15, 20, 32-34]. 

  
Simple and regular interconnections lead to high densities and cheap realizations, and higher 
density implies both lower overhead and higher performance for the utilized components [1, 27, 
28], where it has been shown that multi-processing plus multi-dimensional pipelining at each 
phase of a pipeline can lead to a better computing performance [27, 28]. Systolic systems provide 
parallel computation and inexpensive computing power, and provide a model of computation 
which captures the important features of parallelism, interconnection sub-systems and pipelining, 
which has been utilized in wide range of implementations [2, 27, 28, 38], and provide a good 
model of computation for investigating concurrent algorithms for VLSI circuits and systems. 
 

Parallel systolic VLSI processing takes into account issues of control, inter-processor 
communications, and I/O processing and interfacing. In systolic systems, multi-dimensional 
pipelining overlaps I/O with computing to ensure high throughput with no extra needed control 
logic, where communication paths inherently require more energy and space than processing 
elements (PEs) and communication between processors is achieved through fixed data paths that 
have simple and regular geometries. It has been shown that data flow patterns in systolic 
architectures are fundamental in matrix computations [27, 28]. Examples of this include two-way 
flow on linearly connected networks which is common to both the solution of linear triangular 
systems and matrix-vector multiplication, and three-way flow on hexagonally mesh-connected 
networks which is common to both LU-decomposition and matrix multiplication.  
 

Nanotechnology is an important modern scientific field that utilizes analysis and synthesis 
techniques from several overlapping science and engineering sectors such as from physics, 
chemistry, electronics and biology. Nanowires, nanoparticles, Carbon nanotubes (CNTs) and 
Carbon nanofibers are just few examples of such important and widely-used nano systems [4, 5, 
8, 11, 14, 16-19, 23, 26, 30, 37, 39]. The CNT is an important emerging technology within 
nanotechnology that has wide range of applications in several various fields in technology and 
science, where recent examples include TVs based on CNT field-emission that are of much 
higher resolution than the available best plasma-based TVs, thinner and consume much less 
power, and CNT-based nanocircuits such as CNT-based Field Effect Transistors (FETs) that are 
much faster than the available silicon-based FETs and possess high potential for less power 
consumption. Recently, carbon nanotubes have attracted much attention not only for their unique 
morphologies and relatively small dimensions, but also for their potential applications in several 
current and emerging technologies [8, 16-18]. CNT is made from graphite that is shaped in three 
forms within nano dimensions: (1) Carbon nanoball (or buckyball) with the shape of a soccer ball, 
(2) Carbon nanotube that is shaped as multi-wall CNT (MWCNT) and single-wall CNT 
(SWCNT), and (3) Carbon nanocoil. Field electron emission is defined as electron emission 
under the influence of the applied electric field from the surface of a cathode which is highly 
dependent upon the emitting material work function [10, 21, 23, 25]. In this article, the utilization 
of Carbon field emission – based devices that realize a basic building block in modern synthesis 
known as the controlled switch [31, 36] is introduced, and the use of the presented Carbon field 
emission-based devices in many-valued computations is also shown for the widely-utilized case 
of ternary Galois logic. In this new realization, the applied Carbon field emission is obtained 
using carbon-based nanotubes [5, 16-19] and carbon-based fiber nano-apex tips [6].  
 

This article introduces reversible parallel processing via field emission-based systolic systems. 
Figure 1 illustrates the corresponding layout of the introduced system design method.  
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Figure 1.  The introduced and utilized system implementation hierarchy. 
 

The remainder of this article is organized as follows: Basic background on fundamentals of 
reversible computing, systolic arrays and carbon-based nanotubes and nanotips are presented in 
Section 2. The utilization of the Carbon field emission – based devices in controlled switching 
and their application in parity-preserving circuits is introduced in Section 3. The extension of the 
utilization of Carbon field emission – based controlled switching to the important case of many-
valued computations is introduced in Section 4. The implementation of controlled switching that 
use Carbon field emission – based devices within reversible systolic architectures is introduced in 
Section 5. Conclusions and future work are presented in Section 6. 
 

2. BASIC BACKGROUND 
 

This Section presents basic fundamentals and important background material in the fields of 
reversible processing, parallel systolic computing and Carbon-based nanotubes and nanotips. This 
will be utilized in Section 5 for the reversible parallel processing within systolic arrays using 
controlled-switching via field emission – based nano multiplexing devices. 
 

2.1. Reversible Computing 
 

An (N, N) reversible system has the same number of inputs N and outputs N and is a one-to-one 
mapping between vector of inputs and vector of outputs, thus the vector of input states is uniquely 
reconstructed from the vector of output states [1, 3, 9, 20, 29, 32, 34]. Thus, an (N, N) reversible 
map is a bijective function which is both injective (“one-to-one”) and surjective (“onto”). In 
reversible computing, "garbage" outputs and inputs are auxiliary outputs and inputs that are 
required only for the objective of reversibility. Figure 2 shows important reversible gates that are 
utilized in the synthesis of reversible circuits and systems. 
 
 

 

 
 

                 {a, c = a ⊕ b}                  {a, b, d = c ⊕ a ⋅ b}                        {fr0, fr1, c}                                               
 
                                                  (a)                                               (b)                                                  (c)                                                                        
 

Figure 2. Important binary reversible primitives: (a) (2, 2) Feynman, (b) (3, 3) Toffoli,  
and (c) (3, 3) Fredkin. 

 

Because Galois field (GF) possesses attractive characteristics for several implementations such as 
in communications, VLSI, testing and signal processing [1, 34], the performed developments will 
be done utilizing the corresponding GF algebraic systems. The addition and multiplication tables 
of radix two GF(2) and radix three GF(3) of Galois fields are defined as shown in Figures 3(a) 
and 3(b), respectively. 
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(a)                (b) 

 

Figure 3. Galois field addition and multiplication tables: (a) radix two and (b) radix three. 
 

We define the single-variable function of 1-Reduced Post Literal (1-RPL) [1] as: 
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For instance, {0
x, 1

x, 2
x} are the zero, first and second polarities of the 1-Reduced Post Literal, 

respectively. Also, let us define the ternary shifts of variable x as {x, x', x"} to be the zero, first 

and second shifts, respectively, i.e., x = x + 0, x’ = x +1 and x” = x + 2, where x ∈ {0, 1, 2}. The 
ternary Shannon expansion over GF(3) for a ternary single-variable function is produced as: 
                                                                             f = 

0
x f0 + 

1
x f1 + 

2
x f2,                                                       (2) 

where f0 is the cofactor of f with respect to the variable x of value 0, f1 is the cofactor of f with respect to the 
variable x of value 1, and f2 is the cofactor of f with respect to the variable x of value 2. It was presented [1] 
that the 1-Reduced Post Literals defined in Equation (1) are related in terms of powers to the shifts of 
variables as follows: 
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After the substitution of Equations (3) - (11) in Equation (2), and after the minimization of the 
terms according to the axioms of the Galois field, one obtains the following Equations: 
                                                                   f = 1⋅ f0 + x ⋅ (2f1+f2) + 2(x)2(f0+f1+f2),                                    (12) 

                                                                  f = 1⋅ f2 + x' ⋅ (2f0+f1) + 2(x')2(f0+f1+f2),                                   (13) 

                                                                  f = 1⋅ f1 + x" ⋅ (2f2+f0) + 2(x")2(f0+f1+f2).                                  (14) 

Ternary fundamental single-variable Shannon and Davio expansions are presented in Equations 
(2) and (12) - (14), respectively. These equations can be also rewritten in matrix-based forms as: 
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The extension for two or more variables of the many-valued Shannon and Davio decompositions 
is achieved utilizing the corresponding Kronecker product of the transform matrix and Kronecker 

+ 0 1 2 ∗∗∗∗ 0 1 2 
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1 1 2 0 1 0 1 2 
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product of the vector of basis functions. To introduce the method for creating reversible many-
valued Shannon and Davio decompositions [1], Definitions (1) – (2) are presented. 
 

Definition 1. The matrix that is obtained from the permutations of many basis functions of the 
same type of the corresponding spectral transform is called Generalized Basis Functions Matrix 
(GBFM). 
Definition 2. From all possible GBFM, the matrices that produce reversible decompositions are 
called Reversible Generalized Basis Functions Matrices (RGBFM). 
 

Example 1. For the following ternary Shannon transform over GF(3), [ ]
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the following is one possible GBFM 



















ccc

ccc

ccc

012

120

210

. Yet, as will be shown, this GBFM is not 

reversible since it does not generate a reversible expansion. One possible Reversible Shannon 
GBFM (RSGBFM) that leads to a reversible expansion is 
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necessary constraint to generate the reversible many-valued Shannon decomposition [1] is that 
the elements in any row or column of the utilized RSGBFM are orthogonally permuted compared 

to the other elements in the corresponding positions of the other rows or columns.  
 

This reversibility condition can be explained by means of tables as follows: since the Shannon 
matrix is orthogonal, then the following (3, 3) ternary Shannon expansion in Equation (19a): 
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is reversible subjected to input c is produced in the output, for which an altered form of Equation 
(19a) is:    
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As an example, we are using in this case Shannon set of basis functions {0
c, 1

c, 2
c} that appear in 

the third row, but Shannon set of basis functions {0
c, 1

c, 2
c} can appear in any of the rows of the 

corresponding RGBFM. The ternary Shannon expansion in Equation (19) is reversible as shown 
in Table 1 using the permutation of cofactors. 
 

Table 1. Permutation of cofactors as reversibility proof of the ternary Shannon expansion in Equation (19). 

 
 
 
                                                       

 

Thus, one may note that due to the uniqueness in the 1-RPL selection, the resulting function 
values (i.e., cofactors f0, f1 and f2) are always distinct for different 1-RPL values. The same 

method can be performed for any configuration that applies RSGBFM for any radix.  
Example 2. The following are all possible permutations of the RGBFM for the Shannon matrix 
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Equation (19): f = f1 f2 f0 

Equation (19): f = f2 f0 f1 

Equation (19): f = f0 f1 f2 
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For the case of GF(2) two-valued XOR logic, there are two reversible Shannon primitives as 
follows: 
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Reversible many-valued Davio expansions have been also created [1]. For example, for the 
following reversible ternary Shannon expansion: 
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there exist three Davio types for each row of the RSGBFM. Utilizing the derivation of the ternary 
Davio expansion (as in Equations (12) – (14)), the following are the D0-type expansions for the 

first – third rows of the above RSGBFM 
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Equation (32) shows the ternary reversible Davio0 decomposition for the corresponding transform 

matrix 
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transform matrices in Equations (29) and (31).  
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In general, there are many reversible gates that are used in the reversible synthesis of logic 
circuits and systems, where Figure 4 shows important ternary GF-based reversible gates. 
 
 
 
 
                        
 
                                                         (a)                                                               (b)                                     (c)  

 

Figure 4. Ternary GF(3) reversible primitives: (a) (4, 4) Shannon (also known as Fredkin) primitive for 
Equation (21), (b) (2, 2) Feynman primitive, and (c) (3, 3) Toffoli primitive. 

 

For example, Table 2 shows the corresponding reversibility proof for the Toffoli primitive shown 
in Figure 4(c). Completely reversible digital circuits and systems will significantly minimize 
power consumption by implementing three constraints: (a) logical reversibility where the vector 
of input states can always be uniquely reconstructed from the vector of output states, (b) physical 

reversibility where the physical switch operates bidirectionally (backwards as well as forwards), 
and (c) ideal-like switches that have no parasitic resistances. 

 
Table 2. Reversibility of GF(3) (3, 3) Toffoli gate where inputs are in order {a, b, c} and outputs are in 

order {a, b, d = c +3 a ∗3 b}. 
 

 

 

 

 

 

 

 

 
 
 

 

 

 
 

2.2. Parallel Processing Systolic Arrays 
 

Systolic arrays are special-purpose, cost-effective and high-performance systems that have wide 
range of applications in scientific computing. Systolic arrays are single-instruction multiple-data 
(SIMD) machines in which each processing element (PE) is only capable of performing a simple 
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single operation [2, 27, 28]. In systolic computing, computations are synchronized by a global 
clock signal, and data flows in a rhythmic fashion from the host through the array where data 
items are pumped out from a memory. In systolic arrays, regular data flow is kept up in the 
network where every PE regularly pumps data each time performing a short computation.  
 

A systolic system consists of a set of interconnected cells, each capable of performing some 
simple operation. Properly designed parallel structures communicate only with their nearest 
neighbors since valuable time is usually lost when communicating between modules that are far 
apart. Because regular, simple control and communication structures have substantial advantages 
in implementations, cells in a systolic system are typically interconnected to form a systolic tree 
or a systolic array. In systolic systems, communication with the outside world occurs only at the 
“boundary” cells and information flows between cells in a pipelined fashion. The basic operation 
of a systolic array is achieved by replacing a single PE with an array of PEs. The gain in 
processing speed (millions of operations/second) is achieved as the number of pipeline stages has 
been increased n-times which is equal to n-PEs. Other several advantages of systolic arrays 
include regular and simple flows of data and control, repetitive use of simple and uniform 
processing cells, and the important characteristic of expansionability.  
 

Orthogonally connected, linearly connected and hexagonally connected PEs are different forms of 
mesh-connected systolic arrays. For example, one-dimensional linear arrays are suitable for FIR 
filter, discrete Fourier transform and convolution; two-dimensional square arrays are suitable for 
graph algorithms and dynamic programming; two-dimensional hexagonal arrays are suitable for 
DFT and matrix arithmetic; trees are suitable for searching algorithms; and triangular arrays are 
suitable for formal language recognition and the inversion of triangular matrix. The globally 
structured systolic array can speed-up computations only if the I/O bandwidth is high, where I/O 
is still the bottleneck in modern systolic systems. 
 

The following sub-sections present important examples of parallel processing using various 
systolic architectures that highly accelerate intensive arithmetic – based computations which are 
common in scientific computations. 
 

2.2.1. Hexagonal (band matrix – band matrix multiplication) Kung systolic array 
 

Since several scientific and engineering computations involve band matrices, band matrices find 
important and wide implementations in several fields of scientific computing. This is also 
important because a dense matrix can be viewed as a band matrix that have the maximum 
bandwidth.  
 

Each pulsation in a systolic array consists of the following operations: (1) shift, (2) multiply, and 
(3) add. Basic processing cells that are used in the construction of systolic arithmetic arrays are 
the add-multiply cells. This kind of cells has three inputs {a, b, c} and three outputs {a = a, b = b, 

d = c + a ∗ b}. One may view the processing cell boundaries as having six interface registers that 
are attached at I/O ports. All of these registers are clocked for synchronous data transfer between 
adjacent cells. The add-multiply operation is required to perform the inner product within matrix-
matrix multiplication, matrix inversion, and dense matrix LU decomposition.  
 

It has been shown that hexagonally-connected processing elements can maximize the 
performance of the corresponding matrix multiplication, where pipelined three data streams flow 
through the utilized array. Figure 5 shows the multiplication of two band matrices [A] and [B] 
using two-dimensional hexagonal systolic array.  
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Utilizing Figure 5, one can understand the operation of the two-dimensional hexagonal systolic 
array by following the corresponding data flow via moving transparencies of the band matrices 
over the entire network. 
 
   
 

 

 

 

                                                                                             (a)                                                             

 

 
 
                                                                             
                                                                
                                                                
 
 
 
 
 
 
 
                                                                     (b) 
  

Figure 5. Two-dimensional hexagonal systolic array: (a) Kung cell and (b) Kung systolic array. 
 

Utilizing Figure 5, the multiplication of band matrices [A]⋅[B] = [C], and the associated definition 
of bandwidths, are given as:  
 

 
 

where w1 = 3 + 2 - 1 = 4, w2 = 2 + 3 – 1 = 4, and w3 = w1 + w2 – 1 = 4 + 4 – 1 = 7. Each front data 
level in the three data flow streams in Figure 5 is called a wave front. From the lower side of 
Figure 5, the initial values of the elements of input [C] array are all zeros, and the resulting values 
of the elements of output [C] array at the upper side are obtained as follows: 
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The distribution of PEs in the shown hexagonal systolic array is obtained as: # PEs in top-left = 

w1 = 4, # PEs in top-right = w2 = 4, # PEs in bottom = w3 = 7. The total # PEs = 4 ⋅ 4 = 16.  
 

2.2.2. Band matrix - vector multiplication systolic array 
Since a dense matrix can be viewed as a band matrix that have the maximum bandwidth, 
transforming vectors using band matrices are important in several implementations. This type of 
multiplication is illustrated as follows:  
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where the bandwidth w is computed as w = 3 + 2 - 1 = 4. Figure 6 illustrates the band matrix-
vector multiplication using one-dimensional systolic array, where the following operations occur:  

     
.

,,,

5454443432424

434333232131332322212122121111

xaxaxaxay

xaxaxaxayxaxaxayxaxay

+++=

+++=++=+=
 

Using this type of arrays, it has been shown that the computation of n components of y are 

performed in (2⋅n + w) time units as compared to O(n⋅w) which is needed on a uni-processor. 
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Figure 6. Band matrix – vector multiplication systolic array: (a) cell and (b) systolic architecture. 
 

2.3. Carbon Nanotubes and Nanotips  
 

This sub-section presents important background on Carbon-based nanotubes and nanotips and 
their corresponding characteristics. The presented Carbon-based nanotubes and nanotips will be 
utilized in building controlled-switching that will be later used for constructing the corresponding 
reversible nano systolic networks in Section 5. 
 

2.3.1. Carbon nanotubes characteristics  
 

Carbon nanotube, which is a cylindrical graphite sheet, is geometrically formed in two distinct 
shapes that affect CNT characteristics: (a) straight CNT and (b) twisted CNT. Figure 7 shows 
different forms of CNTs and an important application in electronic devices using CNT as a 
channel in FET transistors. 

           
                       (a)                           (b)                                     (c)                                            (d) 

Figure 7. Various formations and shapes of CNTs: (a) Carbon nanoball which has the shape of a soccer 
ball, (b) single-wall CNT (SWCNT), (c) multi-wall CNT (MWCNT) array image using Scanning Electron 
Microscopy (SEM) where these MWCNTs have been grown utilizing Chemical Vapor Deposition (CVD), 

and (d) the implementation of CNT as a channel in FET transistors. 
 

The emerging CNT technology has been applied in several new implementations [4, 5, 8, 11, 14, 
16-19, 23, 26, 30, 37]. This includes TVs that are based on the field emission of CNTs, CNT-
based FETs that are faster and consume less power than the available silicon FETs, Carbon 
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nanocoils that are used as nanosprings in nano dynamic systems and as inductors in nanofilters, 
CNT-based rings, new composite materials, CNT probes, drug delivery systems, CNT data 
storage devices capable of storing 1015 bytes/cm2, nano lithography, and CNT gears. Table 3 
illustrates several of the important CNT characteristics. For example, CNTs are very good field 
emitters and facilitate the miniaturization of electronic devices. The dynamic and static 
characterizations of field emitters consisting of a single CNT - both multi-walled and single-
walled - were illustrated [24] and the comparison to a field emitter consisting of an etched single 
tungsten crystal was also investigated. 
 

Table 3. Carbon nanotube characteristics. 
      

Characteristic Single-Walled CNT Comparing Examples 

 
Size 

 
diameter of 0.6 - 1.8 nm   

Electron-based beam 
lithography can generate lines 
50 nm wide and few nm thick 

 

Density 
 

1.33 – 1.40 g/cm3 
Aluminum: 2.7 g/cm3 

 

Strength 
 

≈ 45·109 Pascals 
High-strength steel alloys break 

at ≈ 2·109 Pascals 

 

Resilience 

Can be bent at large angles and re-
straightened without damage 

 

Metals and carbon fibers 
fracture at grain boundaries 

 

Current Capacity 
 

≈ 1·109 A/cm2 
Copper: ≈ 1·106 A/cm2 

 

Field Emission 

Can activate phosphors at  
1 – 3 V if electrodes are spaced 1 

micron apart 

Molybdenum tips need 
≈ 50 – 100 V/micrometer  
with very short lifetimes 

 

Heat Transmission 
≈ 6,000 W/m·K at room 

temperature 
Almost pure diamond  

transmits ≈ 3,320 W/m·K 
 

Thermal Stability 

 

Stable up to 2,800 C in vacuum 
and 750 C in air 

Metal wires in microchips  
melt at ≈ 600 – 1,000 C 

Cost ≈ 1,500 $/g Gold: ≈ 40 $/g 
 

Quantum Electron Spin 
 

Preservation is very high 

 

Preservation is low in  
regular conductors 

Power Consumption Very low Higher in metal wires 
 

Performance (Speed) 
 

≥ 1·1012 Hz nanoswitch ≥ 1,000 times as fast as µP  

Resistance (Electron 

Scattering) 

 

Almost none 
 

Comparatively high 

 
Energy Band Gaps 

Easily tunable: almost zero  like a 
metal, as high as a Silicon, and 
almost anywhere in between 

 

No other recognized material  
can be adjusted so simply  

 

2.3.2. Carbon nanotube - based multiplexing devices 
 

Figure 8 shows the design of a logic inverter. This device functions in the same way as a regular 
CMOS-based inverter, where it uses two nanotube-based FETs [18].  
 

In Figure 8, silicon is used as back-gate in the device, silicon dioxide is used as an insulator, gold 
is used as conductors (electrodes), and PMMA is utilized as a cover that protects anything 
beneath it from being exposed to oxygen since oxygen is used to obtain p-CNTFET from the 
corresponding n-CNTFET.  
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Figure 8. Inverter gate using two nanotube-based FETs. 

 

Figure 9 illustrates solid-state CNT-based multiplexer [5]. In Figure 9, CNT is used as a channel 
in the corresponding FET transistor. Variable C is control input, selected inputs are A and B, and 
F is the output. The device operates as a controlled-switch by switching between inputs A and B 
depending on the specified value of control C [5].   

 
Figure 9. The device structure of solid-state inter-molecular CNT multiplexer. 

 

2.3.3. Carbon nanotubes - based field emitters 
 

Field electron emission is the electron emission under the influence of the applied electric field (3 
x 109 V/m) from a cathode surface which is highly dependent upon the material work function. 
The general form of Fowler-Nordheim-type formulae [22] can be obtained as follows [21]: 
 

J = λLaφ
-1

F
2
EXP[ -VF b φ

3/2 / F ]                                                                     (33) 
  

Equation (33) is used in all cases of field emission processes, where J is the local emission 
current density, a and b are the first and the second Fowler – Nordheim constants, νF is the 
barrier form correction factor where it accounts for the particular shape of the potential barrier 
model, and λL  is the local pre-exponential correction factor where it takes into account all of the 
other factors that influence the emission. Factors νF and λL  depend on the implemented field F. 
 

To achieve the static modeling of CNT field emitters, field emission CNTs shown in Figures 
10(b)-10(c) [24] were manufactured by Xintek, Inc. The copper anode is at the right and the CNT 
emitter is mounted on a tungsten wire which is attached to the copper cylinder at the left as shown 
in Figure 10(a). Carbon nanotube M-4 has a single MWCNT as the emitter, and carbon nanotube 
C-3 has a single SWCNT as the emitter. The utilized CNTs were shaped in bundles of 10-30 nm 
diameters, but in each carbon nanotube the field emission is performed from the single CNT at 
the end of the bundle where the most intense electric field exists. 
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                                   (a)                                                              (b)                                                              (c) 

 

Figure 10. Field emission from CNT: (a) field emission CNTs made by Xintek, Inc. and (b) - (c) Scanning 
Electron Microscopy (SEM) images of CNT emitters using JEOL Ltd. model JEM 6300. 

 

The I-V DC characteristics were measured for these CNTs, as well as a field emitter tube from 
Leybold Didactic GmbH, which has an etched tungsten single crystal as the emitter. The data 
from the DC measurements were reduced by the Fowler-Nordheim analysis which is based on the 
following simplified form of the Fowler-Nordheim equation: 
                                                            J = A E

2 e (-B/E),                                                                                 (34) 

where J and E are the magnitudes of the current density and the electric field intensity, A = 1.541 
x 10-6/Φ, and B = 6.831 x 109 Φ3/2. The work function values are Φ = 4.5 eV for tungsten and was 
set to Φ = 4.9 eV for graphene. In order to apply the Fowler-Nordheim equation to the I-V DC 
data, the following equation was also utilized which is correct for provided CNT:  
                                                             I = CV

2 e (-D/V).                                                                                (35) 

To get the equations for parameters S and R, which are utilized to characterize the used field 
emitters, Equations (34) and (35) can be combined to obtain:  

                                             S = CD
2/AB

2,                                                                                (36) 
                                             R ≡ V/E = D/B,                                                                                 (37) 

where parameter S refers to the effective emitting area which would be the physical area of the 
emitter if the current density were uniform over a fixed area and zero elsewhere, and parameter R 
refers to the effective radius of curvature of the emitter but also includes the effects of local 
intensification of the electric field caused by elongation of the emitter or the reduction of the field 
which may be caused by shielding due to adjacent structures. The Fowler-Nordheim plots of the 
I-V DC data were performed as shown in Figure 11. 
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Figure 11. The Fowler-Nordheim plot for experimented CNT that have a single SWCNT as emitter. 
 

The values of parameter R, which is the effective radius of emitter curvature, were found to vary 
within 77-110 nm for the utilized carbon nanotubes with CNT emitters. This suggests that values 
of the local electric field at the emitting sites were as high as 14 V/nm in some of these 
measurements. Others studying the field emission from various CNTs have provided approximate 
values for the electric field by dividing the applied voltage by the distance between the anode and 
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the emitting tip, noting that this field would be intensified by the shape of the CNT, but not 
estimating the local electric field at the emitting sites [35]. The Fowler-Nordheim analysis gave a 
value of 91 nm for the effective radius of emitter curvature in the Leybold tube, suggesting that 
the local electric field was as high as 5 V/nm in some of the performed measurements [24]. 
Current densities as high as 109 and 1012 A/m2 may be drawn from a tungsten emitter in steady-
state and pulsed operation, respectively, and the corresponding values of the applied static field 
are 4.7 and 8.6 V/nm which may be considered as limiting field strengths for tungsten under these 
applied conditions.  
 

The Fowler-Nordheim analysis also showed that the parameter S, which is the effective emitting 
area, varied within 81-230 nm2 for the carbon nanotubes with CNT emitters. If the current density 
was uniform, this would correspond to circular emitting spots having radii of approximately 5-9 
nm. Others have used Lorenz microscopy to observe the emitting sites for MWCNT field 
emission. It has been found that one or more sites having radii of several nm, and the 
corresponding data was in good agreement with other conducted experiments. The Fowler-
Nordheim analysis also showed that the effective emitting area for the tungsten tip in the Leybold 
tube would correspond to a hemisphere with a radius of 290 nm. This result, and the value of 91 
nm for the effective radius of emitter curvature in the Leybold tube, were in good agreement with 
the radius of 100-200 nm which was indicated by Leybold.  
 

Conducted experiments and simulations had shown that optical heterodyning (i.e., photomixing) 
in laser-assisted field emission could be utilized as a new multi-octave bandwidth terahertz or 
microwave source [7, 12, 13, 25].  
 

2.3.4. Carbon fiber nanotips - based field emitters            
 

Because of the technological significance of carbon fibers, there has been a rising interest with 
regards to investigating the mechanism of field electron emission from these fibers under the 
effect of an implemented electric field. Several advantages are obtained by using carbon fibers as 
cathodes such as high current stability, long emitter durability, simplicity of emitter 
manufacturing, and offering the ability to work in a relatively high pressure environment (10-6 
mbar). These utilized cathodes are made either from carbon fibers or from other carbon-based 
materials. Carbon fiber emitters can be achieved by electrolytic etching technique, where a 0.1 
Molarit of sodium hydroxide solution (250 ml of distal water with 2g of NaOH) is used [6]. This 
etching process could be controlled by choosing a suitable etching current. The etching process is 
started after dipping the tip in the solution by about 2 mm and using a power supply to increase 
the voltage until a certain initial current of about 30 µA is reached. The chosen etching current 
produces sharp tips at the liquid surface which are afterwards being ultrasonically cleaned using 
an ultrasonic cleaning device and mounted in a standard FEM microscope with a tip screen 
distance of 10 mm. The anode is formed as phosphored screen to allow recording of the emission 
images. 
 

The FEM was evacuated to ultra high vacuum (UHV) conditions using rotary pump that produce 
pressures of about 10-3 mbar and a diffusion pump system in addition to a liquid nitrogen (LN2) 
trap that lead to finally reaching a base pressure of about 10-9 mbar. Then, the tips received 
sample conditioning which consists of an initial baking of the system for 12 hours at 170 °C, a 
follow up baking of the system for 12 hours, thermal relaxation for 12 hours at 170 °C, and 
finally cooling the sample by liquid nitrogen while studying emission behavior [6]. This allowed 
the recording of the effects of these conditioning processes on carbon fiber tips. 
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016 

91 

To record the emission behavior, the applied voltage from extra high tension (EHT) to the tip was 
slowly increased until the emission current increased to about one microampere, and then the 
voltage was slowly reduced until the emission current disappeared. Within this range, a linear 
Fowler-Nordheim plot is expected. Figure 12 presents the scanning electron micrograph of a 
produced very sharp carbon fiber tip at about 10,000 x magnification. 

 

 
 

Figure 12. Scanning electron micrograph of a very sharp carbon fiber tip at 10,000 × magnification. 
 

The apex radii of carbon fiber tips have been measured as the average of the graphically best-
fitting circles. The latter ones are utilized to interpret the experimental data and extract relevant 
information such as the apex radii. During the experiments, electronic emission images have been 
recorded by a standard digital camera to study the stability of the emission current and spatial 
distribution. For practical applications, stability as well as brightness are important factors for 
judging the quality of the used electron source. During the sample conditioning treatment, it was 
found that there were statistical variations in the electronic emission of the various tip 
microemitters under the corresponding UHV conditions. One of the very sharp carbon fiber tips 
has been tested during sample conditioning treatment [6] where the apex radius of this tip was 
around 57 nm. Figures 13-16 show the emission characteristics that are derived as the I-V 
characteristics and the corresponding Fowler-Nordheim plots. 
 

                
 

Figure 13. The I-V characteristics (left) and FN plot (right) of very sharp tip after initial baking for 12 hours at 170°C. 

                
 

Figure 14. The I-V characteristics (left) and FN plot (right) of very sharp tip after follow-up baking for 12 hours at 170°C. 

                                  
 

 
Figure 15. The I-V characteristics (left) and FN plot (right) of very sharp tip after thermal relaxation process for 12 hours. 
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Figure 16. The I-V characteristics (left) and FN plot (right) of very sharp tip during cooling process. 

 

After initial baking, as was shown in Figure 13, the FN plot shows that emission current was 
unstable and a non-linear behavior. The follow up baking, as shown in Figure 14, shows a 
disconnected plot because the voltage drops from 66 V to 5.5 V where this drop is due to 
hysterical current. As shown in Figures 15 and 16, the emission current stability becomes much 
higher after the sample conditioning. 
 

3. CARBON FIELD EMISSION – BASED CONTROLLED SWITCHING 
 

This Section introduces the Carbon field emission – based controlled switches and their extension 
to the case of many-valued Galois logic. 
 

3.1. Two-to-One Controlled Switching 
 

Utilizing the previously experimented and observed characterizations and operations of Carbon 
field emission that were presented in sub-section 2.3, Figure 17 introduces the Carbon field 
emission – based primitive that realizes the 2-to-1 controlled switch. The applied electric field 
intensity (E), or equivalently the voltage (V) or work function (Φ), are utilized to implement the 
input control signal that is used to control the electric function of the device. 
 

The description of the operation of the Carbon field emission – based device shown in Figure 
17(b) is as follows: by the implementation of the high voltage control signal (HV), the voltage 
difference between the facing anode and Carbon cathodes is altered. This change will cause the 
Carbon cathode with (HV) control signal to be field emitting while Carbon cathode with 

complementary ( VH ) control signal to be without field emission. When the voltage difference is 

reversed, Carbon cathode with complementary ( VH ) control signal will be field emitting while 

Carbon cathode with (HV) control signal will be without field emission. Therefore, the device in 
Figure 17(b) realizes the function of 2-to-1 controlled switching G = ac + bc'. 
 

 
 
 
 
                                   
 
                                       (a)                                                             (b)                                                            (c) 

 

Figure 17. The implementation of the operation of 2-to-1 controlled switching using Carbon field emission: 
(a) 2-to-1 multiplexing, (b) controlled switching via CNT field emission, and (c) 2-to-1 multiplexer block 

diagram, where HV is the source with high-voltage and VH  is the opposite (i.e., complementary) source. 
   

The distance d needed between the facing anode and cathodes – as shown in the experimental 
results - must be around 10 mm. If this distance is not applied, beam distortion will exist that will 
affect the collected current at the facing anode screen.  
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Since the equations that relate the electric field intensity (E), voltage (V), distance (d), current 
density (J), and work (energy) function (Φ), are as follows: 

Φ = e⋅V,                                                                     (38) 

V = E⋅d,                                                                    (39) 
d = V / E,                                                                  (40) 

J = I / (a/Ω) = I ⋅ (Ω/a),                                            (41) 

where e is the electron charge ≅ 1.602 ⋅ 10-19 C, a is the tip area and Ω is the emission angle, then 
the following represents the equation that models current value on the anode screen: 

2VV

Bd

e
2

Ωd

aA
I
















−

=
                                                (42) 

Observing Equation (42), one can note the proportionality relation between the current value (I) 
and both of the voltage difference (V) and tip area (a), and the inverse relation with the emission 

angle (Ω), where A = 1.541 x 10-6/Φ and B = 6.831 x 109 Φ3/2. For instance, the values of the 
work function are Φ = 4.5 eV for tungsten and Φ = 4.9 eV for CNT, where the usual value used 

for electric field intensity E is ≥ 3⋅109 V/m, the distance d between the anode screen and CNT 

cathode is ≅ 10 mm, and V ≅ 3⋅107 V. 
 

3.2. Generalization to Many-to-One Controlled Switching 
 

The synthesis of many-to-one (m-to-1) controlled switching via Carbon field emission can be 
performed utilizing the basic two-to-one controlled switching from Figure 17(b). For instance, for 
the case of three-valued logic, two devices from Figure 17(b) are required to implement the 
function of 3-to-1 controlled switching as shown in Figure 18. 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. The three-to-one controlled switching utilizing Carbon field emission, where devices {D1, D2} 
can be implemented using the switching device from Figure 17(b). 

 

For the more general case of m-valued logic, and to realize the function of an m-to-1 controlled 
switching, one requires (m-1) of 2-to-1 controlled switches as shown in Figure 19. 
 

 
 
 
 
 
 

 
 

Figure 19. The realization of (m-to-1) controlled switching, where devices {D1,..., D(m-1)} can be the Carbon field 
emission – based controlled switching from Figure 17(b). 

 

Example 3. Using carbon field emission – based controlled switching, this example shows the 
implementation of the important parity-preserving reversible controlled-swap gate. For error 
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correction purpose, parity checking is one of the most widely used and oldest techniques that are 
utilized for error detection within digital circuits and systems. It can be shown that reversible 
logic gates having an equal number of inputs and outputs are sufficient for the parity preservation 
if a reversible circuit at each gate is parity-preserving, where parity-preserving reversible gates 
refer to reversible gates for which the parity of the output matches that of the input. The selection 
from such gates depends on the specifications for the required circuit design process.  
 

Fredkin gate [1, 20, 34] is a basic building block in reversible computing, where several 
realizations were performed to implement Fredkin gate such as in optical, electrical and nano 
mechanical technologies. As previously stated, parity-preserving reversible gates can be utilized 
for the detection of existing faults. Given the fact that reversible gates have the same number of 
input and output vectors, a sufficient requirement for parity preservation - in the course of 
reversible computation with such gates - is that each gate must be parity-preserving, i.e., have the 
same parity for the input and output vector.  
 

For the binary Galois radix, let I = (a; b; c) and O = (P; Q; R) be the input and output vectors of a 
(3, 3) reversible gate, respectively. We call a reversible gate to be a Parity-Preserving Reversible 

Logic Gate (PPRLG) if the gate satisfies the parity-based equation: a ⊕ b ⊕ c = P ⊕ Q ⊕ R, 

where ⊕ is the Boolean XOR, i.e., GF(2) addition.  
 

Figure 20 shows two widely used PPRLGs which are based on the fundamental Fredkin primitive 
(also known as the two-valued reversible Shannon primitive). In Figure 20, both of the reversible 

gates are parity-preserving because they satisfy the parity equation a ⊕ b ⊕ c = P ⊕ Q ⊕ R. 
 

 
 
 

                                   
 
            
                                           
 
 
 
 
 
 
 
 
 

 
 

                                                (a)                                                                                          (b) 
 

Figure 20. Representations for important reversible primitives: (a) reversible GF(2) Shannon1 (i.e., 
Fredkin1) and (b) reversible GF(2) Shannon2 (i.e., Fredkin2). Carbon field emission - based realization 

shown in Figure 17(b) is used to realize both of the 2-to1 controlled switches. 
 

For the general case of m-valued logic, an m-valued Galois PPRLG satisfies the equation a +m b 

+m … +m c = P +m Q +m … +m R, where m = pk, p is a prime number, k is a natural number of 

value k ≥ 1, and {a, b, …, c} and {P, Q, …, R} are the corresponding input and output vectors of 
an m-valued (m + 1, m + 1) reversible gate, respectively. As an example, for the important 
specific case of the third radix Galois field, let I = (a; b; c; d) and O = (P; Q; R; L) be the input 
and output vectors of a ternary (4, 4) reversible gate, respectively. A ternary PPRLG is a gate that 
satisfies the parity-based GF3 equation of a +3 b +3 c +3 d = P +3 Q +3 R +3 L. For instance, 

 g0 g1 c g1r0 g1r1 c  

0 0 0 0 0 0 0 0 

1 0 0 1 0 0 1 1 
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Equation (43) characterizes the operation of the 3-valued Fredkin gate (also known as 3-valued 
reversible Shannon): 
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where i
c is 1-RPL and c ∈ {0, 1, 2}. An alternative form of Equation (43) is given in Equation 

(44) for which it is explicitly shown that input c is produced in the output. 
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The reversible Shannon expansion in Equation (44) is represented using the 3-to-1 controlled 
switching as illustrated in Figure 21, where Table 4 illustrates the corresponding reversibility 
proof. 

 

 

 

 

 

 
 

Figure 21. Realization of the reversible expansion in Equation (44) using three multiplexing devices. 
Carbon field emission - based realization shown in Figure 18 is used to realize this 3-to-1 controlled switch. 

 

Table 4.  Reversibility proof of the (4, 4) primitive from Figure 21 and Equation (44). 
 

 

      

 

 

 

 
 

4. MANY-VALUED COMPUTING USING CARBON FIELD EMISSION-BASED 

DEVICES 
 

The previously developed GF(3) Carbon field emission–based device will be used in this section 
for implementing many-valued computing. This section demonstrates the utilization of Carbon-
based controlled switching for the ternary case, but implementations for higher Galois radices 
follow the same illustrated method. 
 
 
 

Inputs (I) Outputs (O) 
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                                            (a)                                                                                                           (b) 

Figure 22. The Carbon - based implementation of Galois arithmetic operations: (a) controlled switch that 
can be implemented using the device from Figure 17(b), and (b) circuit that uses controlled-switching to 

implement GF(3) addition and multiplication tables. 
 

Figure 22 shows a controlled switch-based circuit that implements GF(3) addition and 
multiplication tables, where Figure 22(a) can be implemented using the 2-to-1 Carbon field 
emission – based device from Figure 17(b). For the internal nano interconnects in Figure 22(b), 
they can be implemented – as one alternative – using CNTs as shown in Figure 23, where the 
symbol = means a metallic CNT that is used as a nanowire. 
 

In Figure 22(b), variables {A, B} ∈ {0, 1, 2} and inputs Ck (k = 0, 1, 2, 3) are 2-valued control 

variables ∈ {0, 1}. Note that Figure 22(b) implements GF(3) addition and multiplication 
operations by using the appropriate values of Ck that select variable inputs {A, B} and constant 
inputs {0, 1, 2}. Table 5 illustrates an example for implementing the corresponding GF(3) 
addition and multiplication tables using Figure 22(b). 
 

           
    

(a)                                                                                           (b) 
 

Figure 23. The realization of nano interconnects using CNT: (a) image from TEM of a bundle of SWCNTs 
catalyzed by Ni/Y mixture, and (b) developing CNT wires on catalysts, where CNT meshes  

are illustrated on which the metal catalyst is covered. 
 
 

The circuit in Figure 22(b) can be used in the system design where GF(3) addition and 
multiplication operations are applied. A simple example is presented as follows. 

 
Table 5. An example for the implementation of GF(3) addition and multiplication tables using Figure 22(b), 

where + means GF(3) addition, * means GF(3) multiplication, Ck (+) means that control variable Ck 
implements the ternary addition operation, and Ck (*) means that control variable Ck  implements the 

ternary multiplication operation. 
 

 
 

A B C G 

a b 0 a 

a b 1 b 

A B C0 (+) C1 (+) C2 (+) C3 (+) C0 (*) C1 (*) C2 (*) C3 (*) + * 

0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 0 0 0 1 0 

0 2 1 0 0 0 0 0 0 0 2 0 

1 0 0 0 0 0 1 0 0 0 1 0 

1 1 0  0 0 1 0 0 0 0 2 1 

1 2 0 1 0 0 1 0 0 0 0 2 

2 0 0 0 0 0 1 0 0 0 2 0 

2 1 0 1 0 0 0 0 0 0 0 2 
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Example 4. Three-valued function K = I4I1 +3 I2I3I1 +3 I2I3 can be implemented as follows using 
the addition and multiplication operations that are realized using Figure 22(b) and Table 5. 
 
 
 

 
 
  
 

Figure 24. A GF(3) circuit to implement the three-valued function K = I4I1 +3 I2I3I1 +3 I2I3, where Table 5 
shows the implementation of GF(3) addition and multiplication tables using Figure 22(b), and the symbol = 

means a metallic CNT that is used as a nanowire. 
 

Example 5 shows the system-level design of an Arithmetic and Logic Unit (ALU) circuit by 
illustrating the implementation of a 2-digit multiplier using the introduced Carbon field emission 
- based devices.    
Example 5. For a 2-digit m-valued multiplication performed using mod-multiplication, Figure 25 
shows maps for the ternary multiplication and carry out functions, and Figure 26 shows the 
corresponding 3-valued circuit realization. 
 

 

 
 
                                                         (a)                                                           (b) 

Figure 25. Ternary multiplication for ternary 2-digit multiplier: (a) multiply and (b) carry out. 
 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Figure 26. Logic circuit of a ternary 2-digit multiplier. 
 

The corresponding GF(3) addition and multiplication operations in Figure 26 could be 
implemented using Table 5 that specifies input values to Figure 22(b). Further implementation of 
the general m-valued N-bit full ALU, which is the main functional unit in the microprocessor data 
path, that includes the realization of all arithmetic sub-units (addition, subtraction, multiplication, 
division) and all logic sub-units (NOT, AND, OR, XOR), can be performed from the utilization 
of the Carbon-based controlled switch device previously introduced by using the same method 
which was used in the realization of the 2-digit multiplier shown in Figure 26.    
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5. REVERSIBLE SYSTOLIC ARRAYS VIA CARBON FIELD - EMISSION 

MULTIPLEXING 
 

This section introduces the synthesis of m-valued Galois functions using Carbon field emission – 
based reversible nano systolic arrays utilizing any of two methods: (1) reusing the classical add-
multiply PE cells by showing their m-valued Galois logic reversibility and thereafter reusing the 
whole systolic structure since the connection of reversible PEs will produce by necessity a 
reversible systolic circuit (cf. Figure 28), and (2) direct mapping of classical irreversible systolic 
circuits into reversible systolic circuits by interconnecting the reversible counterpart of the 
irreversible PEs. Moreover, the implementation of the m-valued logic functions using the 
reversible systolic arrays is performed through two methods as shown in Figure 27. 
 
 
 

 

 
 

 
 
 

Figure 27. Two methods to realize reversibly m-valued Galois logic by using reversible function 
decompositions and reversible systolic arrays. 
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Figure 28. Reversible GF(2) Kung systolic array: (a) reversible (3, 3) Toffoli gate,  
(b) reversible (3, 3) Kung cell, and (c) reversible Kung systolic. 
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Add-multiply cells are basic PEs used in the construction of arithmetic systolic arrays. Figure 
28(a) introduces the binary (two-valued) (3, 3) reversible Toffoli gate that implements reversibly 
- in the second radix Galois logic - the classical Kung add-multiply cell shown in Figure 28(b). 
Since the interconnection of reversible PEs will produce by necessity a reversible systolic circuit, 
Figure 28(c) implements the two-dimensional reversible Kung systolic array over GF(2) by 
interconnecting the corresponding GF(2) (3, 3) reversible Toffoli gates. 
 

The systolic implementation using GF(2) matrix-based elements, that can be obtained through the 
corresponding GF(2) reversible Shannon function decomposition, is obtained as follows: 
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For the systolic implementation of m-valued functions, and as an example, the needed matrix-
based elements for the GF(3) reversible Shannon and Davio decompositions are, respectively: 
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The realization of a many-variable function using the methods shown in Equations (45) – (47) 
follow the matrix-based expansion using the Kronecker (tensor) product and GF(3) Toffoli PE. 
The temporal complexity of the array in Figure 28 is T = 3n + min(w1, w2) and spatial complexity 

for the count of auxiliary (garbage) outputs is 212 ww ⋅ . 
 

The generalized case of m-valued logic is performed similarly to Figure 28 except that the 
arithmetic operations will be done within the general case of m-valued Galois field and the 
controlled-switching implementation will utilize the corresponding multiplexing architecture. For 
example, the implementation of the fundamental cell in Figure 28(b) for the case of GF(3) is 
performed by the utilization of Table 5 for the implementation of the Galois arithmetic GF(3) 
addition and multiplication operations using Figure 22(b) that utilizes the serial interconnects of 
several 2-to-1 basic controlled-switching elements, where each of these 2-to-1 controlled 
switching elements can be directly implemented using the technique shown previously in Figure 
17 utilizing Carbon field emission–based devices.  
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6. CONCLUSIONS AND FUTURE WORK 
 

In this article, the synthesis and operation of reversible nano systolic architectures for the 
implementation of general m-valued Galois functions using Carbon field emission – based nano 
devices are introduced. 
 

The implemented systolic architectures utilize nano controlled-switching realizations to 
implement in the reversible space the corresponding nano reversible systolic systems using switch 
logic for which logic circuits are implemented as combination of switches rather than a 
combination of the more costly logic gates as in gate logic. Also, since controlled switching is of 
fundamental importance in modern logic design, the presented design methods can have a wide 
spectrum of implementations in a large variety of nano-based arithmetic-intensive modern 
applications.  
 

Future work will include items such as the fabrication and test of the new Carbon field emission–
based controlled switching devices and their corresponding integrated application in full system-
level nano reversible systolic architectures for real-time arithmetic-intensive implementations. 
Also, future work will include the investigation of implementing m-valued logic functions in 
three-dimensional Carbon field-emission nano systolic architectures. 
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