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ABSTRACT 

 
The internethas massive amount of information. This information is stored in the form of zillions of 

webpages. The information that can be retrieved by search engines is huge, and this information constitutes 

the ‘surface web’.But the remaining information, which is not indexed by search engines – the ‘deep web’, 

is much bigger in size than the ‘surface web’, and remains unexploited yet. 

 

Several machine learning techniques have been commonly employed to access deep web content. Under 

machine learning, topic models provide a simple way to analyze large volumes of unlabeled text. A ‘topic’is 

a cluster of words that frequently occur together and topic models can connect words with similar 

meanings and distinguish between words with multiple meanings. In this paper, we cluster deep web 

databases employing several methods, and then perform a comparative study. In the first method, we apply 

Latent Semantic Analysis (LSA) over the dataset. In the second method, we use a generative probabilistic 

model called Latent Dirichlet Allocation(LDA) for modeling content representative of deep web 

databases.Both these techniques are implemented after preprocessing the set of web pages to extract page 

contents and form contents.Further, we propose another version of Latent Dirichlet Allocation (LDA) to the 

dataset. Experimental results show that the proposed method outperforms the existing clustering methods. 

 

KEYWORDS 

 
Latent Dirichlet Allocation, Latent Semantic Analysis, Deep Web, Cosine Similarity, Form Content and 

Page Content. 

 

1. INTRODUCTION 
 

1.1 Deep Web 

 
The internet is a huge repository for an extremely wide range of information. Most of this 

information is accessed by querying through standard search engines. However, a huge portion of 

World Wide Web content is not explored by any standard search engines [1], which is referred to 

as the ‘deep web’. This is due to several reasons. One major reason is because this kind of content 

requires authentication, which the web crawlers cannot get through. 

 

The deep web is significantly gigantic. According to a July 2000 white paper [3], the deep web is 

500 times larger than the surface web and indeed, continues to proliferate this magnitude[3].From 

the surveys presented in [4],[5] we can get a lucid understanding of the surface web. There are 

links buried far down on sites thriving on the surface web, which direct us to the news and history 

of the Deep web. It is quite common to come across deep web pages that have links terminating 

with the extension ‘.onion’.Such web pages require us to access them through browsers named 

‘Tor’, which connect to the servers containing the repository and get access consent[6]. 
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Today, the 60 largest Deep Web sites contain around 750 terabytes of data, surpassing the size of 

the entire Surface Web 40 times. 95% of the Deep Web is publically accessible, which is free of 

cost. Most of this constitutes databases of information that need to be searched directly from the 

specific website. A small pocket of the deep web is filled with hyper-secret communities who 

flock there to escape identification from authorities [7]. 

 

1.2 Topic Modeling 

 
Topic models provide a simple way to analyze large volumes of unlabeled text. A topic consists 

of a cluster of words that frequently occur together. Using contextual clues, topic models can 

connect words with similar meanings and distinguish between uses of words with multiple 

meanings. Topic models express the semantic information of words and documents by 

‘topics’[8]. 

 

1.3 Clustering 

 
Clustering refers to division of data into groups of similar objects where each group consists of 

objects that are similar between themselves and dissimilar to objects of other groups. 

 

From the machine learning perspective, clustering can be viewed as unsupervised learning [9] of 

concepts. We can cluster images, patterns, shopping items, words, documents and many more 

fields. Clustering has wide scope of application in data mining, text mining, information retrieval, 

statistical computational linguistics, and corpus based computational lexicography.  

Clustering has the following advantages: 

 
1. Clustering improves precision and recall in information retrieval. 

2. It organizes the results provided by search engines. 

3. It generates document taxonomies. 

4. It also generates ontologies and helps in classifying collocations. 

A good clustering algorithm needs to have the characteristics, mentioned below:  

1. Scalability 

2. High dimensionality 

3. Ability to discover clusters of arbitrary shape 
 

2. DATA ACQUISITION AND PREPROCESSING 
 

2.1 Dataset 
 

In order to evaluate the performance of all the methods and perform a comparative study, we used 

the TEL-8dataset as mentioned in [8], UIUC Web integration repository [18]. The repository 

contains web search forms of 447 sources originally classified into 8 domains. The term TEL-8 

refers to eight different web source domains belonging to three major categories (Travel, 

Entertainment and Living). Travel group is related to car rentals, hotels and airfares. 

Entertainment group has books, movies and music records interfaces. Finally the living group 

contains jobs and automobiles related query interfaces.  

 

2.2 Parsing 
 

Both Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA) are clustering 

algorithms for texts. However, the dataset used here is not plain text, but HTML/XML 

documents. This makes it necessary to parse the given HTML/XML documents into plain text. 

This process involves extracting only the necessary information: 
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1. Page Content: Values and textual content visible on the web page. 

2. Form Content: The value of the attributes in the form. 
 

Most of the deep web pages are blocked by forms (e.g. login forms). To take advantage of this, 

we take into consideration the form attribute values, which can reveal important information 

about the type of deep web pages. Thus, this approach covers a large portion of deep web 

database for clustering [14]. 

 

3. METHODS 
 

A topic consists of a cluster of words that frequently occur together. Topic models can connect 

words with similar meanings and distinguish between uses of words with multiple meanings. A 

variety of topic models have been used to analyze the content of documents and classify the 

documents. In our paper, we have primarily used two algorithms for clustering: Latent Semantic 

Analysis, and Latent Dirichlet Allocation [12]. 
 

3.1 Latent Semantic Analysis 
 

Latent Semantic Analysis (LSA) or Latent Semantic Indexing talks about analyzing documents to 

find the underlying meaning or concepts of those documents. Latent Semantic Analysis arose 

from the problem of finding relevant documents from search words. The fundamental difficulty 

arises when we compare words to find relevant documents, because what we really want to do is 

compare the meanings or concepts behind the words. LSA attempts to solve this problem by 

mapping both words and documents into a ‘concept space’ and doing the comparison in this 

space. 
 

This mapping of words and documents is implemented using centroid-based clustering. Here, the 

‘concept space’ or cluster, is represented using a central vector, the cluster center, which may not 

be necessarily one among the document vectors. It is an iterative process that involves trial and 

failure and the iterations continue until the result achieves the desired properties. The clusters get 

refined in each iteration, when a new document vector gets added to the dataset and is assigned a 

cluster, and a new cluster center gets computed after the iteration terminates.  

 

3.1.1 Occurrence matrix 
 

LSA uses a term-document matrix which describes the occurrences of terms in documents - it is a 

sparse matrix whose rows correspond to terms and whose columns correspond to documents. A 

typical example of the weighting of the elements of the matrix is tf-idf (term frequency–inverse 

document frequency): the weight of an element of the matrix is proportional to the number of 

times the terms appear in each document and rare terms are up-weighted to reflect their relative 

importance.  

 

3.1.2 Dot product 

 
We represent the documents under consideration as vectors. The components of the vectors are 

the words in the entire concept space. The value of each component represents the weightage of 

each word in the concept space. The dot product for two vectors: α	���� = (α�, α	, α
…) andb	���� =
(b�, b	, b
…), where ��and �� are the components of the vector (features of the document, or tf-

idf values for each word of the document in our example) and n is the dimension of the vectors: 

 

a��. b�� = 	�a�b� = a�b� +
�

���
�	b	 +	…+ ��b� 
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3.1.3 Cosine Similarity 
 

The cosine similarity between two vectors is a measure that calculates the cosine of the angle 

between them. This metric can be seen as a comparison between documents on a normalized 

space because we’re not taking into the consideration only the magnitude of each word count (tf-

idf) of each document, but the angle between the documents. To build the cosine similarity 

equation, we must solve the equation of the dot product: 

 

a��. b�� = |a��|�b��� cos θ 

cosθ = 	 a��. b��
|a��|�b��� 

 

Cosine similarity generates a metric that says how related are two documents using angle between 

the documents represented as vectors.The lesser the angle between the vectors, more related the 

documents are. Even if there was a vector pointing to a point far from another vector, they still 

could have a small angle and that is the central point on the use of Cosine Similarity, the 

measurement tends to ignore the higher term count on documents.  

 

3.2 Latent Dirichlet Allocation 
 

Latent Dirichlet Allocation (LDA) is a generative probabilistic topic model for collections of 

discrete data. The generative model describes that the documents are generated using the 

following algorithm. For each document, given N topics as input: 
 

1. Firstly, a distribution over N topics is chosen randomly. 

2. Next, for each word to be generated in the document, 

a.A topic is chosen from the distribution created in Step 1. 

b. Next, a word is chosen randomly from the corresponding distribution over    

vocabulary for the chosen topic. 
 

The Dirichlet prior on per document topic distribution is given by 
 

p(θ|α) = Г(∑ "#$#%& )
∏ Г("#)$#%&

θ�"#(�….θ)"$(�                                             (1) 

 

Joint distribution of topic mixture θ, a set of N topic z, a set of N words w 
 

   p(θ, z, w|α, β) = p(θ|α)∏ p(z-|θ)p(w-|z-, β).-��        (2)   
 

α -hyper parameter on the mixing proportions. 

β -hyper parameter on the mixture components. 

θ-the topic mixture proportion for a document. 

N-document length  

zn-the topic for the nth word in the document.  

wn –the nth word in document.  

 

In order to retrieve topics in a corpus, this generative process is reversed. The two distributions: 

distribution over topics and distribution over vocabulary for the topics are discovered by the 

reverse process. This process uses Gibbs Sampling [13], which is commonly used as a means of 

statistical inference. It is a randomized algorithm (i.e. an algorithm that makes use of random 

numbers, and hence may produce different results each time it is run. 
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3.2.1 Gibbs sampling 

 
Gibbs sampling is one of the class of sampling methods known as Markov Chain Monte Carlo. 

We use it to sample from the posterior distribution, p(Z|W), given the training data W represented 

in the form of 

 

 
 

Gibbs sampling is commonly used as a means of statistical inference, especially Bayesian 

inference [15]. It is a randomized algorithm (i.e. an algorithm that makes use of random numbers, 

and hence may produce different results each time it is run), and is an alternative to deterministic 

algorithms for statistical inference such as variational Bayes or the expectation-maximization 

algorithm (EM). Gibbs sampling generates a Markov chain of samples, each of which is 

correlated with nearby samples. 

 

3.3Latent Dirichlet Allocation – visiting inner links 

 
For some web pages, it is possible that there is little information related to the topic it falls under. 

However, the webpage may contain links to other related sites, or even its home page. If we were 

able to visit the inner HTML links in the webpage, we could gather further information about the 

topic the webpage talks about. For this purpose, we perform parsing individually on all the links 

inside the webpage. This way, we also gather more relevant test data than what is already 

available.  

 

However, is also possible to have irrelevant links inside the webpage. For example, there might 

be a quick link to a search engine website, or advertisements. Since the web pages discovered by 

visiting the inner links are not so reliable, we must give them lesser weightage than the original 

data. We achieve this by increasing the frequency of the words in the original webpage, i.e., we 

repeat the words in the original webpage for a specific number of times. 

 

Once we obtain the modified dataset after visiting the inner links, we apply LDA to obtain the 

new results. 
 

4. IMPLEMENTATION 

 
We split the implementation into two parts: 

 

1. Parsing 

2. The clustering algorithm 
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Fig 1: An example Module Diagram (for LDA) 

 

4.1 Parsing 
 

Input: Deep web interface webpage (HTML/XML) 

Output: Document with Form Contents and Page Contents as words. 
 

4.1.1 Algorithm 
 

1. From the input HTML/XML, gather all the textual content. Textual content refers to all 

the text that is visible on the webpage. 

2. For each <form> element, gather all the values of the attributes for each of the child tags. 

For example, in the following we wish to extract the "Search by Departure City" and 

"departure city". 

<form> 

<attrgroup> 

 <attr name="Search by Departure City" ename="departure city"> 

 … 

 … 

</attrgroup> 

</form> 

3. The words extracted from Step 1 and Step 2 constitute the extracted words. Write the 

extracted words into the output document. 

4. For the proposed approach, 

a. If the webpage is the original webpage interface, repeat the extracted word for a 

fixed number of times (say N), and write to the output document. 

b. If the webpage is among the ones discovered by visiting the inner links, write 

them to the document as it is. 

5. Remove all the stop-words. Stop-words constitute certain regularly used words which do 

not convey any meaning, like as, the, of, a, on,etc. 
 

4.1.2 Output Format 
 

Google App Engine [16] has been used for creating the web-tool for this project. The parser code 

written in Python takes in multiple HTML/XML files for input and gives the output after 

extracting the required words. Further, in order to remove grammatical constructs like ‘a’, ‘the’, 

‘on’, we include a file of stop-words [17]. All the words in this file are checked against the words 

obtained from the App Engine (Python code), and removed. 
 

The input format for LDA is as follows: 
 

<Number of documents: N> 

<Document 1 - space separated words> 

<Document 2 - space separated words> 
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… 

… 

<Document N - space separated words> 

This output file from the python parser code produces the output in the above mentioned format. 

This output file is then given as input to the LDA code. 
 

4.2 Latent Semantic Analysis (LSA) 
 

In this method, text vectors out of documents are created and we try to find the cosine similarity 

between all cluster centers and a new document. If the cosine similarity is found to be greater 

than a particular threshold “k”, which a user could set, then the new document joins the 

corresponding cluster and the new centroid for the cluster is computed. The cluster centroids are 

nothing but the topics. 
 

We have implemented LSA in python and then analyzed the results. This technique does not set a 

good accuracy for large corpus of data (as will be seen in our experimental results. 
 

4.3 Latent Dirichlet Allocation (LDA) 
 

Input:  

1. A single file constituting the set of documents received after the Parsing stage. Multiple web 

pages parsed and given as input to LDA. 

2. Number of Topics to be discovered. 

Output: Clusters - A set of topics with most occurring words in each topic. 

 

4.3.1 Algorithm 

 
As described earlier, we feed the Gibbs sampled data to our LDA model to extract topics from the 

given corpus. 

 

5. EXPERIMENTAL RESULTS 
 

5.1 Performance Measure 
 

To evaluate the performance of our method, we calculated Precision of the outputs generated.In 

a classification task, the precision for a class is the number of true positives divided by the total 

number of elements labeled as belonging to the positive. 
 

The definition of related terms is shown below: 
 

1. TN / True Negative: case was negative and predicted negative 

2. FP / False Positive: case was negative but predicted positive 

 

[19] Precision = True Positives / (True positives + False Positives) 

 

We tried various combinations of these 8 domains, and created 4 small datasets and 2 large 

datasets. We compared the approach used in [8] and the improved approach over the same 

dataset, and found that the improved performs well in most cases. 
 

5.2 LSA results 
 

The results of LSA were satisfactory when small amount of data was fed. Below is the output of 

LSA, which takes as input, four HTML files present in the dataset (TEL-8). 

Input:  movie.html, airfare.html, railway.html, jobs.html 
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Output:  

Cluster-1 Cluster-2 Cluster-3 

movie.html airfare.html jobs.html 

 railway.html  
 

Table 1: LSA-Small Dataset-1 Output 
 

However, when a huge dataset was given, the algorithm failed, due do its inability to maintain 

and store the tern-document matrix. As the size of the dataset increases, the dimension of the 

term-document matrix also increases. Beyond a threshold, it becomes a costly operation to 

perform operations of big matrices, if it is even possible to store such matrices. 
 

5.3 Comparison of LDA and Its Improved Version 
 

We performed a detailed analysis on the two methods. Though this analysis (image below) clearly 

shows that the proposed method performs better, this does not give the complete picture. For a 

better overall picture of the total topic distribution in each of the datasets, we use overall precision 

for each dataset. 

 

 
 

Fig 2: Individual Topic Distribution Analysis. Small refers to small dataset, and Large refers to large 

dataset. Several topics are discovered within for each dataset. 
 

We use the same formula for precision used above, and average it for the over the number of 

topics. Therefore, we get an averaged precision value for each dataset. 

 

Averaged Precision = Sum of all precision values / Number of topics discovered 
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Fig 3: Performance evaluation for datasets 

 

The above chart further strengthens the proof that the new method of visiting inner HTML links 

works better. 

 

6. SUMMARY AND CONCLUSION 

 
The requirement for an efficient and scalable clustering algorithm for deep web pages is fulfilled 

by our approach. The results show that sampling of data is useful for clustering heterogeneous 

deep Web sources. Although LSA performs well with small datasets, it proves to be non-efficient 

with large datasets. Our proposed Gibbs-LDA based technique is more efficient than the existing 

techniques. 

 

It gives more accurate results when links in the web pages are parsed and their web page content 

are also taken into account. As LDA produce soft clusters [20] it assigns probability to each 

document for each cluster. Hence, our tool is suitable for the scenario where the sources are 

sparsely distributed over the web. 

 

In order to increase the weightage for the content in our base webpage over the one that we parse 

in our web page, we have increased the frequency of all the texts that appear in base webpage, 

which increases the space complexity. New innovative methods could be proposed in future 

which could possibly reduce space. 
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