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ABSTRACT 
 

In this paper, we study the effect of the layout of multiple cameras placed on top of an autonomous mobile 

robot. The idea is to study the effect of camera layout on the accuracy of estimated pose parameters. 

Particularly, we compare the performance of a vertical-stereo-pair put on the robot at the axis of rotation 

to that of a horizontal-stereo-pair. The motivation behind this comparison is that the robot rotation causes 

only a change of orientation to the cameras on the axis of rotation. On the other hand, off-axis cameras 

encounter additional translation beside the change of orientation. In this work, we show that for a stereo 

pair encountering sequences of large rotations, at least a reference camera should be put on the axis of 

rotation. Otherwise, the obtained translations have to be corrected based on the location of the rotation 

axis. This finding will help robot designers to develop vision systems that are capable of obtaining accurate 

pose for navigation control. An extensive set of simulations and real experiments have been carried out to 

investigate the performance of the studied camera layouts encountering different motion patterns. As the 

problem at hand is a real-time application, the extended Kalman filter (EKF) is used as a recursive 

estimator. 
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1. INTRODUCTION 
 
Robot navigation, self-driven vehicles, and man-machine interaction are just a few examples of 

the countless applications that require solving the pose estimation problem (assessment of 

rotation and translation). This may be helpful for robots in understanding the environment and its 

objects which is a very important aspect in order for the robots to carry out their mission [1]. The 

Kalman filter (KF) is an optimal estimation algorithm for linear systems. However, in the field of 

computer vision, cameras are the typical sensors. Therefore, the linear assumption of the KF is 

violated by the perspective camera model. To deal with the nonlinearity of the image formation 

process, we use the extended Kalman filter (EKF) which resorts to calculating the derivatives 

(Jacobian) as a sort of linearization. In fact, the EKF is a suitable real-time estimator especially 

when the motion pattern is not of a chaotic nature (such as robot motion limited by motor 

capabilities and robot mass). To estimate robot pose, two back-to-back stereo pairs are used in 

[2], and the approach is studied further in [3] by comparing with subsets of cameras having 

different constructions of the EKF. Four non-overlapping cameras are motivated in [4] by the 

readiness for parallel processing deployment. The use of three cameras as a triple is compared to 

their use as two stereo pairs in [5]. 
 

Due to the difficulties facing the pose estimation (such as sensor noise, clutter, and occlusion), 

many researchers try to tackle the problem from more than one aspect. For example, in [6], a 

multiple sensor based robot localization system (consisting of optical encoders, an odometry 

model, a charge-coupled device (CCD) camera, and a laser range finder) is used. In [7] a mobile 
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manipulator is located in a known environment using sensor fusion with the help of a particle 

filter. While in [8], a real-time system that enables a quadruped robot to maintain an accurate 

pose estimate fuses a stereo-camera sensor, inertial measurement units (IMU), and leg odometry 

with an EKF. Additionally in [9], a method for geo-localizing a vehicle in urban areas tackles the 

problem by fusing  the Global Positioning System(GPS) receiver measurements, dead-reckoning 

sensors, pose prediction by 3D model and camera approach using Interacting Multiple Model - 

Unscented Kalman Filter (IMM-UKF). In [10], the mutual information between a textured 3D 

model of the city and a camera embedded on a vehicle is used to estimate its pose. Furthermore, 

in [11], a decentralized sensor fusion scheme is presented for pose estimation based on eye-to-

hand and eye-in-hand cameras. Moreover to synchronize data, an approach is proposed in [12], 

for the online estimation of the time offset, between the camera and inertial sensors during EKF-

based vision-aided inertial navigation. 

 

Another way of facing the challenges of the problem is to use markers. For example in [6], the 

pose estimation is aided by a box and color blobs, and the system is validated using only the 

Microsoft Robotics Studio simulation environment. In [13], a fixed planar camera array is used to 

localize robots with color marks. While in [14], a methodology is used for trajectory tracking and 

obstacle avoidance of a car-like wheeled robot using two CCD cameras (fixed in location with 

pan-tilt capabilities). Two rectangular landmarks with green color and different size are used on 

the robot to help its localization. Besides, in [15], a stereo system is used in tracking a quadcopter 

with illuminated markers. In addition, in [16], a tiny single camera and an inertial measurement 

unit are used as two on-board sensors and two circles with different radii are chosen as the 

external markers. Also in [17], a localization system for cooperative multiple mobile robots is 

developed observing a set of known landmarks with the help of an omnidirectional camera atop 

each robot. 

 

More on robot navigation can be found in [18] where a visual compass technique is proposed to 

determine the orientation of a robot using eight cameras, and in [19] which addresses the short 

baseline degeneration problem by using multiple essential matrices to regulate a non-holonomic 

mobile robot to the target pose. Furthermore, a broad introduction to estimating the ego-motion of 

an agent such as a robot is presented in [20] and in [21]. In fact, the work therein is a two-part 

tutorial which we will survey in the following lines for reasons mentioned below in this section. 

Instead of using “pose estimation”, the term “visual odometry” (VO) is used to denote the process 

of estimating the ego-motion of an agent (e.g., vehicle, human, and robot) using only the input of 

a single or multiple cameras attached to it. Three comparisons are held in [20]. The first compares 

the VO to the wheel odometry which depends on counting the number of wheel turns. Unlike the 

wheel odometry, the VO is not affected by wheel slip. Therefore, the VO provides more accurate 

pose estimation. The second compares the VO to the structure from motion problem (SFM). It is 

shown there that the VO is a special case of the SFM which (in addition to pose) seeks the 3D 

structure of the scene. Usually, the SFM needs refinement with an offline optimization such as the 

bundle adjustment. In contrast, the VO has to work in real time. The third comparison is 

conducted with the visual simultaneous localization and mapping (V-SLAM). It is indicated that 

the aim of the VO is the recursive estimation of robot pose. On the other hand, the target of the V-

SLAM is obtaining a global and consistent estimate of the robot path. This includes constructing 

a map of the scene and detecting the robot return to previously visited locations (known as loop 

closure). Accordingly, the concern of the VO is the local coherence of the obtained path while the 

V-SLAM is concerned with the global coherence. 

 

The conditions required by the VO are clarified in [20]. The VO detects the changes caused by 

the agent motion on the images captured by onboard cameras. Therefore, it needs an adequate 

illumination, a static scene with enough texture, and a degree of overlap among frames to obtain 

accurate estimates. The necessity of camera calibration to obtain the intrinsic camera parameters 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015 

 

 

21 

(such as the focal length), and the extrinsic parameters (such as the baseline between a stereo 

pair) is discussed. Depending on the specifications of feature correspondences, the VO is 

classified into three types: 2D to 2D, 3D to 3D, and 3D to 2D. Accordingly, some motion 

estimation approaches require using the triangulation to obtain the 3D structure of 2D feature 

correspondences of at least two frames. The triangulation is verified by the best possible 

intersection of back-projected rays from the 2D features in presence of noise and camera 

calibration errors. It is mentioned that some VO approaches have made use of the motion 

constraints to gain advantages with respect to speed and accuracy. For example, such constrains 

may determine the motion pattern to occur on a flat plane for vehicles. One of the problems 

encountering the VO is the drift. It is the accumulation of errors from frame to frame. When the 

drift becomes threatening to the accuracy, a sort of local optimization has to be utilized.  

 

In [21], the feature selection methods are shown to belong to either one of two types. The first 

uses local search techniques such as correlation. An example of the features detected by this type 

is the corner which has high gradients in both the horizontal and vertical directions. The second 

detects features determining their descriptors in each frame then matches them among frames 

based on some similarity metric between such descriptors. A blob is an example of the features 

detected by the second type. The blob is neither an edge nor a corner but is a pattern that differs 

from its neighborhood in terms of color, texture, and intensity. The use of either type of feature 

selection depends on the application. For example, the scale-invariant feature transform (SIFT) is 

robust to changes in illumination, noise, minor changes in viewpoint, and partial occlusion. 

However, it automatically neglects corners which are abundant in man-made environments. 

Therefore, the choice of the appropriate feature detector should be thoroughly considered. With 

respect to tracking, it is shown that feature detection requires two steps. The first is applying a 

feature response function to the whole image. The second is applying the non-maxima 

suppression on the output of the first step. Then, the feature-matching step takes place to look for 

corresponding features in other images. The concept of mutual consistency check is a good 

measure of increasing the accuracy of matching (each feature of a matched pair is the preferred 

for the other). Another approach is to use an indexing structure, such as a hash table, to quickly 

search for features near a specific feature. Usually, wrong data associations (outliers) degrade the 

matching accuracy. So, the outlier rejection is the most delicate task in VO. Additionally, a sort of 

optimization called the pose graph optimization can enhance the accuracy of obtained pose 

parameters by minimizing a cost function. However, a nonlinear optimization scheme has to be 

used due to the presence of rotation which is a nonlinear part of the pose. There is an emphasis on 

the necessity of using the VO in global positioning system (GPS)-denied environments such as 

underwater. Such use is justified further by the texture-rich environment provided by the sea floor 

(which is ideal for computer vision approaches). The work in [21] is concluded by listing some 

publicly available code for building the VO systems.  

 

There three reasons for surveying [20] and [21] above. The first is to introduce several concepts 

which will recur in the rest of this work. The second is to justify some of our approaches. For 

example, we use a corner-detector for features since corners are abundant in the indoor scene 

surrounding our robot. The third is to clarify a shortage of research regarding the effect of camera 

layout on the accuracy of pose obtained. This is one of the main reasons of conducting this work. 

Here, we solve the pose estimation problem using only a multiple camera EKF approach in an 

unknown scene without using any other sensors or markers. The main contributions of this work 

are: suggesting a vertical stereo layout, comparing its use to the use of a horizontal stereo (and to 

the use of both) for robot pose estimation, and studying the effect of the reference camera position 

atop the robot on the accuracy of the pose obtained. The rest of this paper is organized as follows: 

the camera layout model, the EKF implementation, and the feature management are presented in 

section 2, the experimental results are shown in section 3, and the paper is concluded in section 4. 
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2. METHOD 

 

 

Figure 1. Vertical and horizontal stereo pairs, axes and angles. 

 

In this section, we show the camera layout model, and the EKF implementation. Besides, we 

explain how to obtain features, which of them are fed to the EKF, and how to assure their 

validity. 

 

2.1. Camera Layout Model 

 
The multiple camera layout used is shown in Figure 1, where camera 1 and camera 2 form a 

vertical stereo pair. In the same time, a horizontal pair is formed by camera 1 and camera 3. The 

coordinate system used is a right-handed with the x and y axes pointing to the increase of the 

image coordinates in pixels (better seen from behind; and in this case the y axis is directed 

towards the floor). The rotation is described by the Euler angles α, β, and γ around the x, y, and z 

axes respectively. The reason for using the Euler angles is that they are directly related to the 

robot pose, hence more capable of describing its anatomy. 

 

Before the motion starts (i.e. at frame 0), camera 1 has its center at the origin of the reference 

coordinate system. Camera 2 has its center displaced from camera 1 by the vector D2 with the y 

component only not equal to zero. On the other hand, camera 3 has its center displaced from the 

center of camera 1 by the vector D3 whose x component only not equal to zero. The z axis is 

perpendicularly emerging from camera 1 center towards the scene. All cameras are aligned 

parallel to the x and y axes (with rotation matrices equal to the identity matrix). 

 

During the motion, at any general frame (frame j), camera 1 is rotated by the rotation matrix, Rj, 

with its center translated by the vector dj with respect to the reference coordinate system. Our task 

is to estimate the pose (dj, and Rj), or equivalently to find its six parameters (translation 

components in direction of the coordinate axes: txj, tyj, and tzj), and (rotation angles around the 

coordinate axes: αj, βj, and γj). The camera coordinates for camera 1 is given by: 
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Pij = g(Rj) (Mi – dj)                    (1) 
 

where Mi is a (3×1) vector defining the 3D location of the feature i (seen by the camera) with 

respect to the reference coordinate system, and g(Rj) is a function of the camera rotation [22]. 

The camera coordinates for camera 3 is given by: 
 

Pij3 = g(Rj) (Mi – dj – Rj D3 )                   (2) 
 

Similarly, the camera coordinates of camera 2 is given by: 
 

Pij2 = g(Rj) (Mi – dj – Rj D2 )                   (3) 
 

 

However, as shown in Figure 1, camera 2 is located on the robot axis of rotation; therefore 

equation (3) is equivalent to: 
 

Pij2 = g(Rj) (Mi – dj – D2 )                   (4) 
 

This means that the location of camera 2 center is affected only by the robot translation (the 

rotation and the translation are decoupled as for camera 1). Nevertheless, we use the complete 

form of equation (3) in the experiments to test our approach without any prior information about 

the motion pattern. Therefore, taking e.g. camera 3 as the reference one, the obtained pose (dj3, 

and Rj3) can be mapped to that seen by a point on the rotation axis by the following two 

equations: 
 

dj = dj3 – Rj3 D3 + D3                     (5) 

Rj = Rj3                          (6) 
 

What equation (5) actually verifies is removing the part of translation caused by off-axis rotation, 

and axis transferring. Equation (6) states that a camera put on the rotation axis would sense the 

same rotation if put anywhere else on the same rigid robot platform. Theoretically speaking, only 

if the camera shrank to a dimensionless point on the rotation axis, it would not be affected by any 

rotation whatsoever. 
 

The rotation matrix of the robot at frame j, Rj, is related to the rotation angles by: 
 

 

                                                                                                                                         (7) 
 

2.2. EKF Implementation 
 

The EKF is a recursive estimator whose state space vector at frame j, sj, consists of the pose 

parameters and their derivatives (velocities) in the form: 
 

       (8) 
 

Where the superscript T transforms the row to a column vector. 
 

Additionally, the EKF has two main equations. The first is the plant equation which relates the 

current state space vector sj to the previous one sj-1 and the plant noise nj assumed to be Gaussian: 
 

              (9) 
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Where A is a (12×12) matrix dominated by zeros. The main diagonal has each element equal to 

one. The odd rows has a τ (equal to the time step between frames) just to the right of the main 

diagonal. In this way, a uniform motion of constant speeds are assumed for the robot. 

 

The second equation is the measurement equation relating the 2D pixel locations of image 

features Ij, and the state measurement relation h(sj) (described below) assuming a Gaussian 

distribution for the measurement noise ηj: 
 

            (10) 

 

The state measurement relation is a function of each camera intrinsic parameters (such as the 

focal length, and the 2D center of projection), and the camera coordinates given in the equations 

(1) to (4) above. For each frame, the EKF predicts the state space vector based on the previous 

one, and updates it (enhancing the prediction) based on the measurements and the calculations of 

the Jacobian of the state measurement relation. More details about the EKF implementation can 

be found in [23-25]. In fact, the work in [23] by Broida et al. was one of the early attempts to 

bring the EKF to the field of computer vision which motivated a lot of the following related 

research. 
 

2.3. Feature Management 
 

The features mentioned above are small windows of pixels within the image frames. They are 

characterized by having a corner property (high intensity gradients in both directions). For each 

camera, the features are obtained and tracked using the Kanade-Lucas-Tomasi (KLT) feature 

tracker. For each stereo pair, they are matched based on a cross-correlation measure and the 

fundamental matrix encapsulating the epipolar constraints. In fact, this filters out the outliers. 

Initially, corresponding matches of the calibrated stereo pairs are found. The locations of features 

in the 3D space are obtained using the triangulation. The features are tracked from frame to frame 

for individual cameras. The features violating the epipolar constraints are filtered out. The 

requirement of the EKF to have zero mean measurements is taken into consideration. Therefore, 

the features fed to the filter are chosen to be as evenly distributed as possible around the center of 

projection of each image. Accordingly, the set of features may vary from frame to frame. When 

the number of tracked features falls under a certain threshold, a new set of fresh features is 

obtained using the stereo matching as mentioned above. The choice of the threshold depends on 

the image size and the nature of the scene. For the (1600×1200) images taken in the ordinary lab 

scene used in this work, a threshold of 140 features is a suitable choice. 
 

3. EXPERIMENTS AND RESULTS 
 

3.1 Simulations 
 

Three cameras forming two stereo pairs (vertical and horizontal) were put on a robot as shown in 

Figure 1.The robot moved with random translations (tx, ty, and tz) and with random rotation angles 

(α, β, and γ) in the directions of and around the x, y, and z axes respectively. The coordinate 

system origin coincided with the center of the first camera at the motion start with the z axis 

perpendicular to the image plane. To have a right-hand coordinate system, the x axis originates 

towards the opposite direction of cam 3, as the y axis does with respect to cam 2. The translations 

were taken randomly from ±0.005 to ±0.015 meter, and the rotation angles were taken randomly 

from ±0.005 to ±0.02 radian. All cameras had a 6 mms focal length, and (640×480) resolution. 

The center-to-center distance for the horizontal stereo pair was 0.1 meter similar to the vertical 

stereo pair. A random noise was added to each feature point with a normal distribution of zero 

mean and a 0.5 pixel standard deviation. The motion took place inside a sphere whose radius was 

one meter and whose center was coinciding with the origin of the coordinate axes. The feature 
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points were distributed randomly in a spherical shell located between that sphere and a smaller 

one with a radius of 2/3 meter. The total number of feature points, was 10,000. A sequence of 100 

frames was taken simultaneously by each camera. Due to the motion randomness, the sequences 

were divided into a number of sections which contained ten frames each. Throughout each section 

new features were tracked. Using the multiple camera model described in section 2, we solved for 

the pose parameters utilizing pose EKFs for each stereo pair (vstr: vertical stereo, and hstr: 

horizontal). For the sake of completeness, we formed a triple of all cameras. To enlarge the scope 

of the simulations, we varied the motion patterns to have a pure rotation, a pure translation, and a 

mixture of both. Then we increased the ranges of translations and rotations for each step to be up 

to ±0.0225 meter, and ±0.03 radian respectively and ran the three motion patterns again. Table 1 

shows the average of (500 runs per motion pattern) of absolute error (per frame) in the six pose 

parameters for the compared methods. All absolute errors are given in (meter/radian). 
 

3.2 Real Experiments 
 

Table 1.  Average absolute error of pose values per frame for simulations. ‘Large’ indicates the 

motion patterns whose ranges of translation and rotation were increased, ‘vstr’ is the vertical 

stereo, ‘hstr’ is the horizontal, and ‘triple’ is both stereo pairs composed from the three cameras. 
 

 Motion Pattern tx ty tz α β γ 

vstr Mixed .0102 .0030 .0026 .0029 .0099 .0012 

hstr  .0103 .0036 .0029 .0036 .0101 .0013 

triple  .0100 .0029 .0026 .0028 .0097 .0011 

vstr Pure Rotation .0096 .0015 .0015 .0016 .0091 .0008 

hstr  .0097 .0025 .0025 .0026 .0092 .0009 

triple  .0096 .0016 .0018 .0017 .0091 .0007 

vstr Pure Translation .0032 .0028 .0013 .0028 .0033 .0005 

hstr  .0033 .0040 .0014 .0041 .0034 .0008 

triple  .0030 .0030 .0013 .0031 .0031 .0004 

vstr Large Mixed .0194 .0051 .0056 .0050 .0179 .0023 

hstr  .0193 .0054 .0054 .0051 .0177 .0024 

triple  .0187 .0048 .0056 .0046 .0173 .0021 

vstr Large Pure Rotation .0193 .0030 .0028 .0031 .0180 .0019 

hstr  .0195 .0033 .0032 .0035 .0189 .0018 

triple  .0201 .0028 .0041 .0029 .0181 .0016 

vstr Large Pure Translation .0040 .0039 .0027 .0038 .0040 .0006 

hstr  .0044 .0048 .0028 .0048 .0043 .0008 

triple  .0039 .0039 .0027 .0038 .0039 .0005 

 

We carried out the real experiments using three calibrated Canon PowerShot G9 cameras with 

resolution (1600×1200). The cameras were put parallel atop the robot used with the baseline of 

each stereo pair equal to 14 cm. A sequence of more than 200 frames was taken simultaneously 

by each camera in an ordinary lab scene. The motion of the robot followed various patterns: a 
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pure translation, a pure rotation, a mixed rotation and translation, a large pure rotation, and a 

curve. These motion patterns are shown graphically in the figures below. We did not capture each 

sequence twice using the same two cameras as a horizontal stereo pair then as a vertical stereo 

pair. Instead, we captured each sequence only once using three cameras simultaneously. The 

reasons for this are guaranteeing that both stereo pairs encounter exactly the same sequence and 

eliminating any possible difference due to the wheel-slipping effect. Besides, we can compare the 

performances of both stereo pairs to that of the triple. Moreover, we exchanged the cameras 

(within the predefined layout) from a sequence to another to eliminate the effect of any 

discrepancy in camera calibration (if any). Our robot maneuvers on a plane floor and the cameras 

are firmly fixed onto the platform. Therefore, only three pose parameters can really vary with the 

robot motion. They are the translations tx and tz, and the rotation angle β around the y axis. In fact, 

all the motion patterns investigated in the real experiments are obtained by varying one or more 

of these three pose parameters. The three other pose parameters (ty, α, and γ) may vary slightly 

due to the vibrations caused by the robot suspension. However, for completion, we include all the 

six pose parameters in our figures. The robot and camera setup used in the experiments along 

with samples of the captured images are shown in Figure 2. The graphical results are shown in the 

rest of figures compared with the ground truth obtained from the computer steering the robot. 

 

 

 Figure 2. Rows show frames taken simultaneously, from top: pure translation, pure rotation, mixed, large 

pure rotation, and curve; below: camera setup and robot with arrows from a camera to its sample frames. 
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4. DISCUSSIONS AND CONCLUSIONS 
 

As for the simulations, from Table 1, it is clear that as the range of steps of pose parameters 

increases, the average absolute errors increase. For example, the pattern “Large Mixed” has 

higher average absolute errors than the pattern “Mixed”. As expected, using all the cameras 

(triple) verifies the less average absolute errors in most cases. Next to its performance and very 

close is the vertical stereo pair (vstr). The main reason for this is decoupling the rotation around 

the robot axis from the translation as shown in equation (4) above. This is emphasized by the 

lowest average absolute errors for tx, tz , and β for the pure translation patterns. In fact, β takes 

place around the y axis in the same plane containing tx and tz. Therefore, estimating any of them 

accurately, increase the possibility of estimating the other two parameters accurately as well. 

In the following lines, we will survey the results of the real experiments. Figure 3 depicts the pure 

translation pattern obtained by increasing tz linearly. The vertical stereo, vstr, the horizontal stereo, 

hstr, and the triple are close to each other and to the ground truth. There is a slight drift near the 

end of the sequence in the angle β. This may be caused by wheel-slipping or not precisely 

synchronized motors (even for a few frames). The translations tx, and tz are slightly affected due 

to the relation with β mentioned above. 
 

Similarly, the pure rotation, the mixed rotation and translation, and the pure large rotation patterns 

have the compared sets of cameras close to each other and to the ground truth with a slight drift. 

Figure 4 portrays a linear decrease in angle β while Figure 5 shows β increasing linearly at a 

larger rate. In Figure 6, the translation tz increases piecewise linearly while β varies around zero 

within ±0.1 radian. 
 

When it comes to the curve pattern, the comparison becomes more obvious. As shown in Figure 

7, the angle β increases at a large pace while both the translations tx, and tz follow nonlinear 

curves. The challenges encountered are varying all the three pose parameters available for a plane 

motion and having translations which are not uniform (speeds are not constant). This can be 

shown by taking the slopes along the nonlinear curves. The vertical stereo, vstr, is closer to the 

ground truth for the translations tx, and tz during most of the sequence. Even when some drift 

appears near the end of the sequence, its magnitude remains close to that encountered by the 

horizontal stereo. For all pose parameters, the triple could verify the best performance. In this 

case, the data fusion of the three cameras has paid off. 
 

From now on, we investigate the effect of choosing a reference camera other than camera 1. In 

Figure 8, exchanging the reference camera within the horizontal stereo pair does not alter the pose 

obtained for the pure translation pattern. However, in the pure rotation pattern of Figure 9, a 

considerable translation component appears for tx and even more for tz of the exchanged stereo 

pair hstr3-1. The reason for this is that the reference camera (camera 3 in this case) encounters 

additional translation being displaced from the rotation axis. Although the detected translation is 

real for camera 3, it does not occur for the center parts of the robot. Moreover, the magnitude of 

the additional translation varies proportionally with the displacement. As seen in Figure 9, the 

rotation angles do not suffer from any alteration. However, the obtained translation can be 

mapped back to that seen by a reference camera on the robot axis of rotation using equation (5) 

above. As shown in Figure 9, the corrected pose, hstr3-1C is close to the ground truth. Additionally, 

the pose obtained by exchanging the reference camera within the vertical stereo pair (camera 2 

becoming the reference) does not suffer from any variation being on the robot axis of rotation as 

camera 1. 
 

Examining the mixed rotation and translation pattern, in Figure 10, the exchange of the reference 

camera has no observed effect on the obtained pose parameters. This is caused by the small 

variation range of β within ±0.1 radian around zero which is close to the pure translation case. 

The effect of exchanging the reference camera within the horizontal stereo pair (hstr3-1) is 

amplified for the curve pattern as shown in Figure 11. The influence on tz  is obvious throughout 
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the sequence while it is manifested for tx with the increase in β. Using equation (5) to obtain the 

corrected pose (hstr3-1C) brings the translations back to that of (hstr1-3) with an obvious drift in tz 

throughout most of the sequence. Again, exchanging the reference camera within the vertical 

stereo pair does not alter the estimated pose. 
 

Comparing to the vertical stereo pair, we have noticed that the horizontal stereo pair has estimates 

for (ty, α, and γ) generally closer to zero (as it should be). The reasons for this are embedded in 

equations (2), and (3). In equation (2), a term of the camera coordinates for camera 3 is a matrix-

by-vector multiplication (Rj D3). As D3 has only an x component, the multiplication turns out to be 

a scaling of the first column of Rj which as seen from equation (7) is dominated by the angle β 

with a little effect from the angle γ. On the other hand in equation (3), the multiplication (Rj D2) 

turns out to be a scaling of the second column of Rj with a far more influence from the angles α, 

and γ. In this way, using the horizontal stereo pair attenuates the fluctuations about zero of the 

estimates for (ty, α, and γ) while the vertical stereo pair magnifies them. Nevertheless, the 

fluctuations noted remain small and the values for (ty, α, and γ) are known to be zeros from the 

beginning for a robot moving on a plane floor. 
 

This work proves that the camera layout is crucial for accurate robot pose estimation. Having a 

vertical stereo pair whose cameras’ centers lie on the robot axis of rotation decouples the 

translation from the rotation. This is particularly useful for getting more accurate pose estimation 

when the motion patterns combine large rotations with nonlinear translations. The accuracy is 

emphasized when the robot motion takes place on a plane floor, and there are adequate features in 

the scene to track. 
 

Putting the reference camera on the axis of rotation is important. When it comes to robot 

navigation, decoupling the translation from the rotation is not only more accurate but could be 

more energy efficient also (with fewer maneuvering instructions). A correction can be made to 

map the estimated translations to that encountered on the rotation axis. However, this requires 

knowing the displacement of the reference camera from the robot axis of rotation. Such 

displacement is readily available by stereo calibration when one of the cameras (whether it is the 

reference or not) is put on the axis of rotation. Therefore, the camera on the rotation axis should 

rather be taken as the reference. 
 

Practically, a robot axis of rotation might change its location from a rotation to another. The cause 

may be unmatched or unsynchronized motors. Nevertheless, the most accurate location for the 

axis can be found by rotation calibration (before first use and whenever it is needed). The real 

challenge is determining this axis when the robot has several wheels with all-wheel drive or when 

it has articulated parts. Suggesting the most suitable camera layouts in these cases would be a 

topic for future research as well as making use of Big Data principles [26-29] in dealing with 

multiple cameras. 
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Figure 3. Results of real experiment (pure translation pattern), ‘vstr’ is the vertical stereo, ‘hstr’ is the 

horizontal stereo, and the ‘triple’ is the three cameras. All are close to the ground truth for this pattern. 
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Figure 4. Results of real experiment (pure rotation pattern), ‘vstr’ is the vertical stereo, ‘hstr’ is the horizontal 

stereo, and the ‘triple’ is the three cameras. All are close to the ground truth for this pattern. 
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Figure 5. Results of real experiment (large pure rotation pattern), ‘vstr’ is the vertical stereo, ‘hstr’ is the 

horizontal stereo, and the ‘triple’ is the three cameras. Slight differences are noticed. 
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Fig. 3. Results of real experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Results of real experiment (mixed pattern), ‘vstr’ is the vertical stereo, ‘hstr’ is the horizontal 

stereo, and the ‘triple’ is the three cameras. All are close to the ground truth for this pattern. 
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Fig. 3. Results of real experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Results of real experiment (curve pattern), ‘vstr’ is the vertical stereo, ‘hstr’ is the horizontal stereo, 

and the ‘triple’ is the three cameras. Remarkable differences are noted, more details in section 4. 
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Figure 8. Results of real experiment (pure translation pattern), ‘hstr1-3’ is the same as ‘hstr’, while ‘hstr3-1’ has 

camera 3 as the reference of the horizontal stereo pair. No difference is noticed for this pattern. 
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Fig. 3. Results of real experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Results of real experiment (pure rotation pattern), ‘hstr1-3’ is same as ‘hstr’, while ‘hstr3-1’ has 

camera 3 as reference, corrected in ‘hstr3-1C’, and ‘vstr2-1’ is the vertical stereo with camera 2 as reference. 
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Figure 10. Results of real experiment (mixed pattern), ‘hstr1-3’ is same as ‘hstr’, while ‘hstr3-1’ has camera 3 as 

reference, corrected in ‘hstr3-1C’, and ‘vstr2-1’ is the vertical stereo with camera 2 as reference. 
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Figure 11. Results of real experiment (curve pattern), ‘hstr1-3’ is same as ‘hstr’, while ‘hstr3-1’ has camera 3 as 

reference, corrected in ‘hstr3-1C’, and ‘vstr2-1’ is the vertical stereo with camera 2 as reference. 

 

 

 

 

 


