
International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

DOI:10.5121/ijcsit.2015.7506 85

FORMAL SPECIFICATION AND VERIFICATION OF

TOTAL ORDER BROADCAST THROUGH

DESTINATION AGREEMENT USING EVENT-B

Arun Kumar Singh
1
 and Divakar Yadav

2

1
Department of Electronics Engg. IET, Lucknow,India

2
Department of Computer Science & Engg. IET,Lucknow,India

ABSTRACT

A reliable broadcast is communication primitive used to develop fault tolerant distributed applications. It

in due course delivers messages to all participating sites irrespective of their ordering. Total order

broadcast impose restriction on message ordering and satisfies total order requirement.

A clear specifications, rigorous validation and verification is key to obtain better design of dependable

services in such applications. With the help of formal methods one can specify and verify systems in

systematic rather than ad hoc manner. It reveals ambiguities, incompleteness, and inconsistencies in a

system by facilitating clear specification, rigorous validation and verification.

In this paper, we present a formal development of total order broadcast. The model have been developed

and checked by using event-B techniques supported by the RODIN tool. Event-B is a formal technique that

supports the incremental design of a distributed applications using notion of refinements.

KEYWORDS

Total order broadcast, Event-B, reliable broadcast.

1. INTRODUCTION

The verification and specification of fault- tolerant distributed application are difficult due to

unavoidable concurrency and absence of global clock [1]. In reliable broadcast no assumptions on

time can be made, although it is ensured that messages will be delivered irrespective of their

ordering at the sites.

The delivery ordering of messages in a distributed environment can be ensured in a better way by

using group communication primitives.

One such primitive is total order broadcast. The total order broadcast and multicast is an

important problem for fault tolerant distributed application.

The total order [2] broadcast is a primitive for group communication which ensures that a

message is delivered to all the recipients in the same order which may not be the same order in

which the messages were sent. In this context, Hadzilacos and Toueg [3] defines the Reliable

Broadcast as a broadcast that posses the characteristics of Validity, Agreement and Integrity. A

broadcast is supposed to posses the Validity characteristics if a correct process broadcasts a

message m, and it eventually delivers m. A broadcast is supposed to be in Agreement if all correct

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

86

processes eventually delivers the same set of messages. Integrity ensures that spurious messages

are never delivered. That is every correct process delivers any message m at most once and that

too if m was previously broadcast by sender (m). Few additional requirements are imposed on the

order of delivery of messages in some variants of Reliable broadcast. [2].

Depending on group communication primitives, a large numbers of broadcast protocols have been

developed. Lots of literature available on fault tolerant distributed applications where different

group communication services are used but the use of formal methods in such applications are

rare except [4] and few where it is applied to verify the properties of algorithms [5, 6].

Based on ordering mechanisms, total order broadcast have been categorized as communication

history, privilege-based, moving sequencer, fixed sequencer and destinations agreement.

Although a number of algorithms have been devised in each of these categories, a very limited

attempt [2] has been made to develop the specification and prove the correctness of these

algorithms. Formalism helps to get a clear specification and a sound proof of correctness of the

algorithms and thus helps in understanding the limits within which an algorithm can be used.

In this paper, we develop a formal specification of the destination agreement total order broadcast

which is represented by many important algorithms such as Skeen [7], Chandra and Toueg [8],

ATR [9], SCALATOM [10] etc. In these algorithms, an agreement between destination processes

decides the delivery order.

Section 2 of the paper presents necessary background and an informal discussion of various

ordering properties is given. In section 3, we introduce the basic notations of event-B, the

techniques chosen for formal specification of the system. In section 4, we describe the destination

agreement algorithm for which formal specification has been developed in section 5. Section 6

concludes the paper.

2. BACKGROUND

A reliable broadcast can be used to deliver messages to the processes following a FIFO Order,

Local Order, Causal Order or a Total Order providing higher ordering guarantees on the message

delivery [2].

Ordering properties have been thoroughly discussed in [2, 11, 12, 13] and can be broadly

classified as follows:

FIFO Order- In reliable broadcast messages are following FIFO Order, if the broadcast of a

message M1 is preceded by a message M2 by a particular process than M1 will be delivered

before M2 by each recipient process.

Fig 1: FIFO Order

M1 M3 M2

P1

P2

P3

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

87

As shown in figure1, the messages M1 broadcast by process P1 is delivered before M2 by each

recipient processes and similarly M2 broadcast by same process P1 is delivered before M3 by

each recipient processes are said to be in FIFO Order. The violation of FIFO Order is shown in

the figure 1 by dotted lines.

Local Order-In reliable broadcast, if the delivery of a message M1 is preceded by broadcasting

the message M2 by a particular process, than M1 will be delivered before M2 by each recipient

process than messages are said to be in Local Order.

In the figure 2, the messages M1, M2 and M3 are said to be in local order as process P3 before

broadcasting message M3 delivers message M2 and process P2 delivers M1 before broadcasting

M2.The local order is violated by delayed messages M1 and M2 as depicted using dotted line.

Fig 2: Local Order

Causal Order: In reliable broadcast messages are following Causal Order, if the broadcast of a

message M2 is causally preceded by the broadcasting of message M1than each process will

deliver M1 before delivering M2.

The causal precedence relation is expressed by the symbol → . The relation e→f signifies that e

causally precedes f, where e and f are two events of distributed system. The causal precedence is

an irreflexive partial order on the set of events. This relationship is also extended on the set of

messages and defines the casual precedence among the messages in similar manner.

A casual precedence between message m1 and m2 holds whenever the casual precedence exists

between broadcast events of m1 and m2 or casual precedence exists between receive events of m1

and m2.

The causal order broadcast delivers the messages respecting their causal precedence and is hybrid

of FIFO and local order [2].

Total Order- In reliable broadcast messages are said to follow Total Order if the messages M1

and M2 both are delivered by the processes P1 and P2 then M1 is delivered before M2 by P1 if

only if M1 is delivered before M2 also by P2.

Since delivery of messages in total order is not conforming to any particular order, it may or may

not be satisfying causal relations. In the figure 3,the same sequence of messages M1,M2,M3 and

M4 are delivered by all the processes P1,P2,P3 and P4 following the total order, also it conforms

to causal order.

In the figure 4,the same sequence of messages M1,M3,M4 and M2 are delivered by all the

processes P1,P2,P3 and P4 following the total order but nonconformity to causal order. Since the

broadcast of message M3 is causally preceded by the broadcasting of message M2 therefore each

M3

M2

M1
P1

P2

P3

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

88

processes will have to deliver M2 before it delivering the M3 but here causal order is violated as

M2 is delivered after M3 by each recipient process.

Fig 3: Total Order and Causal order

Fig 4: Total Order but not a Causal order

3. FORMAL MODELING USING EVENT-B

The basic notion of formal developments in Event-B [14, 15, 16] is that of model. Event-B has

been derived from B-method [17] by incorporating the ideas of action systems [18] and is used

for discrete-level modeling [19, 20]. The technique of abstraction and refinement is the basis of

incremental design of systems in Event-B and is used for their specification and verification.

In Event-B, system is defined by state variables. The variables are modified by the events consist

of guarded actions. The guard (G) of the event is expressed as a first order predicate. It represents

the necessary conditions for the event to occur. The invariants are predicates on the state variables

that represent system behavioral properties and have to be maintained by the activation of events.

The actions of events are specified as simultaneous assignments of state variables. Events occur

spontaneously and automatically whenever their guards hold true.

Refinement helps us to build a model in incremental fashion and allows us to obtain more

concrete model from the abstract model by adding more functionality later. A refined model is

thus one which is spatially larger than its abstraction because new variables are now able to be

modified by some transitions, which could not have been present in the abstractions because of

the reason that the variables in the refined model did not exist in the abstract model. This is

realized by means of new events and the new variables. In refinement steps guards may be

strengthened, new events may be introduced and variables may be added or removed. Abstract

and concrete variables are related through gluing invariants. This requires the proof obligations

for consistency checking and refinement checking to be discharged. Consistency checking

M3 M2

M4

M1
P1

P2

P3

P4

M3 M2

M4

M1
P1

P2

P3

P3

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

89

signifies that a machine preserves the invariants while refinement checking involves showing that

gluing invariants are maintained. This ensures that behavior of a refined machine is in consistent

with the abstract machine.

Event-B notation is based on set theory and most of it is self-explanatory. Some of the frequently

used notations in our model is given in Table 1.

Table 1. Some B notations used frequently in system modeling

B Symbol Description

1
Relational constructor

3
Total function

2
Partial function

*
Cartesian product

m
Mapping

N
Non zero natural number

4. INFORMAL DESCRIPTION OF TOTAL ORDER THROUGH DESTINATION

AGREEMENT

The destination agreement algorithm achieves delivery order result from an agreement between

destination processes [2] as shown in figure 5. An agreement is arrived by the destination

processes on the basis of a unique sequence number. The algorithm is a modification of Skeen’s

algorithm which makes inference about the global timestamp in a decentralized manner [7].

Fig 5: Total Order through destination agreement

In brief, the algorithm works as follows:

To broadcast a message m, a sender initiates the process by sending m to all destinations. The

destination which receives m, assigns it a local timestamp and thereafter, this timestamp is sent to

all the destinations. When a destination process has received all local timestamps for the message

m from all destinations, maximum value from among all local timestamps is calculated. This

maximum value of all local time stamps is defined as a unique global timestamp sn (m) assigned

to m.

Senders Destinations

S1

D1

S3
S2 D3

D2

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

90

Messages are considered to be delivered only when it has been assigned its global timestamp.

Delivery order of messages is in order of its global time stamps. In case more than one messages

have same global timestamps, the tie is broken on the basis of sender identity [2].

5. SYSTEM MODEL

We start with a variant of destination agreement algorithm where agreement takes place through

message sequence number. In the context of our model SITE and MESSAGE are declared as

carrier set. The variables and invariants of machine are given in figure 6.

Fig. 6. Variables and Invariants of Machine

The descriptions of variables are as follows:

(i)The variable sender is a partial function from MESSAGE to SITE. A mapping of form

(mmmss):sender indicates that message mm has been sent by site ss.

(ii)The variable totalorder represents a relation. It is written as:

totalorder ∈ MESSAGE↔MESSAGE. It is equivalent to pow(MESSAGExMESSAGE). A

mapping M1mM2: totalorder represents that message M1 is totally ordered before message

M2.

(iii)The variable tempdeliver specifies temporary delivery of messages at any site.

(iv)The variable localtss represents local timestamp of site. Similarly, variable localtsm

indicates local timestamp of message. It is a relation which tells that message may have

several timestamps. The main reason is that when any message mm is received at any

destination site then that site increments its own timestamp and that timestamp will be

assigned to message mm. Similarly, other sites also assign timestamp to message mm.

(v)In order to decide global timestamp of received message mm site will broadcast local

check point number message m corresponding to message mm. The variable rbm records all

such type of messages sent by site. The variable rebroadcastmsg maintains the information

that local message has been sent by site.

(vi) The variable totalbroadcastsite counts total number of sites that have broadcast local

checkpoint number message corresponding to received message mm for which global number

MACHINE Total_M

SEES Total_C

VARIABLES

sender, totalorder, delorder, tempdeliver, localtss, localtsm, rbm, rebroadcastmsg,

totalbroadcastsite, finaldeliver, globaltsm

INVARIANTS

inv1 : sender ∈ MESSAGE 2 SITE

inv2 : totalorder ∈ MESSAGE↔MESSAGE

inv3 : tempdeliver ∈ SITE↔MESSAGE

inv4 : localtss ∈ SITE→ℕ

inv5 : localtsm ∈ (MESSAGE)↔ℕ

inv6 : rbm∈ SITE↔(MESSAGE 2 MESSAGE)

inv7 : reebroadcastmsg∈ MESSAGE 2 SITE

inv8 : totalbroadcastsite∈ (SITE×MESSAGE)→ℕ

inv9 : finaldeliver∈ SITE↔MESSAGE

inv10 : globaltsm∈ MESSAGE 2 ℕ

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

91

has to be completed. A mapping totalbroadcastsite(ssmmm)=k indicates that k site has sent

local checkpoint number message corresponding to message mm.

(vii) The variable finaldeliver makes final delivery of messages at destination site. The

variable globaltsm is used to assign final global timestamp to message.

Fig 7: Initialisation of total order machine

5.1 Broadcast of Message

Broadcast event is given in figure 8. This event formalizes the broadcasting of message from

sender site. The message mm is fresh and has not been sent is ensured by guard grd3. The action

act1 of this event specifies broadcasting of message mm by site ss.

Fig 8: Broadcast event

5.2 Temporary Delivery of Message

This event models the temporary delivery of message (figure 9). The message mm has been sent

but not delivered at site ss is ensured through guard grd3 and grd4 respectively. Each time when a

message is delivered, site increment its own time stamp by one (act1) and assign this time stamp

to message mm (act2). The action act3 makes the temporary delivery of message mm at site ss.

INITIALISATION ≙≙≙≙

BEGIN

act1 : sender ≔ ∅

act2 : tempdeliver ≔ ∅

act3 : localtss ≔ SITE×{0}

act4 : localtsm ≔ ∅

act5 : rbm≔∅

act6 : reebroadcastMSG ≔∅

act7 : totalbroadcastsite≔(SITE×MESSAGE)×{0}

act8 : totalorder≔∅

act9 : finaldeliver≔∅

act10 : globaltsm≔MESSAGE×{0}

END

Broadcast ≙≙≙≙
ANY ss, mm

WHERE

grd1 : ss ∈ SITE

grd2 : mm ∈ MESSAGE

grd3 : mm∉ dom(sender)

THEN

act1 : sender≔ sender∪{mm↦ ss}

END

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

92

Fig 9: Temp_Deliver event

Fig 9: Temp_Deliver event

5.3 Re-Broadcasting of Message

In order to decide global time stamp, every site broadcast its own local time stamp to other site

(figure 10). These event broadcasts a message m correspond to temporary delivered message mm.

The message mm at site ss has been temporary delivered is ensured through guard grd4. The

message m has not been broadcast is specified through guard grd6. This event rebroadcast

message m corresponds to message mm (act1). The action act2 assigns the timestamp of site to

timestamp of message m. The action act3 adds the message m in rebroadcast message list.

Fig 10: Rebroadcast event

5.4 Delivery of Re-Broadcast Message

This event makes the delivery of rebroadcast message m correspond to message mm (figure 11).

The guard grd3 ensures that site ss has sent the message m corresponds to message mm. The

message m has not been delivered at site s is ensured through guard grd4. This event makes the

delivery of message m at site s (act1). Site also counts the total number of broadcast site. Each

time when a rebroadcast message corresponds to message mm is delivered count value is

Temp_Deliver ≙≙≙≙
ANY ss, mm

WHERE

grd1 : ss ∈ SITE

grd2 : mm ∈ MESSAGE

grd3 : mm∈ dom(sender)

grd4 : (ss↦mm)∉ tempdeliver

THEN

act1 : localtss(ss)≔localtss(ss)+1

act2 : localtsm(mm)≔localtss(ss)

act3 : tempdeliver≔ tempdeliver∪{ssmmm}

END

Re-Broadcast ≙≙≙≙
ANY ss, mm, m

WHERE

grd1 : ss ∈ SITE

grd2 : mm ∈ MESSAGE

grd3 : mm∈ dom(localtsm)

grd4 : ss↦ mm ∈ tempdeliver

grd5 : m∈ MESSAGE

grd6 : m ∉ dom(reebroadcastMSG)

THEN

act1 : rbm≔ rbm ∪ {ss↦{m↦mm}}

act2 : localtsm(m)≔ localtss(ss)

act3 : reebroadcastMSG≔ reebroadcastMSG∪ {m↦ ss}

END

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

93

incremented by one (act2). The action act3 adds the local time stamp of sending site as time

stamp of message mm.

Fig 11: Rebroadcast Delivery event

5.5 Evaluation of Global Timestamp Message

This event formalizes computation of global timestamp (fig. 12). Temporary delivery of message

mm has been done at site ss is ensured through guard grd2. The guard grd3 ensures that site ss has

received rebroadcast message from every site.

Fig 11: Evaluate_GTS event

Fig 12: Evaluate_GTS event

Rebroadcast_Delivery ≙≙≙≙
ANY m, s, mm, ss

WHERE

grd1 :
 m↦ ss∈

reebroadcastMSG

grd2 : mm∈ dom(sender)

grd3 : ss↦{m↦mm}∈ rbm

grd4 : m∉ tempdeliver[{s}]

THEN

act1 : tempdeliver≔ tempdeliver∪{s↦ m}

act2 :
 totalbroadcastsite(s↦ mm)≔

 totalbroadcastsite(s↦ mm)+1

act3 : localtsm≔ localtsm∪{mm↦ localtss(ss)}

END

Evalute_GTS ≙≙≙≙

ANY ss, mm, globalts, alltsm

WHERE

grd1 : ss∈ SITE

grd2 : mm∈ tempdeliver[{ss}]

grd3 : totalbroadcastsite(ss↦ mm) = card(SITE)

grd4 : mm∈ dom(localtsm)

grd5 : alltsm = localtsm[{mm}]

grd6 : finite(alltsm)

grd7 : globalts = max(alltsm)

grd8 :

∀m·(m∈ MESSAGE∧ m ∈ dom(globaltsm)

∧ globaltsm(m) < globalts G

(ss↦m)∈ finaldeliver)

THEN

act1 : globaltsm(mm)≔ globalts

act2 : localtss(ss)≔ globalts

act3 : finaldeliver≔ finaldeliver∪{ss↦ mm}

act4 : totalorder≔ totalorder∪ (ran(finaldeliver)×{mm})

END

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

94

The variable alltsm represents a relational image of relation localtsm. It contains all local

timestamp of message mm received from other sites. The guard grd7 select the maximum value of

localtimestamp. The guard grd8 ensures that all messages m whose global timestamp is less than

selected max value for message mm will be already been delivered. Due to occurrence of this

event maximum value of timestamp globalts will be assigned as global timestamp of message mm

(act1). The site also update its local timestamp as globalts(act2). The action act3 makes the final

delivery of message mm at site ss. The action act4 specifies total order delivery of message mm.

6. CONCLUSION

Total order is a broadcast primitive which is used to ensure reliable delivery of messages.

Destinations agreement algorithms which is one of the total order broadcast primitive, decides the

order of delivery of messages on the basis of an agreement between destination sites. The

categories of three different variants of agreement are agreement through message sequence

number, agreement on a message set and agreement on the acceptance of a proposed message

order.

In this paper, we have developed formal specifications of total ordering by destination agreement

through message sequence number. We have used Event-B as formal method for writing the

specifications and ensuring correctness of our model. The RODIN tool which provides complete

framework for development of event-B models has been used for generation and discharge of

proof obligation of the system. RODIN is eclipse based IDE which is used to develop formal

specification of distributed systems.

There has not been any invariant violation signifying that model is consistent and critical

behavioural properties of the system is maintained. One of the important invariant given below

was added which ensures that all those messages whose ordering is done must be delivered:

∀m·(m∈ (dom(totalorder)∪ran(totalorder))⇒ m∈ ran(finaldeliver))

A total of 27 proof obligations were generated by system. 23 of these were discharged

automatically while 4 required interaction with the system.

REFERENCES

[1] Leslie Lamport and Nancy A. Lynch. Distributed computing: Models and methods. In Handbook of

Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pages 1157-1199. 1990.

[2] Xavier Defago, Andre Schiper, and Peter Urban. Total order broadcast and multicast algorithms:

Taxonomy and survey. ACM Comput. Surv., 36(4):372-421, 2004.

[3] V. Hadzilacos and S.Toueg. A modular approach to fault-tolerant broadcasts and related problems.

Technical Report TR 94 -1425, Cornell University, NY, 1994.

[4] Divakar Yadav and Michael Butler. Formal specifications and verification of message ordering

properties in a broadcast system using Event B.In Technical Report , School of Electronics and

Computer Science, University of Southampton,Southampton,UK,May 2007,

http://eprints.ecs.soton.ac.uk/14001/.

[5] Alan Fekete, Nancy A. Lynch, and Alexander A. Shvartsman. Specifying and using a partitionable

group communication service. ACM Trans. Comput.Syst., 19(2):171-216, 2001.

[6] C. Toinard, Gerard Florin, and C. Carrez. A formal method to prove ordering properties of multicast

systems. ACM Operating Systems Review, 33(4):75-89, 1999.

[7] Birman,K.P. and Joseph, T. A., Reliable communication in the presence of failures. ACM Trans.

Comput. Syst. 5(1): 47–76, 1987.

[8] Chandra, T. D. and Toueg, S. Unreliable failure detectors for reliable distributed systems. J. ACM 43,

2, 225–267, 1996.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

95

[9] Delporte-Gallet, C. and Fauconnier, H. Real-time fault tolerant atomic broadcast. In Proc. 18th Symp.

on Reliable Distributed Systems (SRDS). Lausanne, Switzerland, 48–55, 1999.

[10] Rodrigues, L., Guerraoui, R., and Schiper, A. Scalable atomic multicast.In Proc. 7th IEEE Intl. Conf.

on Computer Communications and Networks. Lafayette (LA), USA, 840–847, 1998.

[11] Kenneth P. Birman, Andr´e Schiper, and Pat Stephenson. Lightweight causal and atomic group

multicast. ACM Trans. Comput. Syst., 9(3):272–314, 1991.

[12] Roberto Baldoni, Stefano Cimmino, and Carlo Marchetti. Total order communications: A practical

analysis. In Mario Dal Cin, Mohamed Kaaniche, and Andra´s Pataricza, editors, EDCC, volume 3463

of Lecture Notes in Computer Science, pages 38-54. Springer, 2005.

[13] Carlo Marchetti Stefano Cimmino and Roberto Baldoni. A classification of total order specifications

and its application to fixed sequencer-based implementations. Journal of Parallel and Distributed

Computing, 66(1):108-127, 2006.

[14] Abrial, J.R.: Extending B without Changing it (for developing distributed systems). Proc. of the 1st

Conf. on the B method, H. Habrias (editor), France, pages 169–190, 1996.

[15] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition and Instantiationof

Discrete Models: Application to Event-B. Fundamentae Informatica, 77(1-2), 2007.

[16] Abrial, J.R.:Modeling in Event-B: System and Software Design. Cambridge University Press, 2010.

[17] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,

1996.

[18] Ralph-Johan Back. Refinement Calculus II: Parallel and Reactive Programs. In J. W.deBakker, W. P.

deRoever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems, volume 430 of

Lecture Notes in Computer Science, pages 67–93, Mook, The Netherlands, May 1989. Springer-

Verlag.

[19] Butler, M.: Incremental Design of Distributed Systems with Event-B, Marktoberdorf Summer School

2008 Lecture Notes (2008), http://eprints.ecs.soton.ac.uk/16910

[20] Butler, M., Yadav, D.: An incremental development of mondex system in Event-B.Formal Aspects of

Computing 20(1), 61–77 (2008).

AUTHORS

Arun Kumar Singh is research scholar at U.P. Technical University. He holds a M. Tech.

Degree in Electronics Engineering. His research interests include formal verification and

distributed systems.

Divakar Yadav is professor at Department of Computer Science and Engineering at

Institute of Engineering and Technology, Lucknow. He holds a Ph. D. Degree in

Computer science from University of Southampton, UK. His research interests include

distributed computing, databases and formal methods.

