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ABSTRACT 
 
A reliable broadcast is communication primitive used to develop fault tolerant distributed applications. It 

in due course delivers messages to all participating sites irrespective of their ordering. Total order 

broadcast impose restriction on message ordering and satisfies total order requirement. 

 

A clear specifications, rigorous validation and verification is key to obtain better design of dependable 

services in such applications. With the help of formal methods one can specify and verify systems in 

systematic rather than ad hoc manner. It reveals ambiguities, incompleteness, and inconsistencies in a 

system by facilitating clear specification, rigorous validation and verification. 

 

In this paper, we present a formal development of total order broadcast. The model have been developed 

and checked by using event-B techniques supported by the RODIN tool. Event-B is a formal technique that 

supports the incremental design of a distributed applications using notion of refinements. 
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1. INTRODUCTION 

 
The verification and specification of fault- tolerant distributed application are difficult due to 

unavoidable concurrency and absence of global clock [1]. In reliable broadcast no assumptions on 

time can be made, although it is ensured that messages will be delivered irrespective of their 

ordering at the sites. 

 

The delivery ordering of messages in a distributed environment can be ensured in a better way by 

using group communication primitives. 

 

One such primitive is total order broadcast. The total order broadcast and multicast is an 

important problem for fault tolerant distributed application.  

 

The total order [2] broadcast is a primitive for group communication which ensures that a 

message is delivered to all the recipients in the same order which may not be the same order in 

which the messages were sent. In this context, Hadzilacos and Toueg [3] defines the Reliable 

Broadcast as a broadcast that posses the characteristics of Validity, Agreement and Integrity. A 

broadcast is supposed to posses the Validity characteristics if a correct process broadcasts a 

message m, and it eventually delivers m. A broadcast is supposed to be in Agreement if all correct 
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processes eventually delivers the same set of messages. Integrity ensures that spurious messages 

are never delivered. That is every correct process delivers any message m at most once and that 

too if m was previously broadcast by sender (m). Few additional requirements are imposed on the 

order of delivery of messages in some variants of Reliable broadcast. [2]. 

 

Depending on group communication primitives, a large numbers of broadcast protocols have been 

developed. Lots of literature available on fault tolerant distributed applications where different 

group communication services are used but the use of formal methods in such applications are 

rare except [4] and few where it is applied to verify the properties of algorithms [5, 6]. 

 

Based on ordering mechanisms, total order broadcast have been categorized as communication 

history, privilege-based, moving sequencer, fixed sequencer and destinations agreement. 

 

Although a number of algorithms have been devised in each of these categories, a very limited 

attempt [2] has been made to develop the specification and prove the correctness of these 

algorithms. Formalism helps to get a clear specification and a sound proof of correctness of the 

algorithms and thus helps in understanding the limits within which an algorithm can be used. 

In this paper, we develop a formal specification of the destination agreement total order broadcast 

which is represented by many important algorithms such as Skeen [7], Chandra and Toueg [8], 

ATR [9], SCALATOM [10] etc. In these algorithms, an agreement between destination processes 

decides the delivery order.  

 

Section 2 of the paper presents necessary background and an informal discussion of various 

ordering properties is given. In section 3, we introduce the basic notations of event-B, the 

techniques chosen for formal specification of the system. In section 4, we describe the destination 

agreement algorithm for which formal specification has been developed in section 5. Section 6 

concludes the paper. 

 

2. BACKGROUND 

 
A reliable broadcast can be used to deliver messages to the processes following a FIFO Order, 

Local Order, Causal Order or a Total Order providing higher ordering guarantees on the message 

delivery [2].  

 
Ordering properties have been thoroughly discussed in [2, 11, 12, 13] and can be broadly 

classified as follows: 

 

FIFO Order- In reliable broadcast messages are following FIFO Order, if the broadcast of a 

message M1 is preceded by a message M2 by a particular process than M1 will be delivered 

before M2 by each recipient process. 
 

 

 

 

 

 

Fig 1: FIFO Order 

M1 M3 M2 

P1 

P2 
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As shown in figure1, the messages M1 broadcast by process P1 is delivered before M2 by each 

recipient processes and similarly M2 broadcast by same process P1 is delivered before M3 by 

each recipient processes are said to be in FIFO Order. The violation of FIFO Order is shown in 

the figure 1 by dotted lines. 

 

Local Order-In reliable broadcast, if the delivery of a message M1 is preceded by broadcasting 

the message M2 by a particular process, than M1 will be delivered before M2 by each recipient 

process than messages are said to be in Local Order. 

 

In the figure 2, the messages M1, M2 and M3 are said to be in local order as process P3 before 

broadcasting message M3 delivers message M2 and process P2 delivers M1 before broadcasting 

M2.The local order is violated by delayed messages M1 and M2 as depicted using dotted line. 

 

 

 

 

 

 

Fig 2: Local Order 

 

Causal Order: In reliable broadcast messages are following Causal Order, if the broadcast of a 

message M2 is causally preceded by the broadcasting of message M1than each process will 

deliver M1 before delivering M2. 

 

The causal precedence relation is expressed by the symbol → . The relation e→f signifies that e 

causally precedes f, where e and f are two events of distributed system. The causal precedence is 

an irreflexive partial order on the set of events. This relationship is also extended on the set of 

messages and defines the casual precedence among the messages in similar manner.  

 

A casual precedence between message m1 and m2 holds whenever the casual precedence exists 

between broadcast events of m1 and m2 or casual precedence exists between receive events of m1 

and m2. 

 

The causal order broadcast delivers the messages respecting their causal precedence and is hybrid 

of FIFO and local order [2]. 

 

Total Order- In reliable broadcast messages are said to follow Total Order  if the messages M1 

and M2 both are delivered by the processes P1 and P2 then M1 is delivered before M2 by P1 if 

only if M1 is delivered before M2 also by P2. 

 

Since delivery of messages in total order is not conforming to any particular order, it may or may 

not be satisfying causal relations. In the figure 3,the same sequence of messages M1,M2,M3 and 

M4  are delivered by all the processes P1,P2,P3 and P4 following the total order, also it conforms 

to causal order.  

 

In the figure 4,the same sequence of messages M1,M3,M4 and M2  are delivered by all the 

processes P1,P2,P3 and P4 following the total order but nonconformity to causal order. Since the 

broadcast of message M3 is causally preceded by the broadcasting of message M2 therefore each 

M3 

M2 

M1 
P1 

P2 

P3 
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processes will have to deliver M2 before it delivering the M3 but here causal order is violated as 

M2 is delivered after M3 by each recipient process.  

 

 

 

 

 

 

 

Fig 3: Total Order and Causal order 

 

 

 

  

 

 

 
Fig 4: Total Order but not a Causal order 

 

3. FORMAL MODELING USING EVENT-B  
 
The basic notion of formal developments in Event-B [14, 15, 16] is that of model. Event-B has 

been derived from B-method [17] by incorporating the ideas of action systems [18] and is used 

for discrete-level modeling [19, 20]. The technique of abstraction and refinement is the basis of 

incremental design of systems in Event-B and is used for their specification and verification. 

In Event-B, system is defined by state variables. The variables are modified by the events consist 

of guarded actions. The guard (G) of the event is expressed as a first order predicate. It represents 

the necessary conditions for the event to occur. The invariants are predicates on the state variables 

that represent system behavioral properties and have to be maintained by the activation of events.  

The actions of events are specified as simultaneous assignments of state variables. Events occur 

spontaneously and automatically whenever their guards hold true. 

 

Refinement helps us to build a model in incremental fashion and allows us to obtain more 

concrete model from the abstract model by adding more functionality later. A refined model is 

thus one which is spatially larger than its abstraction because new variables are now able to be 

modified by some transitions, which could not have been present in the abstractions because of 

the reason that the variables in the refined model did not exist in the abstract model. This is 

realized by means of new events and the new variables. In refinement steps guards may be 

strengthened, new events may be introduced and variables may be added or removed. Abstract 

and concrete variables are related through gluing invariants.  This requires the proof obligations 

for consistency checking and refinement checking to be discharged. Consistency checking 
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signifies that a machine preserves the invariants while refinement checking involves showing that 

gluing invariants are maintained.  This ensures that behavior of a refined machine is in consistent 

with the abstract machine. 

 

Event-B notation is based on set theory and most of it is self-explanatory. Some of the frequently 

used notations in our model is given in Table 1.  
 

Table 1. Some B notations used frequently in system modeling 

 

B Symbol Description 

1 
Relational constructor 

3 
Total function 

2 
Partial function 

* 
Cartesian product 

m 
Mapping 

N 
Non zero natural number 

 

4. INFORMAL DESCRIPTION OF TOTAL ORDER THROUGH DESTINATION 

AGREEMENT 
 
The destination agreement algorithm achieves delivery order result from an agreement between 

destination processes [2] as shown in figure 5. An agreement is arrived by the destination 

processes on the basis of a unique sequence number. The algorithm is a modification of Skeen’s 

algorithm which makes inference about the global timestamp in a decentralized manner [7]. 

 

 

 

 

 

 

 

 

 

 
Fig 5: Total Order through destination agreement 

 

In brief, the algorithm works as follows: 

To broadcast a message m, a sender initiates the process by sending m to all destinations. The 

destination which receives m, assigns it a local timestamp and thereafter, this timestamp is sent to 

all the destinations. When a destination process has received all local timestamps for the message 

m from all destinations, maximum value from among all local timestamps is calculated. This 

maximum value of all local time stamps is defined as a unique global timestamp sn (m) assigned 

to m. 
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Messages are considered to be delivered only when it has been assigned its global timestamp. 

Delivery order of messages is in order of its global time stamps. In case more than one messages 

have same global timestamps, the tie is broken on the basis of sender identity [2]. 

 

5. SYSTEM MODEL 

 
We start with a variant of destination agreement algorithm where agreement takes place through 

message sequence number. In the context of our model SITE and MESSAGE are declared as 

carrier set. The variables and invariants of machine are given in figure 6.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Variables and Invariants of Machine 

 

The descriptions of variables are as follows:  

 

(i)The variable sender is a partial function from MESSAGE to SITE. A mapping of form 

(mmmss):sender indicates that message mm has been sent by site ss.     

(ii)The variable totalorder represents a relation. It is written as: 

totalorder ∈ MESSAGE↔MESSAGE. It is equivalent to pow(MESSAGExMESSAGE). A 

mapping M1mM2: totalorder represents that message M1 is totally ordered before message 

M2. 

(iii)The variable tempdeliver specifies temporary delivery of messages at any site.  

(iv)The variable localtss represents local timestamp of site. Similarly, variable localtsm 

indicates local timestamp of message. It is a relation which tells that message may have 

several timestamps. The main reason is that when any message mm is received at any 

destination site then that site increments its own timestamp and that timestamp will be 

assigned to message mm. Similarly, other sites also assign timestamp to message mm. 

(v)In order to decide global timestamp of received message mm site will broadcast local 

check point number message m corresponding to message mm. The variable rbm records all 

such type of messages sent by site. The variable rebroadcastmsg maintains the information 

that local message has been sent by site. 

(vi) The variable totalbroadcastsite counts total number of sites that have broadcast local 

checkpoint number message corresponding to received message mm for which global number 

MACHINE Total_M 

SEES Total_C 

VARIABLES 

sender, totalorder, delorder, tempdeliver, localtss, localtsm, rbm, rebroadcastmsg, 

totalbroadcastsite, finaldeliver, globaltsm 

INVARIANTS 

inv1 :    sender ∈ MESSAGE 2  SITE 

inv2 :    totalorder ∈ MESSAGE↔MESSAGE 

inv3 :    tempdeliver ∈ SITE↔MESSAGE 

inv4 :    localtss ∈ SITE→ℕ  

inv5 :    localtsm ∈ (MESSAGE)↔ℕ  

inv6 :    rbm∈ SITE↔(MESSAGE 2  MESSAGE) 

inv7 :    reebroadcastmsg∈ MESSAGE 2  SITE  

inv8 :    totalbroadcastsite∈ (SITE×MESSAGE)→ℕ  

inv9 :    finaldeliver∈  SITE↔MESSAGE 

inv10 :    globaltsm∈ MESSAGE 2  ℕ 
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has to be completed. A mapping totalbroadcastsite(ssmmm)=k indicates that k site has sent 

local checkpoint number message corresponding to message mm. 

(vii) The variable finaldeliver makes final delivery of messages at destination site. The 

variable globaltsm is used to assign final global timestamp to message.     

 

  

 

 

 

 

 

 

 
Fig 7: Initialisation of  total order machine 

 

5.1 Broadcast of Message 
 
Broadcast event is given in figure 8. This event formalizes the broadcasting of message from 

sender site. The message mm is fresh and has not been sent is ensured by guard grd3. The action 

act1 of this event specifies broadcasting of message mm by site ss. 

 

 

 

 

 

 

Fig 8: Broadcast event 

 

5.2 Temporary Delivery of Message  
 
This event models the temporary delivery of message (figure 9). The message mm has been sent 

but not delivered at site ss is ensured through guard grd3 and grd4 respectively. Each time when a 

message is delivered, site increment its own time stamp by one (act1) and assign this time stamp 

to message mm (act2). The action act3 makes the temporary delivery of message mm at site ss.  

 

 

 

 

INITIALISATION   ≙≙≙≙   

BEGIN 

act1   :   sender ≔ ∅ 

act2   :   tempdeliver ≔ ∅ 

act3   :   localtss ≔ SITE×{0}

act4   :   localtsm ≔ ∅

act5   :   rbm≔∅ 

act6   :   reebroadcastMSG ≔∅ 

act7   :   totalbroadcastsite≔(SITE×MESSAGE)×{0} 

act8   :   totalorder≔∅ 

act9   :   finaldeliver≔∅ 

act10 :   globaltsm≔MESSAGE×{0}

END 

Broadcast   ≙≙≙≙   
ANY ss, mm 

WHERE 

grd1   :   ss ∈ SITE

grd2   :   mm ∈ MESSAGE

grd3   :   mm∉ dom(sender) 

THEN 

act1   :   sender≔ sender∪{mm↦ ss}

END 
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Fig 9: Temp_Deliver event 

 

 

 

 
Fig 9: Temp_Deliver event 

 

5.3 Re-Broadcasting of Message 

 
In order to decide global time stamp, every site broadcast its own local time stamp to other site 

(figure 10). These event broadcasts a message m correspond to temporary delivered message mm. 

The message mm at site ss has been temporary delivered is ensured through guard grd4. The 

message m has not been broadcast is specified through guard grd6. This event rebroadcast 

message m corresponds to message mm (act1). The action act2 assigns the timestamp of site to 

timestamp of message m. The action act3 adds the message m in rebroadcast message list.   

 

 

 

 

 

 

 

 

 

Fig 10: Rebroadcast event 

 

5.4 Delivery of Re-Broadcast Message 
 

This event makes the delivery of rebroadcast message m correspond to message mm (figure 11). 

The guard grd3 ensures that site ss has sent the message m corresponds to message mm. The 

message m has not been delivered at site s is ensured through guard grd4. This event makes the 

delivery of message m at site s (act1). Site also counts the total number of broadcast site. Each 

time when a rebroadcast message corresponds to message mm is delivered count value is 

Temp_Deliver   ≙≙≙≙   
ANY ss, mm 

WHERE 

grd1   :   ss ∈ SITE

grd2   :   mm ∈ MESSAGE

grd3   :   mm∈ dom(sender)

grd4   :   (ss↦mm)∉ tempdeliver 

THEN 

act1   :   localtss(ss)≔localtss(ss)+1 

act2   :   localtsm(mm)≔localtss(ss)

act3   :   tempdeliver≔ tempdeliver∪{ssmmm}

END 
 

Re-Broadcast   ≙≙≙≙   
ANY ss, mm, m 

WHERE 

grd1   :    ss ∈ SITE

grd2   :    mm ∈ MESSAGE

grd3   :    mm∈ dom(localtsm)

grd4   :    ss↦ mm ∈ tempdeliver

grd5   :    m∈ MESSAGE

grd6   :    m ∉ dom(reebroadcastMSG)

THEN 

act1   :    rbm≔ rbm ∪ {ss↦{m↦mm}}

act2   :    localtsm(m)≔ localtss(ss)

act3   :    reebroadcastMSG≔ reebroadcastMSG∪ {m↦ ss}

END 
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incremented by one (act2). The action act3 adds the local time stamp of sending site as time 

stamp of message mm. 

 

  

 

 

 

 

 

 

 

Fig 11: Rebroadcast Delivery event 

 

5.5 Evaluation of Global Timestamp Message 
 
This event formalizes computation of global timestamp (fig. 12). Temporary delivery of message 

mm has been done at site ss is ensured through guard grd2. The guard grd3 ensures that site ss has 

received rebroadcast message from every site.  

 
 

 

 

 

 

 

 

 

 

 

Fig 11: Evaluate_GTS event 

 

Fig 12: Evaluate_GTS event 

 

Rebroadcast_Delivery   ≙≙≙≙
ANY m, s, mm, ss 

WHERE 

grd1   : 
   m↦ ss∈ 

reebroadcastMSG 

grd2   :    mm∈ dom(sender)

grd3   :    ss↦{m↦mm}∈ rbm

grd4   :    m∉ tempdeliver[{s}]

THEN 

act1   :    tempdeliver≔ tempdeliver∪{s↦ m}  

act2   : 
   totalbroadcastsite(s↦ mm)≔ 

   totalbroadcastsite(s↦ mm)+1

 

act3   :   localtsm≔ localtsm∪{mm↦ localtss(ss)}

END 
 

Evalute_GTS   ≙≙≙≙   

ANY ss, mm, globalts, alltsm 

WHERE 

grd1   :   ss∈ SITE    

grd2   :   mm∈ tempdeliver[{ss}] 

grd3   :    totalbroadcastsite(ss↦ mm) = card(SITE) 

grd4   :   mm∈ dom(localtsm) 

grd5   :   alltsm = localtsm[{mm}]

grd6   :   finite(alltsm)

grd7   :   globalts = max(alltsm) 

grd8   :   

∀m·(m∈ MESSAGE∧ m ∈ dom(globaltsm)  

∧ globaltsm(m) < globalts G 

(ss↦m)∈ finaldeliver) 

THEN 

act1   :    globaltsm(mm)≔ globalts 

act2   :    localtss(ss)≔ globalts 

act3   :   finaldeliver≔ finaldeliver∪{ss↦ mm}

act4   :    totalorder≔ totalorder∪ (ran(finaldeliver)×{mm}) 

END 
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The variable alltsm represents a relational image of relation localtsm. It contains all local 

timestamp of message mm received from other sites. The guard grd7 select the maximum value of 

localtimestamp. The guard grd8 ensures that all messages m whose global timestamp is less than 

selected max value for message mm will be already been delivered. Due to occurrence of this 

event maximum value of timestamp globalts will be assigned as global timestamp of message mm 

(act1). The site also update its local timestamp as globalts( act2). The action act3 makes the final 

delivery of message mm at site ss. The action act4 specifies total order delivery of message mm.   

 

6. CONCLUSION 
 
Total order is a broadcast primitive which is used to ensure reliable delivery of messages. 

Destinations agreement algorithms which is one of the total order broadcast primitive, decides the 

order of delivery of messages on the basis of an agreement between destination sites. The 

categories of three different variants of agreement are agreement through message sequence 

number, agreement on a message set and agreement on the acceptance of a proposed message 

order.  

 

In this paper, we have developed formal specifications of total ordering by destination agreement 

through message sequence number. We have used Event-B as formal method for writing the 

specifications and ensuring correctness of our model. The RODIN tool which provides complete 

framework for development of event-B models has been used for generation and discharge of 

proof obligation of the system. RODIN is eclipse based IDE which is used to develop formal 

specification of distributed systems.  

 

There has not been any invariant violation signifying that model is consistent and critical 

behavioural properties of the system is maintained. One of the important invariant given below 

was added  which ensures that all those messages whose ordering is done must be delivered: 

∀m·(m∈ (dom(totalorder)∪ran(totalorder))⇒ m∈ ran(finaldeliver)) 

 

A total of 27 proof obligations were generated by system.  23 of these were discharged 

automatically while 4 required interaction with the system.  
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