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ABSTRACT 

 

Map Reduce has gained remarkable significance as a prominent parallel data processing tool in the 

research community, academia and industry with the spurt in volume of data that is to be analyzed. Map 

Reduce is used in different applications such as data mining, data analytics where massive data analysis is 

required, but still it is constantly being explored on different parameters such as performance and 

efficiency. This survey intends to explore large scale data processing using MapReduce and its various 

implementations to facilitate the database, researchers and other communities in developing the technical 

understanding of the MapReduce framework. In this survey, different MapReduce implementations are 

explored and their inherent features are compared on different parameters. It also addresses the open 

issues and challenges raised on fully functional DBMS/Data Warehouse on MapReduce. The comparison 

of various Map Reduce implementations is done with the most popular implementation Hadoop and other 

similar implementations using other platforms.   
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1. INTRODUCTION  

 
Map reduce is prominently popular in companies, that have huge data sets stored on large number 
of nodes with an increasing demand to store, retrieve and analyze the rapidly growing data. 
Different web services generate petabytes of data such as different log files, web search engines 
using crawlers generate huge archives of web content and large sets of redundant data is also 
generated from a variety of web services. Earlier the solution was to engage the parallel database 
systems to deal with such massive amounts of data. But the drawback is that usually such 
database systems run on expensive high-end servers. When this massive data to be stored and 
processed increases to the extent of  requiring clusters of thousands of  nodes, parallel database 
solutions become extremely expensive [6]. 

 
In order to deal with such problems and to process and analyze such large and parallelizable 
datasets in a cost effective manners different companies have developed distributed data storage 
and processing systems on large clusters or grids of low-cost commodity machines. Google’s 
Map Reduce [11] is among the first ones to have taken the initiative, gradually other Map reduce 
frameworks have also evolved such as Hadoop [3] from the open-source community, and Cosmos 
[24] and Dryad [25] at Microsoft. The framework depicts a programming model that consists of 
hundred thousands of clusters of commodity machines connected via a high-bandwidth network 
for running these systems. 
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2. COMPARATIVE ANALYSIS OF DIFFERENT MAP REDUCE 

IMPLEMENTATIONS 

 
Map reduce was initially developed by Google as Google Map Reduce and Google File System 
(GFS).The next invention was a more recently popularized open source technology Apache 
Hadoop’s MapReduce and HDFS components [30]. Hadoop is currently the most popular open 
source MapReduce implementation written in Java and has been tested in Yahoo’s cluster. The 
term "Hadoop" does not only represent the base modules described above but there are number of 
add ons incorporated in the base module. The Hadoop “ecosystem”  represents all the software 
packages and the add ons  such as Apache Hive, Apache Pig, Apache HBase, Apache Spark, 
JAQL, Cascading and others [39][40] that serve different purposes and can be installed along 
with Hadoop. Sailfish [31] is a Map-Reduce framework for large scale data processing. The 
Sailfish design facilitates batch transmission from mappers to reducers to improve performance. 
An abstraction called I-files is used for adapting the Map Reduce layer for transporting data from 
map tasks to reduce tasks supporting network-wide data aggregation. It is implemented as an 
extension of the distributed filesystem, and works by dividing the data written by multiple writers 
and read by multiple readers into batches. Skynet is an open-source Ruby implementation of 
MapReduce [32].  Besides the basic features of MapReduce systems, Skynet can be configured as 
a fully distributed system with no permanent master node. This facilitates in providing a peer 
recovery mechanism to reduce the overhead of the master node. All workers are designed and 
facilitated to perform the task of a master at any time. The worker nodes monitor the status of 
each other; if one worker is down, another worker will detect it and take over the task. This 
improves fault-tolerance since the single point of failure is avoided. 
 
Recently many other map/reduce implementations, have been introduced. In this section different 
implementation environment for MapReduce is highlighted and their performances are compared 
[1]. 
 

Table1: Map Reduce Implementations for different environments 
 

Implementation Organization Technology Functionality 

Hadoop 

 

Developed by 
Apache 

Java or arbitrary 
language (user), 
Java (service) 

Distributed File System, , 
Scheduling software, Data 
replication, Fault tolerance, 

Spark 

 

Developed 
by AMPLab at 
UC Berkeley 

APIs for Scala, 
Java, and 
Python 

Supports faster applications 
using resilient distributed 
datasets (RDD). Query large 
datasets with sub-second Phoenix++   Developed at 

Stanford 
University 

 APIs only for  
C/C++ 

 

a MapReduce framework for 
shared-memory ( chip 
multiprocessor) CMPs and 
SMP( symmetric 

MARISSA (MApReduce 
Implementation for 
Streaming Science 
Applications) (2012) 

Developed  at 
SUNY 
Binghamton 

Supports any 
Executable 
Binary 

Supports variety of POSIX 
compliant file systems. Iterative 
application support, Fault-
tolerance, • 

MARIANE 
(MApReduce 
Implementation Adapted 
for HPC Environments) 
(2011) 

Developed  at 
SUNY 
Binghamton 

Java Suitable for HPC environments, 
making use of various cluster, 
shared-disk, POSIX, and parallel 
file systems. 
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MapReduce-MPI 

Developed by 
Steve Plimpton 
(Sandia) 

Bindings for 
C++ (principal), 
C, and Python 

Uses DDFS 

Disco 

 

Developed by 
Nokia, now 
open source 

Python (user), 
Erlang (service) 

Uses Distributed Index 

SASReduce SAS 
Technologies 

Python Parameter based Batch 
Processing, File splitter, Queue 
based scheduler, Parallel 
processing. BitDew BitDew Java Data distribution, replication, 
Fault tolerance in highly 
dynamic aggressive task backup 
and volatile environment, 
intermediate result backup. MARLA(MApReduce 

with adaptive Load 
balancing) (2012) 

Developed  at 
SUNY 
Binghamton 

Java Performs better in 
heterogeneous cluster, load 
imbalanced environment and 
cloud environments. 

DRYAD and 
DRYADLINQ 

Developed by 
Microsoft 

Programmable 
via C# 

 Uses Shared directories/ Local 
disks, Network topology based 
run time graph optimizations. 
Monitoring support for 
execution graphs . 

Themis Developed by 
Rasmussen et 
al 

Java  
 

 
Meets two I/O property( for jobs 
that consumes large memory, 
the I/O operations are kept 
minimum).Uses HDFS, MR4C Developed by 

Skybox 
Imaging 

Handles 
libraries in C 
C++ 

Algorithms are stored in native 
shared objects that access data 
from the local filesystem or any 
uniform resource identifier 
(URI), while input/output 
datasets, runtime parameters, 
and any  

The table above highlights different MapReduce implementations. 
 
Dryad developed by Microsoft is a general purpose engine for executing parallel and distributed 
applications [25]. A Dryad application runs in form of data flow graphs by executing the vertices 
of this graph on a set of available computers. Dryad has been used for simple map reduce style 
data mining operations and shares a lot of similarity with Google MapReduce [1]. In contrast to 
using a sequence of map/distribute/sort/reduce operations Dryad application may specify an 
arbitrary communication Dryad Graph. Therefore the application developer is required to first 
construct the static job graph and pass it to the runtime to get executed. It promotes easy creation 
of large-scale distributed applications without requiring them to master any concurrency 
techniques. Major prerequisite is to construct a graph of the data dependencies of their 
algorithms. 
 
The drawback being architectural complexity compared with the MapReduce system design. 
DryadLINQ is another programming model that is a product of Microsoft. The benefit of 
DryadLINQ generalizes previous execution environments such as Dryad, MapReduce, SQL by 
adopting an expressive data model of .NET objects; and by supporting general-purpose traditional 
high-level programming language and hybrid of declarative and imperative programming by 
exploiting LINQ (Language Integrated Query, a set of .NET constructs for programming with 
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datasets).  The system provides support for flexible and efficient distributed computation in any 
LINQ-enabled programming language including C#, VB, and F#. The Dryad and DryadLINQ are 
available [27]. All the DryadLINQ programs are passed to the Dryad execution platform and run 
on Dryad cluster computing infrastructure. The performance of Dryad and DryadLINQ is 
compared in [26] by implementing it to the most time consuming query (Q18) from the Sloan 
Digital Sky Survey database [28]. The query had identified a “gravitational lens” effect and the 
performance of the two-pass variant of the Dryad program with that of DryadLINQ was done. 
The results indicated that the DryadLINQ consumed only 100 LOCs of C# and the Dryad 
program is around 1000 lines of C++ code. 
 
Spark is a new cluster computing framework and proides support for executing the applications 
much faster than Hadoop. This is achieved by keeping data in memory, and using it interactively 
to query large datasets with sub-second latency. Spark overcomes the problem of sharing data 
across multiple MapReduce steps that is required in multipass and interactive applications. For 
solving this problem Spark provides a new storage primitive called resilient distributed datasets 
(RDD). RDDs are read and written up to 40 times faster than the distributed filesystem [4]. 
MARIANE-Hadoop [2] is another implementation of MapReduce based on HDFS. However 
Hadoop File System is not POSIX compliant [10]. Majority of applications running on the 
existing HPC environments such as Teragrid and NERSC cannot utilize it. Map Reduce is 
suitable for HPC environments but results reveal that there could be other design options too that 
could provide more efficient and better performance  in those settings [1]. Another map 
reduce framework introduced by Fadika etal is MARISSA whose architecture is based on their 
previous work MARIANE [2]. MARRISA [12] is an implementation for streaming science 
applications. Hadoop native supports applications written only in Java while Hadoop streaming 
extends support to non-Java applications and enables scripts and executable binaries to run on its 
framework. As described [2], Hadoop streaming does not have the features to support scientific 
applications. MARISSA offers better performance as compared to Hadoop in terms of 
performance and turnaround time of the applications. The Hadoop streaming model imposes a 
performance penalty also that was depicted in [12] by using the Hadoop streaming for the 
execution of C Program. MARISSA also addresses the problem of supporting multiple 
executables that is not dealt in most of the MapReduce implementations. It is also capable of 
supporting POSIX compliant file system. MARLA, another MapReduce framework specifically 
outperforms most of the popular implementations such as Hadoop [6], Twister [7] (does not cater 
to load balancing) and LEMO-MR [8]. LEMO-MR and Twister both support only Java 
applications. The results in [9] depict that in handling fault tolerance MARLA and MARIANE 
perform closely and depicts a better performance over Hadoop. In case of stressed clusters 
MARLA’s overall performance is better whereas MARIANE is slower than Hadoop [9]. 
 
MARLA proves to be much faster over other MapReduce implementations in both stress-free 
clusters and stressed clusters. Phoenix++ is an enhancement over Phoenix that is a MapReduce 
framework for shared memory CMPs and SMPs. Unlike other shared memory MapReduce 
frameworks Phoenix++ does not modify the MapReduce interface [11] but uses modularity and 
function in lining to achieve high locality and low resource usage. Phoenix allows user to write 
simple, high performance MapReduce code with an increased scalability.  
 
SASReduce Framework is also an implementation of MapReduce in BASE/SAS®. The Map 
Reduce technology Hadoop, is implemented by SAS technologies such as BASE/SAS®, 
SAS/MACRO® and  
 
SAS/CONNECT®. The SAS DATASTEP® works as the ‘Map’ function, and SAS procedures 
are used to implement the “Reducer”. Though it replicates the major functionalities of 
MapReduce but it does not support Fault tolerance, Data replication and Shared-nothing 
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architecture [5]. Also the map task is performed on single SMP machine rather than individual 
machines. Bitdew-MR as stated by Lu Lu is another implementation of MapReduce on Desktop 
Grid [3]. The results from [3] depict that BitDew-MapReduce performs better when run on 
Internet Desktop Grid and outperforms Hadoop on several aspects such as fairness, scalability, 
resilience to node failures and network disconnection. The other extensions to the Map Reduce 
model is MRPGA (An Extension of MapReduce for Parallelizing Genetic Algorithms) 
  
As MPI’s are associated with some drawbacks of being unable to handle heterogeneity, failures 
etc and that is why it not suitable for cloud applications, another author [2] presented his work of 
executing PGAs on a MapReduce model. The parallel design pattern support provided by the 
model eases the task of application development in distributed environments. As this model is not 
suitable to express PGA’s directly, they presented an extension to MapReduce model through an 
additional reduce phase for global selection, called once at the end of each iteration of the GA 
loop. To manage  faults during execution, they made the master to replicate the optimum 
individuals selected by MRPGA for each round of evolvement in their architecture. 
 
Themis is another MapReduce implementation designed to have the 2-IO property and focuses on 
minimizing the I/O operations [33]. Themis performs a wide variety of MapReduce jobs and 
outperforms Hadoop by a factor of 16 on a variety of common jobs.  Most of the map reduce jobs 
are performed such as click log analysis, DNA read sequence alignment, and PageRank (that is 
performed with nearly the speed of TritonSort's) [33][34] but it is usually used for small clusters 
where the there are few chances of node failure. Themis achieves this high performance by 
reading and writing each record to disk exactly twice. Themis and TritonSort that may also be 
termed as its predecessor hold four large-scale sorting records as of 2012. Themis is comparable 
to Triton Sort in terms of the speed that is equivalent to the sequential speed of the disks for I/O-
bound jobs, which is approximately the same rate as Triton Sort's record-setting performance. 
Themis has flexible memory subsystem and provides support to handle large amounts of data 
skew while ensuring efficient operation record-setting sort performance. Themis accommodates 
the flexibility of the MapReduce programming model while simultaneously delivering high 
efficiency. This is achieved by considering fundamentally different points in the design space 
than existing MapReduce implementations. The comparison of Hadoop version 1.0.3 and Themis 
done on the Sort-500G and CloudBurst applications shows that Themis has outperformed Hadoop 
by a factor of 3-16 [33]. Even after the best optimization, Hadoop encountered difficulties in 
running many large parallel transfers without having the nodes blacklisted for running out of 
memory. Therefore the performance of a Map Reduce job can be significantly improved, but the 
ideal candidates for Themis are the clusters that can process petabytes of jobs yet are small 
enough to experience a lower failure rate than warehouse clusters. 
 
 A very recent addition to the Map Reduce Community is the release of MR4C Map Reduce for C 
that is developed at SkyBox Imaging as an open source framework and allows the execution of 
native code in Hadoop . It is basically meant to facilitate large scale satellite image processing 
and geospatial data science,  and at the same time also provides the efficiency of natively 
developed algorithms with the flexibility and scalability present in Hadoop [41]. 
  
 Other systems have also been developed mainly by the industry and renowned organization to 
support Big Data analysis, such as Facebook [13], Microsoft’s SCOPE [16][24], Yahoo’s PNUTS 
[15], Twitter’s Storm [17], LinkedIn’s Kafka [18] and Walmart Labs’ Muppet [19].  Scope is 
designed in a way to provide the advantages from both traditional parallel databases and 
MapReduce execution engines to allow easy programmability and deliver massive scalability and 
high performance through advanced optimization. The system supports SQL-like declarative 
scripting language with no explicit parallelism, compliant to efficient parallel execution on large 
clusters. Microsoft SCOPE, Apache Pig [22, 23] and Apache Hive[20, 21] all aim at supporting 
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declarative query languages for the MapReduce framework. There has been a spurt in High-level 
declarative languages, such as Pig, Hive, and Jaql to allow developers to program at a higher 
level of abstraction. Other runtime platforms, including Nephele/PACTs [4] and Hyracks [6], 
have been developed to improve the MapReduce execution model. 
 

3. RELATED WORK 
 

Feng etal [29] attempts to present the current research on enhancing MapReduce to better address 
modern data intensive applications without losing its fundamental advantages and also reviews a 
number of map reduce implementations. They also discuss ongoing work to provide 
enhancements to the MapReduce framework to efficiently deal with a richer set of workloads 
such as streaming data, iterative computations. Other researchers have also explored Map Reduce 
implementations.  Map Reduce implementation in cloud environment is also much researched 
area [35]. Liu describes Cloud MapReduce for Amazon. This programming model is supported 
by the Amazon cloud OS. The scalability offered by the cloud OS is an added advantage as 
compared to the server OS as it is much faster and scalable. The work in [36] compare two 
implementations of cloud MapReduce in cloud computing environments, AzureMapReduce [38] 
and Amazon Elastic MapReduce [37].  
 

4. CONCLUSION 
 

The analysis and comparison of these various MapReduce implementations specifically in 
reference to the Hadoop that has some standard features such as support for various types of 
input/output format support, compression techniques, a customized scheduler etc, it is observed 
that there are salient differences between them, for example  task scheduling, data management 
approaches, the language support and the language used to implement the system, the file system 
employed, the indexing strategies, the design for multiple jobs and the master slave node 
designing. The discussion in the paper highlights different MapReduce implementations. Some of 
them are either built on top of Hadoop, or implemented using different scripting languages such 
as Apache Pig, Apache Hive, Apache HBase, Apache Spark, and others. Spark for example 
claims to run applications much faster than Hadoop by using  a new storage primitive called 
resilient distributed datasets (RDD) that overcomes the problem of sharing data across multiple 
MapReduce steps. Similarly Dryad that is a Microsoft  product which promotes easy creation of 
large-scale distributed applications without requiring them to master any concurrency techniques. 
It runs application in form of data flow graphs and so the user does not need to perform sequence 
of map/distribute/sort/reduce operations. The popularity of Map Reduce implementations and 
specifically Hadoop for the analysis of massive data sets , the open-source communities and 
researchers have developed a number of higher-level languages and programming libraries for 
Hadoop. Among those approaches are Hive , Pig , JAQL , and Cascading. Data processing tasks 
written in any of these languages are compiled into one or multiple MapReduce jobs which are 
executed on Hadoop. All of them aim to ease the development of data parallel program, however, 
all approaches are applicable on different use-cases and have considerably varying feature sets. 
For example the Hive system focuses on data warehousing, JAQL is a query language for the 
JSON data model and Pig’s data and processing model is rather designed to fit in somewhere 
between the declarative style of SQL, and the low-level, procedural style of MapReduce . Then 
there are certain databases also that offer built in MapReduce support such as MongoDB,Aster 
etc. Table 1 highlights different MapReduce implementations a nd their comparisons on the 
basis of language used, file system and task scheduling. The newer systems that are introduced 
after Hadoop tend to either ease up the task or make it faster than Hadoop but still Hadoop with 
its richer APIs, features and administrative tools still rules as the most popular and most adopted 
Map Reduce framework. 
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