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ABSTRACT 
 

The wide usage of the Internet and the availability of powerful computers and high-speed networks as low-

cost commodity components have a deep impact on the way we use computers today, in such  a way that 

these technologies facilitated the usage of multi-owner and geographically distributed resources to address 

large-scale problems in many areas such as science, engineering, and commerce. The new paradigm of 

Grid computing has evolved from these researches on these topics. Performance and utilization of the grid 

depends on a complex and excessively dynamic procedure of optimally balancing the load among the 

available nodes. In this paper, we suggest a novel two-dimensional figure of merit that depict the network 

effects on load balance and fault tolerance estimation to improve the performance of the network 

utilizations. The enhancement of fault tolerance is obtained by adaptively decrease replication time and 

message cost. On the other hand, load balance is improved by adaptively decrease mean job response time. 

Finally, analysis of Genetic Algorithm, Ant Colony Optimization, and Particle Swarm Optimization is 

conducted with regards to their solutions, issues and improvements concerning load balancing in 

computational grid. Consequently, a significant system utilization improvement was attained. Experimental 

results eventually demonstrate that the proposed method's performance surpasses other methods. 
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1. INTRODUCTION 

 
Lately, the progressive expansion of large, complex, heterogeneous, and multi-dimensional data 

has put under spot the capacity of the existing data management software and hardware 

infrastructure. Nowadays, there exist many different types of data sources, such as sensors, 

scientific instruments, and the Internet, contributing to the data booming. The relatively slower 

development of new and efficient data models to process complex and large-scale data poses 

huge challenges that require straightaway attention from academia, research, and industry [1] [2]. 

As traditional data models, which are basically relational in nature, can't handle the today’s data 

needs, a new technology in data science is produced that gives rise to a fast emergence of a wide 

range of non-relational data models, which, today, are popularly known as NoSQL and/or Big 

Data models [3]. Grid technology has emerged as a new era of large-scale distributed computing 

with high-performance orientation. Grid resource management is literally the process of 

identifying requirements, matching resources to applications, allocating those resources, 

scheduling and monitoring grid resources over time in order to run grid applications as efficiently 

as possible [4]. Resource discovery represents the first phase of resource management, whereas 

scheduling and monitoring is the next step. Scheduling process leads the job to the appropriate 

resource and monitoring process views the resources. Heavily loaded resources will act as server 
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of task, while lightly loaded resources will act as receiver of task. Task will migrate from heavily 

loaded node to lightly loaded node. As the resources are dynamic in nature, their load varies with 

change in configuration of grid resulting in a significantly influence of the load balancing of the 

tasks on grid’s performance [5] [6].  

 
Load balancing results in a low cost, dispensed scheme that balances the load among all the 

processors. Efficacious load balancing algorithms are basically important in enhancing the global 

throughput of grid resources. For applying load balancing in grid environment, multiple 

techniques, algorithms and policies have been introduced. Load balancing processes can be 

classified as centralized or decentralized, dynamic or static, and periodic or non-periodic [7]. 

Regarding the concept of fault tolerance, the main problems facing grid environments are 

Feasibility, Reliability, Scalability, and Connectivity [8] [9]. A fault can be tolerated depending 

on its behavior or the way of occurrence. To evaluate a fault tolerance in a system there are three 

different methods which are Replication, Check-pointing, and Scheduling/Redundancy [10].  

 

Fractal transform  based self similarity  will always be  a critical issue in the prospect of the cost 

of data storage and transmission times especially with the huge interest for images, sound, video 

sequences, computer animations and volume visualization [11]. A measurement of the inherent 

size of the data in a space can be represented by a fractal dimension of a cloud of points. This 

method has a significant disadvantage which is the long computing time, which can be reduced 

by several proposed methods. The most common approach for reducing the computational 

complexity is to organize the domain blocks into a tree-structure, which could lead to faster 

searching over the linear search [9]. This approach is able to reduce the order of complexity from 

O(N) to O(log N). Instead of dividing space in some manner, it is also possible to group the 

objects in some hierarchic organization based on a rectangular approximation of their location. R-

tree [12] is the most popular index structure for multi-dimensional data. Each type of R-tree could 

be distinctive in some aspects of performance such as query retrieval, insertion cost, application 

specific and so on. Accordingly the subsequent search in the domain pool is substituted by multi-

dimensional nearest neighbor searching, run in logarithmic time. 

 

In this paper a new method based on a balanced tree structure overlay over a grid network is 

proposed. Furthermore a fault tolerant technique, exploiting the replication of non leaf nodes to 

ensure the tree connectivity in presence of crashes is presented. This method is based on 

distributed R-tree with the concept of entropy of each node. Consequently, all ineffectual route 

paths will be discarded from the pool creating a more stable network. The proposed method 

improves the performance of the network and hence improves fault tolerance and load balancing 

algorithm when applying this approach to a grid computing networks. The rest of this paper is 

organized as follows: Section 2, mention a literature survey and related works. Section 3, presents 

the proposed method that improve both fault tolerance and load balance in grid computing, 

followed by experimental results and discussion in Section 4. In Section 5, conclusions of the 

present work are outlined. 

 

2. RELATED WORK 

 
At the service level of the grid software infrastructure, workload and resource management are 

two main functions provided. The problem of load balancing in grid computing is handled by 

assigning loads in a grid taking into account the communication overhead in gathering the load 

information. Load index is used as a decision aspect in the process of scheduling jobs within and 

among clusters. To solve this problem, a decentralized model for heterogeneous grid has been 

suggested as a collection of clusters by a ring topology for the Grid managers that are charged of 

managing a dynamic pool of processing elements, computers or processors [7]. 
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Resource scheduling for tasks engages in the scheduling of a set of independent tasks [5]. Other 

works have been based on scheduling technologies using economic/market-based models [6]. As 

job scheduling is known to be NP-complete, the use of non-heuristics is an effective method that 

practically matches its difficulty. Single heuristic approaches for the problem include Local 

Search, Simulated Annealing, and Tabu Search [6]. In recent years, some new-type bionic 

algorithms are become hot research topics such as Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm, Bees Algorithm 

(BA), Artificial Fish Swarm Algorithm (AFSA) [2]. In the Ant Colony algorithm, each job 

submitted issues an ant which searches through the network finding the best node to deliver the 

job to it. Ants catch information from each node they pass through as a pheromone in each node. 

This eventually helps other ants to find their paths more efficiently. In the particle swarm 

algorithm each node in the network individually acts as a particle which sends or receives jobs 

from its neighbors to optimize its load locally, resulting in a partially global optimization of the 

load within the whole network given time constraint limitations [17]. 

 

In [14], a hierarchical model of load distribution is introduced. It consists of a tree based Grid 

model together with three load balancing algorithms at various levels of the hierarchical model. 

The load balancing strategy is a hierarchical bottom up methodology where intra-site load is 

balanced first, followed by intra-cluster and finally intra-grid load balancing. To run 

complementary load balancing for batch jobs without specific execution deadlines, an agent-

based self-organization scheme is proposed in [18]. In [19], a combination of intelligent agents 

and multi-agent scheme is applied for both global grid load balancing and local grid resource 

scheduling. Another approach proposed in [15], based on the fault tolerant hybrid load balancing 

strategy to reach job assignments with optimal computing node utilization and minimum response 

time. 

 

In this paper, a tree based structure and the domain-range entropy is proposed to reduce the 

complexity of the grid computing network due to the similarity features with the tolerated and 

balanced R-tree index structure which can be run in logarithmic time. This will improve both load 

balancing and fault tolerance algorithm by enhancing connectivity, communication delay, 

network bandwidth, in addition to resource availability, and resource unpredictability. 

 

3. THE PROPOSED METHOD 

 

The optimization procedures depends on the complete adaptive proposed method is shown in 

Figure 1. The first step is to estimate Grid Computing Service (GCS) parameters then mapping 

this grid structure into DR-tree index structure enhanced by the Entropy method to reduce the 

completion time of the decision maker. Finally using threshold device to select the route path 

depending on two parameters load balance and fault tolerance controller. Migration controller is 

used to improve the fault tolerance and self-stabilizing controller is used to improve the load 

balance in cumulative condition way and this method is depend on first introduced in [20]. Three 

different optimization techniques applied on the herein proposed system to reach the optimum 

solution, namely: Genetic Algorithm, Ant colony optimization and Particle swarm optimization. 

Every user submits his computing jobs with their hardware requirements to the GCS. The GCS 

then replies to the user by sending the results after finishing the processing of the jobs. 

 

At the first step GCS estimation will analyze the network parameters by determine the Three-

level Top-Down view of the grid computing model depending on the method produced in [7] as 

shown in Figure 2. Level 0: Local Grid Manager (LGM), the network is subdivided into 

geographical areas where any LGM manages a group of Site Managers (SMs). Level 1: Site 

Manager (SM), every SM is assigned the management of processing elements (computers or 

processors) cluster which is dynamically configured (i.e., processing elements may join or leave 
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the cluster at any time). Level 2: Processing Elements (PE) any public or private PC or 

workstation can register within any SM to join the grid system and offer its computing resources 

to be exploited by the grid users. As soon as being adhered to the grid, a computing element 

triggers the GCS system which will return to the SM some information about its resources like 

CPU speed.  
 

 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The complete adaptive proposed procedure. 
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Figure 2. Grid computing model structure. 

 

3.1. Distributed R-tree (DR-tree) 
 

First we convert the tree model of grid computing nodes into DR-tree for the similarity features 

then dealing with the new tree with the DR-tree conditions. R-trees [13] are defined as height-

balanced tree handling objects whose representation can be confined in a poly-space rectangle. In 

other words, R-tree can be depicted as a data structure capable of efficiently indexing a multi-

dimensional space. R-tree has by the following structural properties: The root comprises 2 to M 

children, every internal node has from m to M children (m ≤ M/2), and all leaves are equal in 

level. 

 

Distributed R-trees (DR-trees) expand the R-tree index structures having similar self-organized 

nodes that are in a virtual balanced tree pave based on semantic relations. The structure maintains 

the R-trees index structure features:  search time logarithmic in the network size and bounded 

degree per node. Physical machines connected to the system could be further referred to as p-

nodes (shortcut for physical nodes). A DR-tree is defined as a virtual structure distributed over a 

set of p-nodes. In the following context, terms related to DR-tree will have the prefix: “v-”. 

Consequently, DR-trees nodes will be denoted v-nodes. There are two distribution invariants 

properties in the implementation of DR-tree proposed in [16]. The main points in the composition 

of a DR-tree are the join/leave procedures. A p-node creates a v-leaf as soon as it is adhered to the 

system. After that, it contacts another p-node to embed its v-leaf in the existing DR-tree. During 

this insertion, some v-nodes may split as shown by Algorithm1. 

 

 

 

 

 

 
High Speed Network 

LGM 

LGM 

Site/Cluster 

LAN 

PE 
PE 

SM 
SM SM 

SM 

PE 
PE 

PE 
PE PE 

PE 

Level 0 

Level 1 

Level 2 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015 

 

24 

Algorithm1  
 

1: Void onSplit (n:V_Node) 

2: If n.is V_ Root then 

3:    Initiate new V_ Root = create n.V_Node. 

4:  Calculate n.v_ father = initiate new V_Root. 

5: End if 

6: Calculate m, where m = select n.v_children. 

7: Initiate then calculate new V_Node = create m.V_Node. 

8: Divide D = n.v_children. 

9: Create new V_Node.v_children = D. 

10: Create new V_ Node.v_ father then put n.v_ father into it. 
 

3.2. Entropy 
 

According to Shannon,  Entropy [11] is defined as a set of events S={ x1 , x2 ,... xn }, where p(xi ) 

=pi  represents the probability of incidence of each event. These probabilities, P={ p1 , p2 ,... pn }, 

are such that each  pi ≥0 , and ∑ ���
��� = 1, which takes the form: 

 

 	
��, ��, …��� = 	
�� = −∑ ���
��� log ��                   (1) 

Entropy can be defined as the average self-information that is, the mean (expected or average) 

amount of information for an occurrence of an event xi. In the context of message coding, entropy 

can be represented as the minimum bound on the bits average number for each input value. The 

function H has the following lower and the upper limits: 
 

 0 = 	
1,0,0,…0� ≤ 	
��, ��, … ��� ≤ 	 ��� ,
�
� , …

�
�� = ���	�               (2) 

Searching the pool of domain blocks is considered time consuming as good approximations are 

obtained when many domain blocks are allowed. This method consists of omitting the domain 

block having high entropy from the domain pool, and hence all the unnecessary domains will 

disappear from the pool to reach a higher production domain pool. This way will reduce the 

overhead of the network by decrease the number of searching nodes and then improve the 

performance of the grid computing networks. During GCS estimation, the grid manager will 

trigger Algorithm1 by picking up some parameter ε, subsequently Algorithm2 will be executed. 

Algorithm2  
1: Step 1: Initialization choose parameter ε ; 

2: Divide the input grid into n:V_Node 

3: For (j =1; j ≤ n; j ++) { 

4: H = entropy (V_Node); 

5: If (H ≤ ε ) 

6: Step 2: execute Algorithm 1} 

 

3.3. Optimization Techniques 
 

A load balancing algorithm should optimize the usage of available resources either in the Grid 

such as computational or data resources, in addition to time or cost related to these resources, etc. 

The Grid environment results in a dynamic search space and hence as this optimality represents a 

partial optimal solution that improves the performance. The proposed approaches optimize the 

parameter ε by combining genetic algorithm, ant colony and particle swarm optimization 

following the initialization process in the above mentioned algorithm2 to accomplish the 

optimum resource utilization. These three optimized methods were discussed earlier in details in 

[21]. 
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3.3.1. Genetic Algorithm (GA) 

 
 GA is part of the group of Evolutionary Algorithms (EA). The evolutionary algorithms exploit 

the three key principles of the natural evolution: natural selection, reproduction, and species 

diversity, preserved by the differences of each generation with the previous. Genetic Algorithm 

usually works with a group of individuals, representing possible solutions of the task. Giving an 

individual assessment according to the desired solution, the selection principle is applied by using 

a criterion. The best-suited individuals create the next generation. The huge diversity of problems 

in the engineering sphere, equally as in other fields, implies the usage of algorithms from 

different type, with multiple characteristics and settings. Algorithm 3 shows the GA procedure 

used for select optimum parameter ε. 

 

Algorithm 3  
 

1: Initialize population of individual grid user jobs to both longest and smallest to fastest processor with 60 

random schedules.  

2: Evaluate the fitness of all individuals. 

3: While termination condition not met do.  

4: Select fitter individuals for reproduction at minimum execution time.  

5: Crossover between individuals by two-point crossover.  

6: Mutate individuals by simple swap operator.  

7: Evaluate the fitness of the modified individuals that keeping relevant fitness.  

8: Generate a new population  

9: End while. 
10: Initiate Authorized task for sequence Si For each processor Pi.  

11: Concatenate sequences Si. A permutation sequence of tasks will be assigned to processors.  

 

3.3.2. Ant Colony Optimization (ACO) algorithm  

 

 Ant Colony Optimization (ACO) is denoted as an analytical approach for dealing with 

optimization problems based on population met. ACO produces good solutions to the 

optimization problems by redistributing work among the nodes by means of ants. The ants 

traverse the grid network and leave the pheromones on the path. As soon as they reach the 

destination, the ants update the pheromones tables. The pheromone trail laying and following 

behavior of real ants represent the main source of ACO. The ants move from node to node, and 

consequently explore the information presented by the pheromones values and thus increasingly 

build the resultant solution. Algorithm 4 shows Ant Colony Algorithm procedure used for select 

optimum parameter ε. 
 

Algorithm 4   
1: Input: Parameters for the ACO.  

2: Output: Optimal solution to the problem. 

3: Begin 

4: Initialize the pheromone  

5: While stopping criterion not satisfied do  

6:  Position each ant in a starting node  

7:  Repeat  

8:  For each ant do  

9:  Chose next node  

10:  by applying the state transition rate  

11:  End For  

12:  Until every ant has built a solution  

13:  Update the pheromone  

14: End While  

15: End 
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3.3.3. Particle Swarm Optimization (PSO) algorithm 
 

 As Particle Swarm Optimization technique is simple and able to successfully tackle these 

problems, it is also applied in many optimization and search problems. PSO optimizes an 

objective function by repeatedly amending a swarm of solution vectors, known as particles, 

depending on special memory management technique. Each particle is altered by attributing the 

memory of individual swarm’s best information. The swarm can regularly amend its best 

observed solution and converges to an optimum by virtue of the collective intelligence of these 

particles. Every element ranges from 0 to 1 and vice versa. Additionally, each particle processes a 

D-dimensional velocity vector whose elements' range is [-Vmax,Vmax]. Velocities are 

interpreted according to probabilities that a bit will be in one state or the other. When the 

algorithm starts, a collection of particles with their velocity vectors are developed randomly. Then 

in some phase the algorithm's aim is to obtain the optimal or near optimal solutions referring to its 

predefined fitness function. The velocity vector is amended in each time step using two best 

positions, pbest and nbest, and then velocity vectors are used to update the position of the 

particles. Pbest and nbest are D-dimensional, with the elements composed of 0 and 1 exactly like 

particles position and represent the algorithm's memory. The personal best position, pbest, is the 

best position the particle has visited, whereas nbest is the best position visited by the particle and 

its neighbors since the first time step. At the time where all of the population size of the swarm 

becomes the neighbor of a particle, nbest is named global best (star neighborhood topology) and 

if the smaller neighborhoods are specified for each particle (e.g. ring neighborhood topology), 

then nbest can be called local. Algorithm 5 shows Particle Swarm Optimization Algorithm 

procedure used for select optimum parameter ε. 
 

Algorithm 5  
1: Randomly particle and position will store in a created and initialized m x n matrix. 

  Where 

    ‘m’ denotes a number of node 

    ‘n’ denotes a number of job 

2: Calculate the estimated time to complete values of each node using Range Based Matrix. 

3: Calculate the Fitness of each Particle and search for the Pbest and Gbest. 

4: Xk is estimated and in case its value is greater than the fitness value of pbestk, pbestk is  

    replaced with Xk. Where Xk is denotes the updated position of the particle. 

5: Replace nbest with pbest because Fitness value of nbest is smaller than pbest. 

6: Until to reach the max Velocity. 

7:          If it is satisfying the maximum velocity. 

8:              Stop. 

9:              End. 

10:        If the maximum velocity is not satisfied. 

11:            Update the Position Matrix. 

12:            Update the Velocity Matrix. 

13:End. 

 

3.4. Fault Tolerance 

 
In the typical DR-tree performance [13], when a p-node fails, all its sub-trees are replaced in the 

non-faulty structure (p-node by p-node) to ensure the DR-tree invariants. The proposed algorithm 

guarantees fault-tolerance and also preserves the DR-tree design with its invariants by using the 

non leaf v-nodes reproduction. The pattern for v-nodes replication is represented as every p-node 

holds a replica of the v-father of its top v-node and on the other hand, the p-root holds no replica. 
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3.4.1. Fault Tolerance Estimation 

 
This section investigates the cost of replication as presented in [9]. Then apply it to the proposed 

system. Let costs be defined as the cost of updating replicas in a split time. As each v-node has 

M−1 replicas and each update costs one message, we have:  

 

   ����� = 
 + 2�
# − 1�                 (3) 

A p-node associated with the system may change between 0 and $���%
&�' splits, adding its v-

leaf to the v-children of another v-node that is denoted in the sequence the joined v-node. The 

latter has: Between m and M v-children; (���%
&� − 1)	v-ancestors; between m−1 and M −1 

replicas. We will define hereafter an upper bound on the number of updates as long as each v-

node has M − 1 replicas. A v-node can have m to M v-children and therefore has M − m + 1 

possible numbers of v-children. The split will happen only when it has exactly M v-children. The 

probability for a v-node to split is p, where:  

 

   � = �
*+%,�                                         (4) 

The probability for a p-node to generate k splits is the probability pk that the associated v-node 

and its k – 1 first v-ancestor have literally M v-children while its k-th ancestor does not split. 

Hence: 

   �- = �-
1 − ��                        (5) 

Let costr denote the average cost of replicas updates when a p-node is associated with a DR-tree: 

 

����. = �/
# − 1� + ∑ 
�-$0123
4�'
-�� 5	������            (6) 

The first term represents the case where no splits are produced, i.e., M−1 replicas of the joined v-

node are to be updated, while the second corresponds to the other cases. We could have identified 

the case where the v-root splits, with different probability as it has M − 1 possible v-children. 

However, for m > 2, this probability is smaller than p so in order to simplify the calculation, an 

upper bound is assumed. 

 

3.4.2. Migration Controller 

 

Reinsertion policy and replication policy [16] are used to evaluate DR-Tree insertion operations, 

which uses internal v-nodes. As soon as the crash of one non leaf p-node was generated for each 

DR-tree, the cost of system restoration in terms of number of messages and stabilization time is 

calculated based on both the reinsertion and replication policies. 

 
(1) Stabilization time: The reinsertion mechanism is responsible of balancing the system in a 

number of cycles proportional to both, the tip of the participation graph and the level of the burst 

p-node. As the stabilization time is the time of the longest reinsertion, it is proportional to 

logm(N). 

 

(2) The message cost of the restoration phase: denoted by the number of messages required to 

balance the system from a non leaf p-node burst. The costs are of different magnitude so with the 

reinsertion policy, the number of message distribution is much skewed which results in a high 

standard deviation. 
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3.5. Load Balance 

 
As explained earlier in [14], every SM collects the information of any PE joining or leaving the 

grid system and then transmits it to its parent LGM. This means that a processing element only 

needs a communication when joining or leaving its site. The system workload between the 

processing elements will be balanced when using the collected information to efficiently utilize 

the whole system resources in order to minimize user jobs response time. By applying this policy, 

not only the connectivity will be improved but also, the system performance. This is 

accomplished by minimizing the communication overhead abstracted from capturing system 

information before making a load balancing decision. The following parameters will be defined 

for GCS model to formalize the load balancing policy: 

 

1. Job: All jobs in the system will represented by a job Id, job size in bytes, and a number of job 

instructions.  

2. Processing Element Capacity (PECij): The PEC can be measured assuming an average 

number of job instructions using the PEs CPU speed and will be defined as number of jobs per 

second that the j
th
 PE at full capacity in the i

th
 site can be processed.  

3. Site Processing Capacity (SPCi): Defined as number of jobs that can be processed by the ith 

site per second. Hence, the SPCi can be measured by summing all the PECs for all the PEs 

managed the i
th
 site.  

4. Local Grid Manager Processing Capacity (LPC): The LPC can be measured by summing all 

the SPCs for all the sites managed by that LGM and will be defined as number of jobs per second 

that LGM can be processed.  
 

3.5.1. Load Balance Estimation  
 

The load balancing policy as presented in [7] is a multi-level one and can be explained at each 

level of the grid architecture as follows:  
 

A. Load Balancing At Level 0: Local Grid Manager  
 

As mentioned earlier, the LGM sustains information about all of its responsible SMs in terms of 

processing capacity SPCs. LPC can be considered as the total processing capacity of a LGM 

obtained from the summation of all the SPCs for the total sites managed by that LGM. Depending 

on the total processing capacity of every site SPC, the LGM scheduler will control the workload 

balance between sites group members (SMs). Where N defined as the number of jobs arrived at a 

LGM in the steady state, the ith site workload (SiWL) is the number of jobs to be allocated to ith 

site manager and is calculated as follows: 
 

   6�78 = & × :;<=>;<                     (7) 

 

B. Load Balancing At Level 1: Site/Cluster Manager  
 

Every SM stores some information about the PECs of all the processing elements in its cluster. 

The total site processing capacity SPC of all the processing elements is calculated from the sum 

of all the PECs included in that site. With the same policy used by the LGM scheduler to balance 

the load, the SM scheduler will be used where M is defined as the number of jobs arrived at a SM 

in the steady state. Under the policy of distributing site workload among the group of processing 

elements based on their processing capacity, the throughput of every PE will be maximized and 

also its resource utilization will be improved. On the other hand, the number of jobs to be 

allocated to ith PE is defined as the ith PE workload (PEiWL) which is calculated as follows: 
 

   ?@�78 = # × ;A<=:;<                      (8) 
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3.5.2. Self-Stabilizing Controller 

 
In order to calculate the mean job response time, we assume one LGM scenario as a simplified 

grid model. In this scenario, we will be examining the time elapsed by a job in the processing 

elements. Algorithm 6 will execute to calculate the traffic intensity ρij and hence, the expected 

mean job response time:  

 

Algorithm 6 
1: Obtain λ,µ where, λ: is the external job arrival rate from grid clients to the LGM, µ: is the LGM 

processing capacity. 

2: Calculate ρ=λ/µ is the system traffic intensity. For the system to be stable ρ must be less than 1.  

2: For i= 1 to m 

3: Calculate λi,µi where, λi is the job arrival rate from the LGM to the i
th

 SM which is controlled by that 

LGM, µi: is the i
th

 SM processing capacity. 

4: Calculate the traffic intensity of the ith SM, ρi=λi/µi . 

5: For j= 1 to n  

6: Calculate λij,µij where, λij: is the job arrival rate from the i
th

 SM to the j
th

 PE controlled by that SM, µij: 

is the j
th

 PE processing capacity which is controlled by the i
th

 SM. 

7: Calculate the traffic intensity of the j
th

 PE which is controlled by i
th

 SM, ρij=λij/µij. 

8: Calculate the expected mean job response time, @BCDE. 
9: End. 

10: End. 

 

The jobs arrive consecutively from clients to the LGM with a time-invariant Poisson process 

assumption. The inter-arrival times are not only independent, but also identically and 

exponentially allocated with the arrival rate λ jobs/second. Simultaneous arrivals are excluded. 

Each of PE in the non-static site pool will be represented by an M/M/1 queue. Jobs arriving to the 

LGM will be naturally distributed on the sites regulated by that LGM with a routing probability, 

?F6� = :;<=
>;< .  

 

Complying with the load balancing policy (LBP), if i is the site number	G� = G × ?F6� = G ×
:;<=
>;< . In a similar situation, the site i arrivals will be also naturally distributed on the PEs managed 

by that site with a routing probability ?F@�H =
;A<=I
:;<=

 according to the LBP, where j is the PE 

number and i is the site number	G�H = G� × ?F@�H = G� ×
;A<=I
:;<=

. As the arrivals to LGM are 

simulated to follow a Poisson process, the arrivals to the PEs will also follow a Poisson process. 

Let us consider that the service times at the j
th
 PE in the i

th
 SM are exponentially shared with fixed 

service rate µij jobs/second. They will represent the PE's processing capacity (PEC) in our load 

balancing policy. The service control is First Come First Serviced. To calculate the expected 

mean job response time, we assume that E [Tg] denotes the mean time spent by a job at the grid to 

the arrival rate λ and E [Ng] denotes the total number of jobs in the system. Thus, the mean 

elapsed time by a job at the grid is given by equation 9 as follows: 

 

 E	[Ng]	=	λ	×	E	[Tg]           (9) 

 

E [Ng] can be measured by adding the mean number of jobs in every PE at all grid sites. So, 

@B&DE = ∑ ∑ @[&;A�H ]�
H��

%
���  where i=1,2,…,m is the number of site managers handled by a LGM, 

j=1,2,…,n is the number of processing elements handled by a SM and @[&;A�H ] is the mean 

number of jobs in a processing element number j at site number i. Because every PE is 

represented as an M/M/1 queue, @B&;A�H E =
P=I
�+P=I

 where ρij=λij/µij, µij = PECij for PE number j at 

site number i. Referring to equation 9, the expected mean job response time is given by: 
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@BCDE = �
Q × @B&DE =

�
Q × ∑ ∑ @[&;A�H ]�

H��
%
���            (10) 

 

Note that the stability condition for PEij is ρ<1.  

 

3.6. Threshold Device 
 
A novel 2-D Figure of Merit is used to test the network performance. An example of the 2-D 

figure of merit is shown in Figure 3. It divides the fault tolerance (FT) error – load balance (LB) 

error space into different performance conditions as follows: The FT estimation varies between 

three threshold intervals (FT error units are in numbers depending on the grid size) as follows: (1) 

From [0 … 30] which indicates a Good system. (2) From [30 … 60] which indicates a Medium 

system. (3) Above 60 which indicates a Bad system. The LB estimation varies between three 

threshold intervals (LB error units are in second depending on the mean job response time) as 

follows: (1) From [0 … 0.1] which indicates a Good system. (2) From [0.1 … 0.3] which 

indicates a Medium system. (3) Above 0.3 which indicates a Bad system. We can observe that 

Figure 3 is divided into 9 different areas as follows: (1) GG: this interval is good for both FT and 

LB estimation. (2) GM: this interval is good for FT estimation and medium for LB estimation. (3) 

GB: this interval is good for FT estimation and bad for LB estimation. (4) MG: this interval is 

medium for FT estimation and good for LB estimation. (5) MM: this interval is medium for both 

FT and LB estimation. (6) MB: this interval is medium for FT estimation and bad for LB 

estimation. (7) BG: this interval is bad for FT estimation and good for LB estimation. (8) BM: 

this interval is bad for FT estimation and medium for LB estimation. (9) BB: this interval is bad 

for both FT and LB estimation. 

 

 

Figure 3. The proposed 2-D Figure of Merit. 

 

Finally, to enhance fault tolerance estimation we decrease replication time and message cost and 

this will cause increase in probability of job completed. On the other hand, to enhance load 

balance estimation we decrease mean job response time and this will cause increase in number of 

jobs/second. 
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4. RESULTS AND DISCUSSION 

 
A simulation model is built using MATLAB simulator to evaluate the performance of grid 

computing system based on the proposed algorithm. This simulation model consists of one local 

grid manager which manages a number of site managers which in turn manages a number of 

processing elements (Workstations or Processors). All simulations are performed on a PC (Dual 

Core Processor, 2.3 GHz, 2 GB RAM) using Windows 7 Professional OS. Figure 4 show the 

comparison between the load balance of the proposed method and the old algorithm mentioned 

before in [4] at different arrival rates. The mean job response time for different random 

distributions such as Exponential, Uniform, Normal and Poisson are calculated and after many 

trials it can be shown that the same results obtained for all distributions. The improvement ratio 

(gain) can be calculated and shown in Figure 5 and from this figure we can see that maximum 

improvement ratio is 98%.  

 

 
 

Figure 4. Load Balance Estimation Compared With The Old Algorithm. 
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Figure 5. Load Balance Improvement Ratio. 

 

The second experimental results is shown in Figure 6, here fault tolerance estimation is 

proportional to grid size and it can be shown that grid size for the proposed method is better than 

the old algorithm mentioned in [7] and the calculated values experimented at different levels of 

entropy values. The threshold device selects the best route path for the processing element from 

the all members of the grid then deciding the best system to be stable with respect to load balance 

and fault tolerance policies. When applying this best selected route path and feed back again to 

select the best value for the entropy threshold to improve both load balance and fault tolerance we 

found that the load balance still the same and this confirm the stability condition of DR-tree for 

the system. But the experimental results show that fault tolerance enhanced with different entropy 

threshold values and the improvement ratio for fault tolerance is 33%. The last experiment show 

that when decrease the entropy threshold under 80% of its values the stability of the system 

affected and the output result not accurate this could be shown in Figure 7 as the total final 

improvement ratios are 98% for load balance and 33% for fault tolerance which are very good 

enhancement ratios.  
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Figure 6. Fault Tolerance Estimation with different Entropy Levels Compared With The Old Algorithm. 

 

 
 

Figure 7. Path Selector with 2-D Figure of Merit with different Entropy Levels Compared With The Old 

Algorithm. 

 

Finally, Applying optimization Algorithms to improve the performance of system utilization by 

using parameters as follows: No. of dimensions = 20, No of particles = 64, No. of iterations = 

1000. Figure 8, 9, 10 show Fitness functions for GA, ACO and PSO respectively. When 

comparing the three different optimization algorithms with respect to system utilization the 

experimental study show that they almost the same but PSO algorithm give the best performance 

and the system utilization decrease about 75% as shown in Figure 11. 
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Figure 8. Fitness function of GA. 

 

 

 
Figure 9. Fitness function of ACO. 
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Figure 10. Fitness function of PSO. 

 

 
 

Figure 11. System utilization 
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5. CONCLUSION 

 
This paper proposes a new adaptive procedure based on advanced fractal transform that enhances 

the tree model structure of grid computing environment to improve the network performance 

parameters affected by both fault tolerance and load balance. First, the network parameters fault 

tolerance and load balance estimation have been calculated based on fractal transform. In our 

work, simulator of fault tolerant approach for load balancing in grid environment is build. In this 

one local grid manager with 9 sites and each site have 1 to 3 processing elements and queue 

length of each computing element is from 1 to 50 and this was illustrated in a 2-D Figure of 

Merit. The grid computing routing protocol is enhanced by improving both fault tolerance and 

load balance estimation in a novel 2-D figure of merit. The improvement of the fault tolerance 

estimation is achieved by decrease replication time and message cost and this will cause increase 

in probability of job completed. On the other hand, the load balance estimation is enhanced by 

decrease mean job response time and this will cause increase in number of jobs/second. Finally, 

the improvement ratios are 98% for load balance and 33% for fault tolerance which are very good 

enhancement ratios. Also when comparing the system utilization by three different optimization 

algorithms GA, ACO and PSO they give almost the same results but PSO produce the best 

performance and decrease the system utilization to 75% which is high performance parameters. 

Further experimentation can be done by implementing our system on a real grid computing 

network and study its performance. 
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