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ABSTRACT 

 

This paper introduces a novel approach for efficient video categorization. It relies on two main 

components. The first one is a new relational clustering technique that identifies video key frames by 

learning cluster dependent Gaussian kernels. The proposed algorithm, called clustering and Local Scale 

Learning algorithm (LSL) learns the underlying cluster dependent dissimilarity measure while finding 

compact clusters in the given dataset. The learned measure is a Gaussian dissimilarity function defined 

with respect to each cluster. We minimize one objective function to optimize the optimal partition and the 

cluster dependent parameter. This optimization is done iteratively by dynamically updating the partition 

and the local measure. The kernel learning task exploits the unlabeled data and reciprocally, the 

categorization task takes advantages of the local learned kernel. The second component of the proposed 

video categorization system consists in discovering the video categories in an unsupervised manner using 

the proposed LSL. We illustrate the clustering performance of LSL on synthetic 2D datasets and on high 

dimensional real data. Also, we assess the proposed video categorization system using a real video 

collection and LSL algorithm. 
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1. INTRODUCTION  
 

The widespread use of smart devices with built-in cameras, the recent advances in high-

performance networking, and the devices storage capacity reaching a level of hundreds of 

gigabytes yielded tremendous amount of non-textual data, such as digital images and videos. 

Meanwhile, video sharing communities through the internet are becoming more and more 

popular. If no automated tools for storing, searching, and retrieving videos are proposed, this 

proliferation of video databases may be counterproductive. In fact, finding videos of interest and 

navigating through these video collections is naturally challenging due to their large volumes and 

to the computer’s inability to recognize the semantic of videos. This problem is known as the 

semantic gap. To overcome this challenge, video database categorization based on the video 

content has become an active research topic [46]. One of the most known solutions relies on 

unsupervised learning techniques, and aims to categorize the video collection into homogeneous 

classes based on their visual content. The obtained categories are then adopted to index the video 

database and reduce the search space during the retrieval process. Also, they make the user 

navigation through the database much easier. The cluster’s representatives obtained using 

categorization algorithms may be used as page zero of a Content Based Video Retrieval (CBVR) 

system. In other words, instead of starting by displaying random videos, such CBVR system 

starts by showing representative videos of the classes obtained by categorizing the video 
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collection. Thus, users would have an overview on the video database content before submitting 

their queries.  
 

During the past few years, various CBVR systems have been proposed [46], and considerable 

efforts have been deployed on related research topics such as system design [47], high 

dimensional indexing structures [49], feature extraction [48], and similarity measures [50]. 
Despite these efforts the performance of most CBVR systems has proved to be inherently 

constrained by the performance of the machine learning technique used to categorize video 

collections into visually homogeneous clusters. The problem is more acute when videos are 

represented using high dimensional low level descriptors yielding hardly separable video 

categories.  Grouping videos into homogeneous categories may be posed as an unsupervised 

learning problem. More specifically, the challenge consists in partitioning the frame collection of 

given videos into subsets, so that frames in each subset share some visual properties. In other 

words, according to a defined distance measure, frames in the same cluster should be as similar as 

possible and frames in different clusters should be as dissimilar as possible. Clustering has been 

used in many applications related to understanding and exploring the structure of the data. In 

particular, fuzzy clustering techniques have been shown to be suitable to describe real world 

situations with overlapping boundaries [1]. Typically, the set of video frames to be clustered can 

be described in two ways: frame based representation, and relational based representation. While 

for frame representation, each frame is represented using one feature vector, for relational 

representation, information on how two frames are related is considered. Recently, relational 

clustering emerged as an active alternative to exploit the adjacency structure of the data and avoid 

dealing with a prefixed shape of clusters. Relational clustering can be formulated as a kernel 

based approach because kernel function can be perceived as pairwise dissimilarity function. The 

choice of such a kernel function yields the mapping of the input data into a new space in such a 

way that computing nonlinear partitioning in the input space can reduce to a simple partitioning 

in the feature space. One of the most common dissimilarity function is the Gaussian kernel. The 

performance of this function depends on the choice of the parameter σ which is usually chosen by 

trying several values. Moreover, since one global parameter is considered for the entire dataset, 

finding an optimal σ may be impossible when there are large variations between the distributions 

of the different clusters in the feature space.  
 

In Figure 1, we use a simple example to illustrate the advantage of using cluster dependent kernel 

resolution σi instead of one global σ. We fit the two clusters of the dataset using two different 

Gaussian kernels. More specifically, we run kNERF [12] several times using all pairwise 

combinations of σi=0.001,0.01,0.02,0.03…,0.2. Figure 2 reports the accuracy obtained using 

various combinations of σ1 and σ2. The reddish colors indicate high accuracy, while bluish ones 

represent low accuracy. As one can notice, the clustering accuracies corresponding to the specific 

cases where σ1 = σ2 (i.e. along the diagonal) do not exceed 80%. On the other hand, 

combinations of σ (such as σi = 0.001 and σj = 0.03) yield an accuracy of 100%. This illustrative 

example proves the need for cluster dependent parameter σi , and that one global parameter 

cannot handle effectively the dataset in Figure 1.  
 

The naive solution to learn optimal parameters to fit a dataset is to try several combination (as 

illustrated in the above example), evaluate the obtained partitions using some validity measure 

[2], and adopt the parameter value corresponding to the best/optimal partition. However, this 

exhaustive search of parameters with respect to all clusters of the dataset is not practical. It is 

computationally expensive and increases significantly with the number of clusters.  
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Figure 1 2-D dataset with 2 clusters with different densities 

 

 
 

Figure 2 Accuracy results obtained on the dataset of Figure 1 using an extensive search of cluster 

dependent parameters 
 

1.1. MAJOR CONTRIBUTIONS  
 

The major contributions of this work consist of the design, implementation, and analysis of a 

video categorization system which relies on a novel clustering algorithm. The proposed 

unsupervised learning algorithm addresses the challenges raised above. It partitions the video 

frames, learns the parameters for each cluster, and assigns membership degrees to each frame 

with respect to all clusters. These memberships allow the algorithms to deal with overlapping 

clusters, and provide a richer description of the video collection by distinguishing between the 

frames at the core and at boundary of the cluster. The learned parameters yield an optimal 

recognition of clusters of different local geometric characteristics and, can be used in subsequent 

steps to provide better cluster assignment.  

 

1.1.1. CLUSTERING AND LOCAL SCALE LEARNING ALGORITHM  
 

In this work, we introduce a new relational clustering technique with Local Scale parameter 

Learning (LSL). This approach learns the underlying cluster dependent dissimilarity measure 

while finding compact clusters in the given data. The learned measure is a Gaussian dissimilarity 

function defined with respect to each cluster that improve the final partition. LSL minimizes one 

objective function to optimize the optimal partition and the cluster dependent parameter. This 

optimization is done iteratively by dynamically updating the partition and the local measure. This 

allows the kernel learning task exploit the unlabeled data and reciprocally, the categorization task 

takes advantages of the local learned kernel. Moreover, as we assume that the data is available in 

a relational form, the proposed approach is applicable even when only the degree to which pairs 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 1, February 2016 

 
30 

of objects in the data are related is available. It is also more practical when similar objects cannot 

be represented efficiently by a single prototype.  
 

1.1.2. VIDEO CATEGORIZATION SYSTEM  
 

The proposed video categorization system adopts LSL algorithm in order to group similar video 

frames of the same video into clusters, and obtain key frames summarizing each video. Also, LSL 

is used to cluster these key frames in order to discover video categories existing in the collection.  
 

1.2  PAPER OVERVIEW  
 

The organization of the rest of the paper is as follows. In section 2, we outline some related work 

to the proposed approaches. We outline the new unsupervised relational clustering approach LSL 

in section 3. The proposed video categorization system is presented in section 4. We describe the 

experiments conducted to validate the proposed approaches in section 5. Finally, Section 6 

contains the conclusions and future work.  
 

2. RELATED WORKS  
 

Traditional video categorization systems start with video clips parsing/segmentation into a 

collection of scenes. These scenes are further segmented into shots containing a reduced number 

of key frames. Then, a clustering technique is used to organize the shots for efficient indexing, 

browsing, retrieval, and viewing. In [52], the authors outlined a story extraction approach from 

long video programs using time-constrained unsupervised learning of video shots. This approach 

categorizes the video shots without key frames extraction. Also, they used scene transition graph 

to model the story flow across scenes. Another video categorization alternative consists in 

clustering key frames summarizing the video shots. Over the past few years, various image 

indexing, browsing, and clustering systems have been outlined in the literature [54, 53]. In [55], 

the authors proposed QBIC system to retrieve images of interest based their content from large 

on-line image collections. QBIC lets the users to submit sketches as query, layout or structural 

descriptions, texture, color, and sample images in order to retrieve relevant images. The authors 

in [56] proposed Photobook which allows interactive browsing and searching of image 

sequences. A general-purpose image retrieval system which selects in an unsupervised manner 

the appropriate the image features for retrieval is proposed in [57].  Since frames in the same shot 

show obvious redundancies, some frames which summarize the shot contents are appointed as 

key frames [58, 59] to represent the shot. The descriptors used for key frame extraction include 

colors, edges, shapes, and spatial distribution of motion activity, etc... These low-level features 

are then used to group visually similar frames into homogeneous categories. Finally, the closest 

frames to the obtained cluster centers are selected as video key frames. In [60], the authors 

proposed key frames extraction based onagglomerative hierarchical clustering. The researchers in 

[62] used fuzzy C-means algorithm in the color feature subspace to select key frames. Similarly, 

the authors in [61] adopted Gaussian mixture models (GMM) in the eigenspace of the frames to 

determine the video key frames. Theeffectiveness of these key frame extraction techniques rely 

on the quality of the clustering results. In other words, such solutions depend on the adopted 

unsupervised learning technique.  
 

For unsupervised learning techniques, the set of frames to be clustered may be represented using 

either frame data or relational data. For frame data, each frame is described using a feature vector. 

For relational data, information that represents the degree to which pairs of frames in the video 

are related is exploited. Thus, Relational clustering is applicable when data instances to be 

clustered cannot be represented by numerical features. Moreover, it is more effective for 

applications which rely on expensive distance computation in terms of time complexity. In other 

words, relational clustering is an efficient alternative when the adopted distance measure does not 
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have a closed form solution, or when groups of similar objects cannot be represented efficiently 

using one single prototype/centroid.  
 

Recently, clustering approaches which map data into a new feature space in order to linearize the 

partitioning problem have been proposed [5, 6, 7, 8]. These approaches rely mainly on kernel and 

spectral clustering algorithms. Most kernel based solutions are kernel versions of classical 

clustering algorithms such as kernel K-means [5, 9], kernel FCM [10, 11], kernel SOM [6] and 

kernel Neural Gas [7]. Among all work based on C-Means clustering algorithm [5, 9], only the 

Kernelization Non-Euclidean Relational Fuzzy c-Means Algorithm (kNERF) [12] has extended 

the kernelization to relational data clustering. kNERF [12] adopts the Gaussian kernel with one 

global parameter for the whole dataset. The parameter σ is set empirically. In [13], the authors 

suggested tuning σ automatically through multiple runs of their clustering algorithm for a number 

of values of σ. Then, the value yielding the least distorted clusters is adopted. However, this 

approach increases the computation time significantly. Additionally, the range of values to be 

tested is set manually. Moreover, when the input data includes clusters with different local 

statistics there may not be a single value of σ that works well for all the data. In fact, when the 

data contains multiple scales, one optimal σ fails to result in a good clustering result. Instead of 

selecting a single parameter σ, the authors in [14] estimate a local parameter σj for each data 

point ��  and define the similarity between a pair of points. In [14], ��is defined as the distance 

between �� and its ���neighbor�� . Although, spectral clustering can accurately discover the 

structure of small datasets, it shows limitation when dealing with large-scale problems due to its 

computational complexity of O(	
) where N  is the number of data points [15]. Gaussian 

similarity function is also considered as a type of radial basis functions. In the context of RBF 

neural networks, a supervised procedure which takes into consideration the labels of the training 

data is proposed to determine a parameter per cluster [17]. Although this approach computes a 

parameter with respect to each cluster it can be applied only in the case of supervised machine 

learning task. In fact, it uses the label information in order to determine the parameter. Thus, it 

cannot be applied in the context of unsupervised clustering. Moreover, this approach is prototype 

based and thus, inherits from the drawbacks of object-based approaches with respect to the 

relational ones.  
 

3. UNSUPERVISED RELATIONAL CLUSTERING WITH LOCAL 

SCALE PARAMETER  
 

Let {x1, ⋯  ⋯  ⋯  ⋯ ,    xN}be a set of N data points to be partitioned into C clusters. We also assume that 

R    =    [rjk] is a relational matrix where rjk represents the degree to which pairs of objects xj and xk 

are related. The matrix R could be given or it could be constructed from the features of the 

objects. Each object xj belongs to cluster i with a membership u i j that satisfies [42]:  

0 ≤ ��� ≤ 	1  and ∑ ������� 	= 1, for i ∈ {1, …C}, j ∈ {1, …N}.                  (1) 

	
The clustering and Local Scale Learning algorithm (LSL) minimizes the proposed objective 

function below:  
 

�� 	= ∑ ∑ ∑ �������� �1 − ��� �� !"# $% − ∑ &'"#(
����)���)������� ,                         (2) 

 

subject to the membership constraint in (1).  
 

In (2), m ∈ (1, ∞) is the fuzzyfier. The term u i j
m

u ik
m

 can be regarded as the likelihood that two 

pointsxj and xk belong to the same cluster i. We use β jk
i to denote this term. That is, we let 

 

β jk
i = u i j

m
u ik

m
.                                   (3) 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 1, February 2016 

 
32 

 

LSL algorithm is based on minimizing a joint objective function with two terms. The first term 

seeks compact clusters using a local relational distance,Djk
i, with respect to each cluster i. This 

distance is defined as 
 

+��� 	= 1 − ��� �� !"# $,                                                   (4) 

 

In (4), Djk
i is based on the Gaussian kernel function and is intimately related to the heat flow [36]. 

In fact, locally, the heat kernel is approximately equal to the Gaussian, i.e., 
 

,"-x, y0 ≈ -43�045
( 		��� �− 6-7,80

9" $,                                                                                  (5) 

 

When the squared distance between x and y, d(x, y), is sufficiently small [36]. 
 

In (4), the parameter σi controls the rate of decay of Djk
i as a function of the distance between xj 

and xk with respect to cluster i. Using a cluster dependent parameter σi allows LSL to deal with 

the large variations in the feature space between the distributions and the geometric 

characteristics of the different clusters.  The second term in (2) is a regularization term aiming to 

avoid the trivial solution where all the parameters σ iare infinitely large. In fact, without this term, 

the minimization of (2) with respect to σi yields the trivial solution of a very large σi that merges 

all points into a single cluster. Another trivial solution that minimizes the objective function in (2) 

is when one of σ i is zero . In order to keep the derivation simple, we do not introduce another 

regulation term. We simply assume that σi is not null. Later in this section, we will discuss how to 

handle this case.  
 

The goal of the proposed LSL algorithm is to learn the C clusters, the parameters σi of each 

cluster, and the membership values u i j, of each sample xj with respect to each cluster i. This 

learning task is achieved by minimizing the objective function in (2) with respect to σi and u i j. In 

order to optimize (2) with respect to u i j, we use the relational dual of the fuzzy C-mean algorithm 

formulated by Hathaway et al. [37]. It has been proved in [37] that the Euclidean distance 

d ik
2 = ∥    xk − ci∥2, from feature xk to the center of the i th cluster, ci, can be written in terms of the 

relational matrix D
i
as 

 

;��< = ∑ +��� =# >
∑ =#?>@?A' − �

<∑ ∑ =# >B C# =#C>
D∑ =#?>@?A' E(

)F��)���)��� ,                (6) 

 

Using the implicit distance values, d ik
2, the objective function in (2) could be rewritten as  

 

J = ∑ ∑ ����;��< −∑ &'
"#(

����)������� ,                                                         (7) 

 

To optimize J with respect to u i j subject to (1), we use the Lagrange multiplier technique and 

obtain  

 

J = ∑ ∑ ����;��< −∑ &'
"#(

���� − ∑ H�)���)������� D∑ ������� − 1E,           (8) 

 

By setting the gradient of J to zero, we obtain  

 IJ
IK = ∑ ��� − 1���� = 0(9) 

IJ
I=# 

= L����4�;��< − H = 0(10) 

Solving (10) for u i j yields  
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��� = M K
�6# ( N

'
->O'0

                                                               (11) 

 

Substituting (11) back into (9), we obtain  

 

∑ ������� = �K
�$

'
->O'0 ∑ M �

6# ( N
'

>O'���� ,								                             (12) 

Thus,  

�K
�$

'
>O' = �

∑ � '
P# ( %

'>O'Q#A'
	,										                                                                (13) 

 

Substituting this expression back in (11), we obtain  

 

��� =
� '
P# ( %

'>O'

∑ � '
PR ( %

'>O'QRA'
,							                                                     (14) 

 

Simplifying (14) , we obtain the following update equation  

 

��� = �
∑ �P# (

PR ( %
'>O'QRA'
,							                                                           (15) 

 

We can notice from equations (6) and (15) that the expression of u i j does not depend on any 

notion of cluster prototype (e.g center). In fact, it depends only on the relational matrix R, and the 

normalized membership vector v.  

 

In the objective function in (2), the resolution of the different clusters σi is independent of each 

other. Thus, in order to optimize (2) with respect to σi, we can reduce the optimization problem to 

C independent problems. That is, we convert the objective function in (2) to the following C 

simpler functions  
 

�� = ∑ ∑ �������� �1 − ��� M� !"# N% − &'
"#(

)���)��� ,                                                         (16) 

 

fori = 1, …, C. The optimal update equation of the parameters σ i can be obtained using the 

Lagrange method by solving  

 
SJ#
S"# = −∑ ∑ �������� � !

"#( ��� M−
� !
"# N +

<&'
"#U

)���)��� = 0,                           (17) 

 

Using the duality between the Gaussian similarity and the heat flow function, it has been shown 

in [36] that  

 

∑ ��� M− � !
"# N�,� !VW = )

�X"# $O
5(
,                                                             (18) 

 

When ϵ is sufficiently small. In (18), p is the dimension of the manifold. In the worst case, the 

point located in the neighborhood of a point j within the radius ϵ are distant from j with at most ϵ. 
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As ϵ is sufficiently small, we can assume that the distances rjk are almost constant in the 

neighborhood of j. Thus, (18) can be rewritten as 

 

��� M− � !
"# N = )

|)|�X"# $O
5(
,                                                                    (19) 

 

Where |N| is the cardinality of the neighborhood of j. Substituting (19) in (17) gives 

SJ#
S"# = −∑ ∑ �������� )� !

<X(O5(|)|�"# $(O
5(
+ <&'

"#U
)���)��� ,                                (20) 

 

Setting (20) to zero and solving for σi, we obtain  

 

�� = M &
∑ ∑ =# >=#!>� !@!A'@ A' N

(
(Z5

                                                                  (21) 

Where 

[ = [� <X(O5(|)|
) .																																																																				                 (22)  

 

We should recall here that our assumption about a non nullσi is reasonable. In fact, the update 

equation in (21) shows that σi is zero only when the distance rjk between two points, xj and xk, 

that belong to cluster i (non zero fuzzy memberships u i j and u ik) is infinitely large. This scenario 

is highly unlikely.  
 

One can notice based on (21) and (4) that for each cluster i, σi controls the rate of decay of Djk
i 

with respect to the distance rjk. In fact, σi is inversely proportional to the intra-cluster distances 

with respect to each cluster i. Thus, when the intra-cluster dissimilarity is small, σi is large 

allowing the pairwise distances over the same cluster to be smaller and thus obtain a more 

compact cluster. On the other hand, when the intra-cluster dissimilarity is high, σi is small to 

prevent points which are not highly similar from being mapped to the same location. According 

to (21), σi can also be seen as the average time to move between points in cluster i. The proposed 

LSL approach is outlined in Algorithm 1. 

 

 
 

 

Similarly to typical relational clustering algorithms such as Relational FCM [42] and Spectral 

clustering algorithms [5, 6, 7, 8], the worst case complexity of the proposed LSL is O(N^2). 

Where N is the number of data samples.  
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4. PROPOSED VIDEO CATEGORIZATION APPROACH  

 
In this section, we describe our video categorization approach that relies on LSL algorithm. 

Clustering is used to group frames of the same video into clusters and provides a set of key 

frames summarizing the video. These key frames are then used as basis for the categorization of 

the video collection. Since this unsupervised learning task involves high dimensional and hardly 

separable data, we use LSL to learn the video categories existing in the collection. 

 
In Figure 3, we show the flowchart of the proposed video categorization system based on LSL 

algorithm. As it can be seen, three interactive phases form the proposed approach. Namely, the 

frame and low level features extraction, the automatic key frame selection, and the video 

categories learning. The first phase aims to extract frames from videos and represent them using 

various low-level descriptors such as color, texture and shape. Notice that the frame relational 

data is computed based on these features. The second phase (automatic key frame selection) 

inherits the feature space generated by phase 1, and runs LSL for each video frames in order to 

group features vectors into visually similar clusters. The representatives of each cluster are 

considered as video key frames. For the third phase, as shown in the right part of Figure 3, the 

obtained key frames are categorized using LSL algorithm into visually homogeneous categories 

which correspond to the video classes existing in the original video database.  

 

 
 

Figure 3. Overview of the proposed video categorization system  
 

5. EXPERIMENTS 
 

The objective of LSL algorithm is to partition the data and learn a kernel resolution for each 

cluster. In this section, we assess the performance of LSL and compare its performance to 

relevant clustering algorithms. First, we use 2D synthetic datasets. Then, in order to illustrate the 

ability of the proposed algorithm to learn local kernels and to cluster dissimilarity measure 

derived from real and high dimensional data, we use it to categorize real video collection where 

categories have different sizes, intra-group, and inter-group variations.  
 

In our experiments, we assume that the ground truth is known and we compute the obtained 

partition accuracy. First, each cluster is assigned a label based on the majority of the true labels of 

its elements. Then, the correct classification rate of each cluster is computed. The overall 

accuracy of the partition is computed as the average of the individual clusters rates weighted by 

the clusters cardinality. Notice that our experiments showed that the value of the parameter K1 in 

(2) is related to inter-cluster similarity between the nearest clusters. Thus for the experiments 

aiming to cluster synthetic datasets we set K1 to 0.005 . For the video database categorization, the 

parameter K1 is set to 0.8. Notice that in our experiments, we used an Intel core i7 computer with 

16 G RAM and MATLAB 10 software.  
 

The linked image cannot be display ed.  The file may  hav e been mov ed, renamed, or deleted. V erify  that the link points to the correct file and location.
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In the following, we compare our unsupervised clustering algorithm, LSL, to those obtained 

using the FCM [42], DBSCAN [43], GK [44], kNERF[12], and self tuning spectral clustering 

[14]. For the relational approaches, the Euclidean distance is used to compute the pairwise 

distances.  
 

5.1. SYNTHETIC DATASETS CLUSTERING 

 

 
 

Figure 4. Datasets used to illustrate the performance of LSL. Each cluster is shown by a different color. 

 

To illustrate the ability of LSL to learn appropriate local parameters and cluster the data 

simultaneously, we use it to partition synthetic 2D datasets. We should mention here that, for the 

purpose of visualizing the results, we use feature based and 2-dimensional data. Relational 

dissimilarity matrices are obtained by computing the Euclidean distance between these feature 

vectors. We use 2 datasets that include categories of different shapes with unbalanced sizes and 

densities. Figure 4 displays the 2 synthetic datasets. Each cluster is displayed with a different 

color. For all algorithms, we set the number of clusters C to the true one (see Figure 4), the 

fuzzyfierm to 1.1, and the maximum number of iterations to 100. As LSL requires the 

specification of one parameter K, we use K=[0.001,0.01,0.05,0.1,0.5,1,1.5, 2,4,8,10] and select 

the best results. For DBSCAN and Self tuning spectral, we tune the neighborhood parameter from 

1 to 20 by an increment of 1. For kNERF, we tune the parameter between 0.01 and 100 with a 

step of 0.1. The matrix of memberships is initialized randomly. Figure 5 displays the clustering 

results on dataset 1. As it can be seen, neither FCM, DBSCAN, GK, kNERF, or Spectral 

clustering were able to categorize this data correctly. On the other hand, LSL learned local 

exponential mapping of the data and was able to partition this data correctly.  
 

The learned parameters of dataset 1 are reported in Table 1. For this example, cluster 3 has bigger 

size than the two other clusters, and the three clusters have comparable densities. As a result, LSL 

learns slightly small parameter for cluster 3 than for cluster 1 and 2. three parameters that are 

slightly different. However, some points along the cluster boundaries are not correctly 

categorized. In fact, as shown in figure 6, the returned memberships of cluster 2 and cluster 3 are 

too close (between 0.3 and 0.33). This is due to the characteristic of this dataset where the 

boundaries are not well defined.The learned parameters of dataset 1 are reported in Table 1. For 

this example, cluster 3 has bigger size than the two other clusters, and the three clusters have 

comparable densities. As a result, LSL learns slightly small parameter for cluster 3 than for 

cluster 1 and 2. three parameters that are slightly different. 

 

However, some points along the cluster boundaries are not correctly categorized. In fact, as 

shown in figure 6, the returned memberships of cluster 2 and cluster 3 are too close (between 0.3 

and 0.33). This is due to the characteristic of this dataset where the boundaries are not well 

defined. 
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Table 1. Partition and parameters learned by LSL for Dataset 2 displayed in Figure 4 (a) when K = 0.05 

 

Partition  Learned σi’s 

 

σ1 = 0.041 

σ2 = 0.041 

σ3 = 0.039 

 
 

Figure 5. Results of clustering dataset 1 using (a) FCM, (b) DBSCAN, (c) GK, (d) kNERF, (e) 

Spectral, (f) LSL  

 

The learned parameters of dataset 1 are reported in Table 1. For this example, cluster 3 has bigger 

size than the two other clusters, and the three clusters have comparable densities. As a result, LSL 

learns slightly small parameter for cluster 3 than for cluster 1 and 2. three parameters that are 

slightly different. However, some points along the cluster boundaries are not correctly 

categorized. In fact, as shown in figure 6, the returned memberships of cluster 2 and cluster 3 are 

too close (between 0.3 and 0.33). This is due to the characteristic of this dataset where the 

boundaries are not well defined. 
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Figure 6. memberships learned by LSL on dataset 2 (Fig. 4 (b)) with respect to (a) cluster 1, (b) 

cluster 2, and (c) cluster 3.  

 

 
 

Figure 7. Results of clustering dataset 2 using (a) FCM, (b) DBSCAN, (c) GK, (d) kNERF, (e) 

Spectral, and (f) LSL. 

 

Dataset 2 is constituted of two concentric ovals. It does not correspond to the classical way of 

perceiving intra-cluster and inter-cluster distances. As a result, only LSL was able to categorize 

this data correctly (Fig. 7 (f)). Although it is hard to define the notion of density on dataset 2, we 

can notice that the two learned parameters (σ1 = 0.0014 and σ2 = 0.029) are meaningful (Table 

2). In fact, as cluster 2 is slightly denser than cluster 1, σ2 is slightly higher than σ1. We should 

mention here that the learned parameters are equal to the ones found by extensive search in 

section 1. This shows the efficiency of LSL in learning the parameters.  Figure 8 shows that some 

points have memberships around 0.5, indicating that they are close to both clusters in the mapped 

feature space. This is an inherit limitation of the LSL since it implicitly uses the Euclidean 

distance to map the data. 
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Table 2 Partition and parameters learned by LSL for Dataset 4 displayed in Figure 4 (b) when K = 1.5 

 

Partition  Learned σi’s 

 

σ1 = 0.014 

σ2 = 0.029 

 

 

 
 

Figure 8. memberships learned by LSL on dataset 4 (Fig. 4 (b)) with respect to (a) cluster 1, and (b) 

cluster 2. 

 

5.2. VIDEO CATEGORIZATION  

 
To illustrate the ability of LSL to model data containing hardly separable clusters, and cluster real 

video collection dataset. We use UCF Sports action dataset which consists of a set of actions 

collected from various sports [63]. It contains 150 video sequences of sport actions at a resolution 

of 720x480. Actions in this dataset include Diving (14 videos), Golf swinging (18 videos), 

Kicking (20 videos), Lifting (6 videos), Horseback riding (12 videos), Running (13 videos), 

Skating (12 videos), Swinging (33 videos) and Walking (22 videos). Figure 9 shows 12 sample 

videos from this dataset. The videos within most categories show high intra-class variations. For 

instances, the ”Gulf” category includes videos of gulf swings taken from front, side and back. 

Similarly, the “Kicking” category contains front and side views of players kicking balls. Each 

video frame in the collection is represented using three low-level visual descriptors. These are 

some of the commonly used features in content based image retrieval. They may not be the 

optimal features for the selected video collection. However, our goal is to show that the clustering 

of these features using LSL provides better results than traditional clustering.  

 

- RGB color histogram: Each image is mapped to the RGB color space and quantized into 

32 bins. A 32-dimensional histogram is used to represent the distribution of the color of each 

image.  

- HSV color moments: Each image is mapped to the HSV color space, and the mean, 

standard deviation, and skewness of the distribution of the H, S, and V components are computed. 

This feature subset is represented by a 9- dimensional vector.  
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- Edge histogram: We use the MPEG-7 edge histogram descriptor (EHD) [64] to represent 

the frequency and directionality of the edges. First simple edge detector operators are used to 

identify edges and group them into five categories: vertical, horizontal, 45% diagonal, 135% 

diagonal, and isotropic (non-edge). Thus, the global edge histogram has 5 bins. Similarly, for the 

semi global edge histograms, we define 13 different segments (i.e., 13 different subsets of the 

image-blocks) and for each segment we generate edge distributions for five different edge types 

from the 80 local histogram bins. Consequently, the EHD feature set is represented by a 150-

dimensional vector (80 bins (local) + 5 bins (global) + 65 bins (13×5, semi-global)).  

 

 
 

Figure 9. Sample videos from the the 9 categories from UCF sports action dataset [63]. 

 

 
 

Figure 10. Sample videos key frames generated using LSL to represent videos from UCF sports 

action dataset [63]. 
 

After extracting these low level features from all frames, we concatenate them in order to 

represent each frame using one high-dimensional vector (191-dimensions). Then, we use the 

corresponding relational data as input to the clustering algorithm. More specifically, we LSL to 

group frames of the same video into visually homogeneous clusters and provide representative 

key frame. Notice that we empirically set the number of clusters to three. In Figure 10, we show 

sample key frames obtained using LSL to represent videos from UCF sports action dataset [63]. 

For each video, we consider the closest frame to the centroid of the largest obtained cluster as key 

frame. In fact, it has been proved in [37] that the Euclidean distance, d ik
2 = ∥    xk − ci∥2

, from 

feature xk to the center of the i thcluster, ci, can be written in terms of the relational matrix Dias 

;��< = D+� ]�E� − ^#RB# ^#
< .                                                                                       (23) 

In (23), Di is the pairwise distance matrix, vi is the membership vector of all N samples in cluster 

i defined by 

]� = D=#'>,…,=#@> ER
∑ =# >@ A' .                                                                                     (24) 

The linked image cannot be display ed.  The file may  hav e been mov ed, renamed, or deleted. V erify  that the link points to the correct file and location.

The linked image cannot be display ed.  The file may  hav e been mov ed, renamed, or deleted. V erify  that the link points to the correct file and location.
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The obtained key frame collection is then used to categorize the video collection. In other words, 

we run LSL on the key frame vectors in order to cluster them into a set of visually homogeneous 

categories. The obtained key frame clusters correspond to the categories existing in the video 

collection. To assess the performance of the proposed video categorization approach, we assume 

that the ground truth is known, we consider the classification rate. More specifically, each cluster 

is assigned a label based on the majority of the true labels of its elements. Then, the correct 

classification rate of each cluster is computed. Since it is difficult to compare the individual 

clusters’ rates for different partitions (requires cluster matching, and taking into account the 

cluster sizes), we simply compute the overall classification rate of the partition as the average of 

the individual clusters rates weighted by the clusters cardinality. The results were compared with 

those obtained using FCM [42] and DBSCAN [43] algorithms. 
 

Since these algorithms require the specification of the number of clusters, first, we set the initial 

number of clusters to 9 and measure the performance of the different algorithms as shown in 

Table 3. All methods achieved reasonable overall performance with LSL based solution 

outperforming the method relying on FCM [42] and DBSCAN [43].  

 
Table 3. Overall accuracy obtained using the proposed method, FCM [42] and DBSCAN [43]. 

 

 
LSL FCM DBSCAN 

Classification rate 94.12% 73.46% 81.86% 

Folkes-Mallows 71.49% 46.60% 68.22% 

Jaccard coefficient 49.97% 38.73% 42.04% 

 

To illustrate the video categorization performance, we display in Table 4 sample videos from the 

9 clusters obtained using the proposed approach and LSL. As it can be seen, our algorithm 

generates a partition that is highly similar to the ground truth partition. In other words, these 

clusters are more compatible with the users’ notion of categories present in the video collection. 

This could be explained by the fact that the proposed algorithm learns better the structure of the 

data. Moreover, LSL makes frames clusters separable and yields better overall performance. 

However, as one can notice, few videos are wrongly assigned to different clusters. For instance, 

for cluster 6, the third video from the left is wrongly assigned to this cluster. In fact, the visual 

properties of this video (from the “Walking” category) are similar to those shared by most videos 

of the “Kicking” cluster. Thus, despite these videos are from different categories, the considered 

low-level features were unable to discriminate between them. 

 

Table 5 displays two clusters obtained using FCM [42] and DBSCAN [43]. More specifically, we 

used these two algorithms, instead of LSL, to determine the key frames, and to cluster them into 

video categories. As it can be seen, the obtained video classes are less homogeneous. This is 

because FCM [42] and DBSCAN [43] do not have a provision for cluster dependent parameters. 

In other words, they learn one global sigma for the whole dataset. Thus, they are less capable of 

discriminating between frames sharing similar visual descriptors. For instance, for DBSCAN [43] 

“Diving” and “Lifting” images are categorized into the same cluster because their color 

descriptors are very similar.  
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Table 4. Sample videos from the 9 clusters generated by LSL 

 

 

 
 

When we analyzed further the results we noticed that the FCM algorithm [42] uses more than one 

clusters for the “Gulf” and the “Kicking” categories. This is because these categories have large 

intra-cluster color variations. As a result, other categories (e.g. “Skating” and “Walking”) were 

not categorized correctly (since the number of clusters is fixed to 9). On the other hand, LSL 

sufferers less from this problem because it handles better clusters of different shapes and sizes. 
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The obtained clusters are more compatible with the user’s notion of clusters. This improvement in 

performance is due mainly to the cluster dependent parameters learned by LSL that reflect the 

intra-cluster characteristics of the data.  

 
Table 5 Sample “wrong” clusters obtained using FCM [42] and DBSCAN [43]. 

 

 
 

In Table 6, we show the per-cluster accuracies of the video categorization achieved by the 

different algorithms within the obtained clusters. We assign to each obtained cluster, the majority 

class of the videos assigned to it. For instance, if the majority of the videos assigned to a given 

cluster are from the class “Kicking”, then we consider that the correct class of this cluster is 

“Kicking”, and we calculate its accuracy based on this assumption. As it can be seen, video 

categorization using LSL outperforms the results obtained using FCM [42] and DBSCAN [43]. 

More specifically, LSL based categorization yields higher accuracies withrespect to all clusters. 
 

Table 6 Per-cluster accuracy obtained using the proposed method, FCM [42] and DBSCAN [43]. 

 

cluster # LSL FCM DBSCAN 

1 96.5% 73.46% 81.86% 

2 97.32% 74.12% 83.05% 

3 45.78% 18.23% 25.19% 

4 57.91% 33.47% 57.91% 

5 66.54% 21.98% 60.07% 

6 90.11% 82.58% 90.11% 

7 77.56% 47.71% 55.16% 

8 95.66% 66.09% 88.20% 

9 92.44% 58.63% 70.98% 

 

6. CONCLUSIONS AND FUTURE WORK  
 

Despite researcher efforts to propose efficient Content Based Video Retrieval (CBVR) systems, 

the proposed solutions have proved to be inherently constrained by the performance of the 

machine learning component which aims to categorize the video collections into visually 
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homogeneous clusters. In this paper, we have introduced a novel approach for efficient video 

categorization which relies on two main components. The first one is a new relational clustering 

techniques that identifies video key frames by learning cluster dependent Gaussian kernels. The 

proposed algorithm, called clustering and Local Scale Learning algorithm (LSL) learns the 

underlying cluster dependent dissimilarity measure while finding compact clusters in the given 

frame dataset. The learned measure is a Gaussian dissimilarity function defined with respect to 

each cluster. This is a major contribution to Gaussian based clustering approaches such as kernel 

and spectral clustering methods that suffer from their sensitivity to this parameter.  

 

We have illustrated the clustering performance of LSL on synthetic 2D datasets and on high 

dimensional real data. Our experimental results have demonstrated the effectiveness of LSL. In 

addition, we have shown that the learned parameters and the memberships returned by LSL are 

meaningful and reflect the geometric characteristic of the data. Also, the proposed LSL algorithm 

has been adopted by our video categorization system in order to group similar video frames of the 

same video into clusters, and obtain key frames summarizing each video. LSL has been used to 

cluster these key frames in order to discover video categories existing in a real video collection.  

 

Currently, we assume that the number of clusters is known priori. We plan to investigate relaxing 

this assumption by identifying the optimal number of clusters in an unsupervised manner. We 

would relax the constraint that the memberships of any data instance with respect to a given 

cluster must sum to 1, and use possibilistic memberships [45]. This way, we can over specify the 

number of clusters, then identify and merge similar clusters. In addition the optimal number of 

cluster identification, the possibilistic logic would improve LSL in terms of robustness to noise 

and outliers.  
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