
International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

DOI:10.5121/ijcsit.2016.8207 87

MULTI-THREADED COMPUTATION OF THE SOBEL

IMAGE GRADIENT ON INTEL MULTI-CORE

PROCESSORS USING OPENMP LIBRARY

Ahmed Sherif Zekri
1,2

1
Department of Mathematics & Computer Science, Beirut Arab University

P.O. Box 115020, Riad El Solh, 11072809 Beirut, Lebanon
2
Department of Mathematics & Computer Science, Alexandria University

MoharramBek, Alexandria 21511, Egypt

ABSTRACT

Performance of applications executed on multi-core processors is not boosted by just dividing the work

among a team of threads and assigning them blindly to the CPU cores. Factors such as data access

patterns in memory, the way of allocating the threads to the physical cores, and how the data are

partitioned among the threads significantly affect performance. In this paper, we target the acceleration of

the Sobel image gradient computing which is important in segmenting images for further processing in

computer vision and image analysis applications. We present a multi-threaded algorithm using the

standard OpenMP threading library to parallelize the computations using two Intel multi-core processors.

The effects of the parallelization factors on the performance of the proposed algorithm are evaluated using

different image resolutions to draw accurate conclusions. Our results showed a maximum attained speedup

closer to the number of physical cores in the CPU, which is the maximum theoretical value.

KEYWORDS

Sobel Filter, algorithm parallelization, OpenMP threading library, static loop scheduling, image

partitioning.

1. INTRODUCTION

Current general-purpose processors offer parallel processing capabilities at low cost. Nowadays,

all manufactured CPU chips in desktop and smart-phones are multi-core, i.e., having more than

one processing core inside. For example, the Intel Core i7 CPU is composed of four physical

cores integrated in one microprocessor chip which can execute up to eight independent tasks or

logical threads at the same time; the Intel Hyper-threading technology that permits two threads

to execute concurrently on the same physical core.

Many applications especially in digital image processing are inherently parallel. In these

applications, usually the pixels are scanned by rows where some linear and/or non-linear

operation is applied at each pixel. The computations involve the neighbor pixels to the current

one. It is clear that processing can be done on pixels at different divisions of the image,

simultaneously. Therefore, multi-core processors can definitely be exploited to perform these

computations in parallel.

In this paper, we show that using a multi-threading library, such as OpenMP, for exposing the

parallelism of the spatial image filter kernel can significantly boost performance of important

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

88

image processing applications such as image visual enhancement, detection of objects, and high-

level image analysis operations leading to ultimate goal of computer vision applications in robots

and autonomous systems. We investigate the parallel execution of the important image-filtering

kernel used in many applications such as the detection of objects' borders or simply edges in

digital images. The most common technique used to determine edges is to convolve a filter of

fixed size window with the pixels surrounding the current pixel to determine if the current pixel

belong to an edge or not. For example, the Sobel and Prewitt edge operators have special 3 x 3

masks/filters to detect the intensity changes between neighbor pixels in the horizontal, vertical,

and/or diagonal directions. At each pixel, weighted summation of the mask coefficients and the

eight neighbor pixels of the current pixel element-wise multiplied to get a scalar value. Using the

final values, the gradient vectors can beestimated using some mathematical formula, discussed in

the next section. The calculations at each pixel require twice as nine integer multiplications and

additions in addition to two absolute value operations to find the net edge value at the current

pixel. For larger mask sizes, the number of computations increases. Therefore, the main problem

with the gradient computation is the time-complexity especially if executed sequentially on one

core of a multi-core CPU. Hence, our main objective is to use all the available cores of the CPU

to accelerate the computation of Sobel image gradient.

Since the determination of the edges information in the whole image is inherently a parallel

computation, the image pixels can be divided among the cores of the CPU so that each core

determines the edges in its assigned part of the image. If the execution proceeds with minimal

inter-thread communications, then substantial performance improvements are obtained. This

reduction of execution time is a major benefit to many on-line image processing applications such

as robotics vision, object tracking, medical diagnostics, to name a few.

The rest of the paper is organized as follows. Section 2 presents the sequential algorithm to

determine the edges of objects in a gray-level image. Section 3 introduces our multi-threaded

parallel algorithm of the Sobel sequential algorithm. Section 4 describes the OpenMP

implementation of the proposed parallel algorithm. Section 5 describes the experimental results

on a multi-core processor with two Intel multi-core processors, a Core i7 CPU having four

physical cores and a Core 2 Duo CPU having dual cores. We analyzed the performance based on

image partitioning, the mapping of the logical threads to the physical cores of the CPU, which is

known as the processor affinity, and the effect of using different number of threads on the

available physical cores. Section 6 presents the related works of our research. Section 7

concludes the paper and outlines our future plans.

2. SEQUENTIAL EDGE DETECTION ALGORITHM

Consider a gray-level input image of n rows and m columns. Each pixel at location (x,y), has an

intensity value between 0 (Black) and 255 (White). Let the input image be assigned to a two-

dimensional matrix I of the same size. The idea of the Sobel operator is to find the value of the

edge at each pixel by approximating the calculation of the gradient vector. The gradient vector is

composed of two components along the x-axis and y-axis of the image, as defined in equation (1)

below.

(1)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

89

Therefore, the magnitude of the gradient vector can be calculated as follows:

|∇�| = ������	

 + �����	

(2)

Listing1: The Sequential Algorithm.

Sobel algorithm approximates the calculation of the gradient components at a pixel I(x,y) by

calculating two weighted sums Sx and Sy in the x-dimension (vertical) and y-dimension

(horizontal), respectively. Each weighted summation is the result of convolving a specially

designed 3 x 3 matrix with the current pixel I(x,y) and its eight neighborsI(x-1,y-1), I(x-1,y), I(x-

1,y+1), I(x,y-1), I(x,y+1), I(x+1,y-1), I(x,y), and I(x,y+1). These 3 x 3 masks are given in

equations (3) and (4) below:

(3)

(4)

The weighted sums are computed in equations (5) and (6) below:

(5)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

90

Where the weight Wx(i,j) corresponds to the element of the Sobel mask Mx(i+1,j+1), and

(6)

Where the weight Wy(i,j) corresponds to the element of the Sobel mask My(i+1,j+1).

The Algorithm of computing the edges of an input image is described in Listing 1. The input to

this sequential algorithm is the gray-level n x m matrix I. The output is a binary image of black

and white intensities. The white pixels represent the edges of the objects calculated by the Sobel

operator while the black pixels constitute the background. In the two nested loops at the compute

step, the two weighted sums (5) and (6) are calculated at each pixel of the input image. Note that

the pixels at the four borders of the image are not included since not all the nine neighbors will be

available. Hence, these pixels are set to black in the output image.

The magnitude of the gradient vector given at equation (2) is approximated, as many image-

processing applications do, by using the absolute values instead of the square root and the

squaring of the gradient components. This is given in equation (7) below [1].

|∇�| ≈ |��| + ����

(7)

3. PARALLEL ALGORITHM

In this section, we start by presenting some important factors, which can significantly affect the

parallelization of algorithms on shared-memory multi-core processors. Then, we present our

multi-threaded algorithm to parallel Sobel's algorithm, and explains its main stages.

3.1 Parallelization Problems

The algorithm discussed in this section targets shared-memory systems, specifically, single-chip

CPUs composed of multi-cores. Therefore, the data processed by the cores or threads are

assumed stored in one global shared memory, which is the RAM modules in desktop computers.

The main problem arise is how the shared data will be partitioned (logically) and assigned to the

available threads such that the communication between the threads is minimized.

Most of the low-level image processing operations, including the detection of object's edges, are

inherently parallel. The same operation can be applied to almost all pixels of the image, if the

processing in any pixel requires only pixel values in a small neighborhood around the target

pixel. For instance, in Sobel algorithm, the calculation of the edge value on a given pixel

depends on the values of the eight neighbor pixels surrounding it; this is because the size of the

conventional Sobel masks are 3 x 3. When using larger size masks, the neighborhood size of the

current pixel increases and more pixels are involved in the calculation. Fortunately, as we can see

that this pattern of data dependency is only imposed in the reading of the pixel values not on their

update since the new values are usually written to another output image. Hence, taking this

pattern of data dependency into consideration leads to employing the most appropriate data-

partitioning scheme.

A good partitioning scheme should take into consideration the following three factors:

The pattern of data access of the running algorithm. The first factor is imposed by the

structure of the algorithm itself, which is the responsibility of the programmer. Usually if the

programmer is aware of some loop optimization techniques [8] that can be applied at the source-

code level; it could help the compiler generate efficient codes.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

91

The layout of data into memory.The underlying language compiler controls the second factor.

When using a C/C++ compiler, the layout of data is the well-known row-major pattern. However,

other language such as FORTRAN or MATLAB, the arrays are laid out in column-major fashion.

The data cache line size. The third factor is a hardware feature imposed by the processor vendor

based on the sizes of the cache memories at different levels of the memory hierarchy and the

underlying architectural features implemented in the physical cores. Given a cache line size, if

one thread is updating one pixel value located in some cache line, other threads working on pixels

in the same cache line are paused from updating their pixels even the threads are updating

different pixels. This phenomenon is known as false sharing, and it can cause severe performance

degradation if data is not partitioned among the cores in a proper way. The effect of sharing a

cache line between two cores will definitely affect performance especially if the threads are

assigned to two different cores where the cache line will be ping ponged between the L1 data

caches of both cores. This restriction guides us to partition the image among the working team of

threads in a way that can avoid this effect. We will elaborate on this important issue in Section 5.

3.2 The Algorithm

Now, we present a multi-threaded implementation of the sequential Sobel algorithm presented

earlier in Algorithm 1. We concentrated, in both the sequential and parallel algorithms, on the

most time consuming part that is the calculation of the gradient approximations at each pixel. The

algorithm description is given in Algorithm 2 below.

Listing2: The proposed Multi-threaded Algorithm.

The input to the algorithm is an input matrix I of size n x m, and a team of logical threads created

and managed by the multi-threading library.

The output is an n x m matrix O representing the edge pixels computed by the team of threads.

The division step is responsible for partitioning the input and output matrices into blocks which

are to be assigned to the available team of threads. The partitioning can be implemented in

different ways. For instance, the image is partitioned into blocks each containing a number of

rows (or columns). Also, the partitioning can be performed through rows and columns

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

92

simultaneously resulting into rectangular blocks or checker-board partitions. This latter

partitioning scheme is also known as tiling. Figure 1 shows an example of rows blocking and one

possible assignment of threads to the blocks.

Figure 1. An image with n rows and m columns partitioned horizontally into NB blocks. A number of

threads, T are assigned to the blocks in the order shown, T=NB.

The assignment step is responsible for allocating each pair of blocks (Ij,Oj) to one of the threads.

Actually, this scheduling problem has an exponential number of different assignments. We will

show how the threading library controls this assignment either by the operating system affinity

scheduling or by controlling the environment variables of the OpenMP library at runtime to

specify a specific scheduling strategy.

The last step in Algorithm 2 is the actual Compute step that calculates the gradient pixels and

updates the output edges image. In this step, each thread computes the gradient at each pixel of

the assigned block(s) j and updates the corresponding block(s) Oj in the output matrix. In the next

section, we evaluate the implementation of Algorithm 2 on a quad-core processor.

4. DESCRIPTION OF THE OPENMP IMPLEMENTATION

We used the standard OpenMP library to implement our parallel multi-threaded algorithm, i.e.,

Algorithm 2. The OpenMP directives are used to partition the image among a team of threads in

addition to determining the ordering of assignment of the partitions to the threads. The code in

Listing 3 below shows the function 'sobel' that takes an N1 x N2 input matrix a containing the

image pixels and computes the gradient in matrix b, of the same size as a. Note that both the

gradients in x- and y-axis are merged in one function as opposed to common libraries such as

OpenCV and CImg.

The method of parallelization is summarized as follows. First, a team of threads is created using

the OpenMP directive #pragma omp parallel as shown in lines 8 and 9 where the number of

threads, nthrd, is specified. The task of computing the weighted sums sx and sy, and the gradient

values b[i][j] at line 19 is divided among the threads using a 'for' work-sharing OpenMP

directive. Since the 'for' directive is inserted immediately before the outer loop, the partitioning is

applied to the outer loop only. This means the image will be divided into blocks of rows, as

shown in Figure 1. Note that both the creation of the team of threads and the work-sharing

directives are combined in one directive (see line 8). This combination reduces the parallelization

overhead and hence produces better performance than declaring each directive separately [6].

While the 'for' work-sharing directive divides the work among the team of threads, it can also

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

93

control how the partitions of the outer loop are allocated to the threads by adding the 'static'

clause as shown in line 8 which means the scheduling is static and defined before the threads start

to execute.

Listing 3: The C++ code including the OpenMP directives.

The listing shows one possible scheduling which is defined as 'static'. In this type of scheduling

the size of each block is specified, bs, and the blocks of the outer loop are assigned to the team of

threads in a round-robin fashion. However, if the block size is not given, the outer loop iterations

will be divided evenly among the threads so that each thread is assigned one partition only. Other

scheduling strategies can be used in OpenMP, see [6] for more details. Although a scheduling

strategy is specified in the code, the order of assigning the threads to the physical cores can affect

the performance. This is because the CPU micro-architecture dictates the arrangement of the

caches and which cores share which data cache. This effect is shown in the next section. We will

also show the numbering of the physical cores can be advocated using the core affinity feature in

the OpenMP library.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the multi-threaded implementation of the Sobel

gradient computing algorithm. In the experiments, we used two multi-core processors: a quad-

core processor and a dual-core processor.

5.1 Experimental Setup

We used the OpenMP threading library, which is a standard for parallelizing codes on multi-core

processors and SMP machines. In our implementations of both the sequential and parallel

gradient computing algorithms in this paper, we used the GNU GCC g++ 4.8.2 compiler to

generate the executable codes, which run under the operating system Ubuntu Linux 14.04 64-bit.

We tested all the C++ codes on (i) a Dell notebook with Intel Core i7 2670QM CPU @ 2.20

GHz. This processor has four physical cores where each one can run two logical threads

simultaneously, a feature known as hyper-threading, and (ii) a Dell desktop PC with an Intel Core

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

94

2 Duo E6750 processor running @ 2.6GHz with two physical cores that can execute only two

logical threads; the hyper-threading technology is not implemented in this processor.

The run times reported in our results measure the execution times of computing the image

gradient using Sobel filter using the sequential and parallel algorithms given in Listing 1 and

Listing 2, respectively. The OpenMP implementation of the parallel computing algorithm is

implemented in Listing 3. We used the OpenMP timing function omp_get_wtime() to measure the

execution time in seconds to all the reported experiments. The run times are the average of 100

runs.

The test images we used have resolutions of 256 x 256, 512 x 512, 1024 x 1024, and 2048 x

2048. The pixel values are of type integer.

5.2 Results and Discussion

5.2.1 The effect of the number of used cores

First, we show the effect of using different number of physical cores on the performance of the

multi-threaded algorithm. For a fixed number of cores, we used an equal number of threads for

the execution. That is, one thread for each core. Figure 2 shows the execution time of the

sequential and multi-threaded implementations. The experiments are done on a range of images

with sizes 256 x 256, 512 x 512, 1024 x 1024, and 2048 x 2048. It is clear from the figure of each

image size that the execution time decreases as we increase the number of cores. However, when

using one thread and one physical core (out of the available four), the execution time actually

increased by around 9% due to the overhead of creating and managing the thread by OpenMP

runtime. However, the percentage of this overhead decreases as the image size increases. By

using two cores and more, the total execution time increases as the image size increases, and the

speedup obtained is increasing and get closer to the number of cores used, as shown in Table 1.

Figure 2. The execution time in seconds of the multi-threaded algorithm using 1, 2, 3, and 4 cores (x-axis)

of the Intel Quad-core i7 processor. The results are for square images of sizes 256, 512, 1024, and 2048.

s eria l1234

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

0.120000

0.140000

0.160000

256

512

1024

2048

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

95

Table 1: The execution time in seconds and the speedup of the OpenMP implementations relative to the

sequential implementation. The number of physical cores used equals the logical threads used. The image

size is 2048 x 2048.

#physical cores

Execution
Time(sec) Speedup

serial 0.138168 1.00

1 0.151348 0.91

2 0.078349 1.76

3 0.055968 2.47

4 0.042086 3.28

Figure 2 also shows that using one thread for parallelization is not worth due to the effect of the

parallelization overhead. This shown in each curve of the figure as the speedup is less than one.

5.2.2 The Effect of Increasing the Number of Logical Threads

For a given number of physical cores used in execution, we run our codes with varying number of

threads to see the effect on performance. We divided the input images into a number of blocks

equals the same number of the created threads. Each thread is assigned a block in the image.

Figure 3 and Figure 4 show the speedup measurement of the multi-threaded implementations on

both the Core 2 Duo processor and the core i7 processor on a range of image sizes, 256 x 256,

512 x 512, 1024 x 1024, and 2048 x 2048. In this experiment, all the available cores in each

processor are employed in the execution. The allocation and scheduling of the threads on the

cores are left to the default strategy in OpenMP (i.e., static, see next section). The numbers of

logical threads are varied from 1 to 16. It can be seen from Figures 3 and 4 that the maximum

speed-up approaches the expected ideal value as the image size increases. These speedups equal

4.0 for the Quad-core Core i7 processor and 2.0 for the Dual-core Core 2 Duo processor. It can be

concluded from the speedup curves that for image sizes larger than 256x 256 using the maximum

number of logical threads that can run simultaneously by the processor (eight in case of the Core

i7 and 2 for the Core 2 Duo) is recommended to get the full parallelization speed of the multi-

threaded Sobel gradient computations proposed in this paper. The main reason for the non-

contention of the threads running on the same core simultaneously is that the algorithm accesses

the pixels sequentially as it is laid out into memory. This access pattern ease the mission of the

data cache pre-fetchers, which can easily predict the access pattern and help in pre-fetching the

cache line that are going to be used in the next loop iterations. These results in reduced cache

miss rates and hence enhanced performance.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

Figure 3. The speedup of the multi

different number of logical threads (x

Figure 4. The speedup of the multi

different number of logical threads

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

Figure 3. The speedup of the multi-threaded algorithm compared with the sequential algorithm using

reads (x-axis) and four cores of the Intel Quad-core i7 processor. The results

of four different image sizes are shown.

Figure 4. The speedup of the multi-threaded algorithm compared with the sequential algorithm using

different number of logical threads (x-axis) and two cores of the Intel Core2Due processor. The results of

four different image sizes are shown.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

96

threaded algorithm compared with the sequential algorithm using

core i7 processor. The results

threaded algorithm compared with the sequential algorithm using

axis) and two cores of the Intel Core2Due processor. The results of

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

97

Table 2: The speedup of comparing the execution time of our OpenMP parallel codes with the sequential

code. The speedup is measured with varying: the number of logical threads used (Column 2), how the

threads are assigned to the physical cores (Column 3) numbered 0,1,2 and 3, the number of physical cores

used (Column 1) according to the thread assignment criteria, the execution time in Micro-sec (Column 4)

and the speedup (Column 5). The image size is 512 x 512. The average sequential execution time was 8560

Micro-sec.

#physical
cores

Logical
Threads

Thread
Assignment

Execution
Time Speedup

1

1 '0' 9434 0.91

2 '00' 9418 0.91

2

2 '01' 4877 1.75

2 O.S. 4851 1.76

4 '0101' 4887 1.75

4 '0011' 4901 1.75

4

4 '0123' 2613 3.28

4 '0213' 2700 3.17

4 O.S. 2619 3.27

8 '01230123' 2674 3.20

8 '00112233' 2661 3.22

 8 O.S. 2694 3.18

Table 3. The speedup of the performance of our OpenMP parallel code due to changing the number of

logical and physical cores, and how the threads are assigned to the physical cores. Image size is 1024 x

1024. The average sequential execution time was 35810 Micro-sec.

#physical
cores

Logical
Threads

Thread
Assignment

Execution
Time Speedup

1

1 '0' 37909 0.94

2 '00' 38421 0.93

2

2 '01' 19829 1.81

2 O.S. 19611 1.83

2

4 '0101' 19851 1.80

4 '0011' 19682 1.82

4

4 '0123' 10578 3.39

4 '0213' 10934 3.27

4 O.S. 11968 2.99

4

8 '01230123' 10573 3.39

8 '00112233' 10644 3.36

8 O.S. 10384 3.45

5.2.3 The Effect of Thread Scheduling Criteria

After dividing an image into blocks and assigning them to threads, the next step is allocated the

threads to physical cores for execution. Actually, the allocation of the threads and their

scheduling may be determined completely by either the underlying operating system or the

OpenMP runtime. Definitely, the choice of the scheduling strategy affects the performance.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

98

In general, if we chose four threads to execute the algorithm, and the image is divided evenly into

four blocks, there will be a maximum of 4! ways to assign the threads to the blocks. For example,

if we have four cores 0, 1, 2, and 3, and we have four threads, we denote the assignment pattern

'0123' to show that the four threads are assigned to cores 0, 1, 2, and 3, in the same order. This

type of scheduling is called 'round-robin' scheduling. Also, the assignment pattern '0213' means

that the first thread (block) is assigned to core0, the second to core2, the third to core1, and finally

the last one to core3.

There are cases where the number of available cores is less than the number of threads. In this

case, each core will be assigned more than one thread to execute. For example, if the number of

available physical cores is two, then the assignment '0101' means that threads 0 and 2 are

assigned to core 0 while threads 1 and 3 are assigned to core 1 (round-robin fashion). Table 2

shows the execution time and speedup comparison of the OpenMP implementations using

different number of logical threads with varying the number of physical cores and the thread

assignment pattern.

Assigning a thread to a specific core is called processor binding. We controlled the thread

assignment to the physical core through the so-called processor affinity feature. In Linux, this

feature can be enforced through setting the environment variables OMP_PROC_BIND and

GOMP_CPU_AFFINITY, see [7] for details.

Note that if processor affinity is not specified the assignment of the threads to the cores is done at

runtime by the operating system, as we indicate by using the pattern O.S. in the third column of

the table. In this scheduling strategy, neither thread binding nor core affinity are specified.

6. RELATED WORKS

The computing of the image gradient is the most time consuming part of Sobel algorithm to

detect edges in images. Sobel algorithm has been implemented on shared-memory and

distributed-memory machines. On distributed memory systems, the image is divided into blocks

that are distributed on distant processor where inter-node communications are used to interchange

data and results. For example, on a Beowulf cluster the standard message-passing interface MPI

was applied to parallelize the Sobel algorithm using the inter-communication between the nodes

of the system [4]. On multi-core processors, a shared-memory system, an algorithm for

implementing Sobel operator using MPI library to distribute data and collect results between the

cores of the CPU was implemented in [3]. This work using message passing to communicate

through shared memory. Using the MFC multi-threading library, a parallel implementation of

Sobel color image detection on an Intel multi-core processor is presented in [5].

In [9] a number of image processing kernels, including the image filter, were hand optimized on

exploiting the hardware architectural features such as vectorization. They achieved near 4.0

speedup on Intel core i7 processor when the image size approaches 2048 x 2048. In [10] the

authors studied the effect of vectorization feature of Intel and ARM processors on a number of

image processing kernels including Sobel filtering. They obtained a speedup little above 2 for a

3264 x 2448 image on an Intel core i7 processor.

In this paper, we present a parallel implementation of Sobel algorithm on a multi-core Core i7

Intel processor using the C++ language and the standard threading library, the OpenMP. This

paper differs from the above related works in that we studied the effects of different factors on the

performance of Sobel filter, namely: varying the number of logical threads used in the parallel

team and the assignment of threads to the physical cores using different strategies. Other related

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

99

works are studying the variation of the number of threads on performance without studying the

affinity of the processors that we consider.

7. CONCLUSIONS

We have presented a parallel multi-threaded algorithm to compute the Sobel filter using the

standard OpenMP threading library for multi-core CPUs. The image data is divided based on the

layout of the pixels in memory in order to optimize the use of cache prefetchers. We studied the

effects of increasing the number of logical threads used for parallelization in addition to their

mapping policies to the available physical cores. Different core assignments are tested and their

impact on the performance is reported. The best results obtained when using eight logical threads

assigned to four different physical cores is a speedup of 3.5 compared to the sequential algorithm,

and 3.7 compared to using one thread. The ideal speedup is 4 which is not obtained due to the

parallelization overhead to manage the threads on the physical cores.

Since the image data is laid out in memory in row-major order, and each thread is assigned a

block of the input image composed of contiguous rows, the pre-fetching feature of the data cache

is best exploited to hide the cache miss penalty and reduces thread stalls. The hyper-threading

feature implemented inside each core has a performance benefit for larder size matrices since the

amount of the processed exceeds the overhead to switch between the threads on the same core.

Our ongoing research is to combine vectorization with OpenMP benefits to get higher

performance on different image kernel operations.

ACKNOWLEDGEMENT

This research is supported by Beirut Arab University.

REFERENCES

[1] Gonzalez, Rafael C. “Digital Image Processing”, Pearson Education, Inc., publishing as Prentice Hall,

2008.
[2] SOBEL, I., An Isotropic 3×3 Gradient Operator, Machine Vision for Three – Dimensional Scenes,

Freeman, H., Academic Pres, NY, 376-379, 1990.
[3] Noor E. Abdul Khalid and et. al. "Analysis of parallel multicore performance on sobel edge detector."

In Proceedings of the 15th WSEAS international conference on Computers, Nikos Mastorakis,

ValeriMladenov, Zoran Bojkovic, FragkiskosTopalis, and KleanthisPsarris (Eds.). World Scientific

and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 313-318, 2011.

[4] Nazleeniharon, Ruzaini Amir, IzzatdinA,Aziz, Low Tan Jung, SitiRohkmah, " Parallelization of Edge

Detection Algorithm using MPI on Beowulf Cluster", Innovations in Computing Sciences and

Software Engineering., pp 477-482, 2010

[5] A. Kamalakannan and G. Rajamanickam, "High Performance Color Image Processing in Multicore

CPU using MFC Multithreading," International Journal of Advanced Computer Science and

Applications, Vol. 4, No. 12, 2013

[6] OpenMP Application Program Interface. http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf,

downloaded Mar 22, 2016.

[7] Bind threads to specific CPUs.

"https://gcc.gnu.org/onlinedocs/libgomp/GOMP_005fCPU_005fAFFINITY.html", retrieved

Mar 22, 2016.

[8] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2011

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 2, April 2016

100

[9] D. Kim, V. W. Lee and Y. K. Chen, "Image Processing on Multicore x86 Architectures," in IEEE

Signal Processing Magazine, vol. 27, no. 2, pp. 97-107, March 2010.

[10] Gaurav Mitra, Beau Johnston, Alistair P. Rendell, Eric McCreath, and Jun Zhou (2013). Use of SIMD

Vector Operations to Accelerate Application Code Performance on Low-Powered ARM and Intel

Platforms. In Proceedings of the 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing Workshops and PhD Forum (IPDPSW '13), Washington, DC, USA, 1107-

1116, 2013

AUTHOR

Ahmed S. Zekri

Received both B.Sc. and M.Sc. in computer science from Department of Mathematics &

Computer Science, Faculty of Science, Alexandria University. He has a Ph.D. degree in

computer science and engineering from The University of Aizu, Japan 2008. Presently he is

an Assistant Professor at Beirut Arab University, on leave from Alexandria University. His

research interests include parallel and distributed computing, performance evaluation of

parallel image processing and cryptography algorithms, job scheduling and management in

cloud data centers, and high performance computing.

