
International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

DOI:10.5121/ijcsit.2015.7410 119

MAP-REDUCE IMPLEMENTATIONS: SURVEY AND

PERFORMANCE COMPARISON

Zeba Khanam and Shafali Agarwal

Department of Computer Application, JSSATE, Noida

ABSTRACT

Map Reduce has gained remarkable significance as a prominent parallel data processing tool in the

research community, academia and industry with the spurt in volume of data that is to be analyzed. Map

Reduce is used in different applications such as data mining, data analytics where massive data analysis is

required, but still it is constantly being explored on different parameters such as performance and

efficiency. This survey intends to explore large scale data processing using MapReduce and its various

implementations to facilitate the database, researchers and other communities in developing the technical

understanding of the MapReduce framework. In this survey, different MapReduce implementations are

explored and their inherent features are compared on different parameters. It also addresses the open

issues and challenges raised on fully functional DBMS/Data Warehouse on MapReduce. The comparison

of various Map Reduce implementations is done with the most popular implementation Hadoop and other

similar implementations using other platforms.

KEYWORDS

MapReduce, Parallel Data Processing tools, MapReduceFrameworks, Hadoop, DBMS/DataWarehouse.

1. INTRODUCTION

Map reduce is prominently popular in companies, that have huge data sets stored on large number
of nodes with an increasing demand to store, retrieve and analyze the rapidly growing data.
Different web services generate petabytes of data such as different log files, web search engines
using crawlers generate huge archives of web content and large sets of redundant data is also
generated from a variety of web services. Earlier the solution was to engage the parallel database
systems to deal with such massive amounts of data. But the drawback is that usually such
database systems run on expensive high-end servers. When this massive data to be stored and
processed increases to the extent of requiring clusters of thousands of nodes, parallel database
solutions become extremely expensive [6].

In order to deal with such problems and to process and analyze such large and parallelizable
datasets in a cost effective manners different companies have developed distributed data storage
and processing systems on large clusters or grids of low-cost commodity machines. Google’s
Map Reduce [11] is among the first ones to have taken the initiative, gradually other Map reduce
frameworks have also evolved such as Hadoop [3] from the open-source community, and Cosmos
[24] and Dryad [25] at Microsoft. The framework depicts a programming model that consists of
hundred thousands of clusters of commodity machines connected via a high-bandwidth network
for running these systems.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

120

2. COMPARATIVE ANALYSIS OF DIFFERENT MAP REDUCE

IMPLEMENTATIONS

Map reduce was initially developed by Google as Google Map Reduce and Google File System
(GFS).The next invention was a more recently popularized open source technology Apache
Hadoop’s MapReduce and HDFS components [30]. Hadoop is currently the most popular open
source MapReduce implementation written in Java and has been tested in Yahoo’s cluster. The
term "Hadoop" does not only represent the base modules described above but there are number of
add ons incorporated in the base module. The Hadoop “ecosystem” represents all the software
packages and the add ons such as Apache Hive, Apache Pig, Apache HBase, Apache Spark,
JAQL, Cascading and others [39][40] that serve different purposes and can be installed along
with Hadoop. Sailfish [31] is a Map-Reduce framework for large scale data processing. The
Sailfish design facilitates batch transmission from mappers to reducers to improve performance.
An abstraction called I-files is used for adapting the Map Reduce layer for transporting data from
map tasks to reduce tasks supporting network-wide data aggregation. It is implemented as an
extension of the distributed filesystem, and works by dividing the data written by multiple writers
and read by multiple readers into batches. Skynet is an open-source Ruby implementation of
MapReduce [32]. Besides the basic features of MapReduce systems, Skynet can be configured as
a fully distributed system with no permanent master node. This facilitates in providing a peer
recovery mechanism to reduce the overhead of the master node. All workers are designed and
facilitated to perform the task of a master at any time. The worker nodes monitor the status of
each other; if one worker is down, another worker will detect it and take over the task. This
improves fault-tolerance since the single point of failure is avoided.

Recently many other map/reduce implementations, have been introduced. In this section different
implementation environment for MapReduce is highlighted and their performances are compared
[1].

Table1: Map Reduce Implementations for different environments

Implementation Organization Technology Functionality

Hadoop

Developed by
Apache

Java or arbitrary
language (user),
Java (service)

Distributed File System, ,
Scheduling software, Data
replication, Fault tolerance,

Spark

Developed
by AMPLab at
UC Berkeley

APIs for Scala,
Java, and
Python

Supports faster applications
using resilient distributed
datasets (RDD). Query large
datasets with sub-second Phoenix++ Developed at

Stanford
University

 APIs only for
C/C++

a MapReduce framework for
shared-memory (chip
multiprocessor) CMPs and
SMP(symmetric

MARISSA (MApReduce
Implementation for
Streaming Science
Applications) (2012)

Developed at
SUNY
Binghamton

Supports any
Executable
Binary

Supports variety of POSIX
compliant file systems. Iterative
application support, Fault-
tolerance, •

MARIANE
(MApReduce
Implementation Adapted
for HPC Environments)
(2011)

Developed at
SUNY
Binghamton

Java Suitable for HPC environments,
making use of various cluster,
shared-disk, POSIX, and parallel
file systems.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

121

MapReduce-MPI

Developed by
Steve Plimpton
(Sandia)

Bindings for
C++ (principal),
C, and Python

Uses DDFS

Disco

Developed by
Nokia, now
open source

Python (user),
Erlang (service)

Uses Distributed Index

SASReduce SAS
Technologies

Python Parameter based Batch
Processing, File splitter, Queue
based scheduler, Parallel
processing. BitDew BitDew Java Data distribution, replication,
Fault tolerance in highly
dynamic aggressive task backup
and volatile environment,
intermediate result backup. MARLA(MApReduce

with adaptive Load
balancing) (2012)

Developed at
SUNY
Binghamton

Java Performs better in
heterogeneous cluster, load
imbalanced environment and
cloud environments.

DRYAD and
DRYADLINQ

Developed by
Microsoft

Programmable
via C#

 Uses Shared directories/ Local
disks, Network topology based
run time graph optimizations.
Monitoring support for
execution graphs .

Themis Developed by
Rasmussen et
al

Java

Meets two I/O property(for jobs
that consumes large memory,
the I/O operations are kept
minimum).Uses HDFS, MR4C Developed by

Skybox
Imaging

Handles
libraries in C
C++

Algorithms are stored in native
shared objects that access data
from the local filesystem or any
uniform resource identifier
(URI), while input/output
datasets, runtime parameters,
and any

The table above highlights different MapReduce implementations.

Dryad developed by Microsoft is a general purpose engine for executing parallel and distributed
applications [25]. A Dryad application runs in form of data flow graphs by executing the vertices
of this graph on a set of available computers. Dryad has been used for simple map reduce style
data mining operations and shares a lot of similarity with Google MapReduce [1]. In contrast to
using a sequence of map/distribute/sort/reduce operations Dryad application may specify an
arbitrary communication Dryad Graph. Therefore the application developer is required to first
construct the static job graph and pass it to the runtime to get executed. It promotes easy creation
of large-scale distributed applications without requiring them to master any concurrency
techniques. Major prerequisite is to construct a graph of the data dependencies of their
algorithms.

The drawback being architectural complexity compared with the MapReduce system design.
DryadLINQ is another programming model that is a product of Microsoft. The benefit of
DryadLINQ generalizes previous execution environments such as Dryad, MapReduce, SQL by
adopting an expressive data model of .NET objects; and by supporting general-purpose traditional
high-level programming language and hybrid of declarative and imperative programming by
exploiting LINQ (Language Integrated Query, a set of .NET constructs for programming with

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

122

datasets). The system provides support for flexible and efficient distributed computation in any
LINQ-enabled programming language including C#, VB, and F#. The Dryad and DryadLINQ are
available [27]. All the DryadLINQ programs are passed to the Dryad execution platform and run
on Dryad cluster computing infrastructure. The performance of Dryad and DryadLINQ is
compared in [26] by implementing it to the most time consuming query (Q18) from the Sloan
Digital Sky Survey database [28]. The query had identified a “gravitational lens” effect and the
performance of the two-pass variant of the Dryad program with that of DryadLINQ was done.
The results indicated that the DryadLINQ consumed only 100 LOCs of C# and the Dryad
program is around 1000 lines of C++ code.

Spark is a new cluster computing framework and proides support for executing the applications
much faster than Hadoop. This is achieved by keeping data in memory, and using it interactively
to query large datasets with sub-second latency. Spark overcomes the problem of sharing data
across multiple MapReduce steps that is required in multipass and interactive applications. For
solving this problem Spark provides a new storage primitive called resilient distributed datasets
(RDD). RDDs are read and written up to 40 times faster than the distributed filesystem [4].
MARIANE-Hadoop [2] is another implementation of MapReduce based on HDFS. However
Hadoop File System is not POSIX compliant [10]. Majority of applications running on the
existing HPC environments such as Teragrid and NERSC cannot utilize it. Map Reduce is
suitable for HPC environments but results reveal that there could be other design options too that
could provide more efficient and better performance in those settings [1]. Another map
reduce framework introduced by Fadika etal is MARISSA whose architecture is based on their
previous work MARIANE [2]. MARRISA [12] is an implementation for streaming science
applications. Hadoop native supports applications written only in Java while Hadoop streaming
extends support to non-Java applications and enables scripts and executable binaries to run on its
framework. As described [2], Hadoop streaming does not have the features to support scientific
applications. MARISSA offers better performance as compared to Hadoop in terms of
performance and turnaround time of the applications. The Hadoop streaming model imposes a
performance penalty also that was depicted in [12] by using the Hadoop streaming for the
execution of C Program. MARISSA also addresses the problem of supporting multiple
executables that is not dealt in most of the MapReduce implementations. It is also capable of
supporting POSIX compliant file system. MARLA, another MapReduce framework specifically
outperforms most of the popular implementations such as Hadoop [6], Twister [7] (does not cater
to load balancing) and LEMO-MR [8]. LEMO-MR and Twister both support only Java
applications. The results in [9] depict that in handling fault tolerance MARLA and MARIANE
perform closely and depicts a better performance over Hadoop. In case of stressed clusters
MARLA’s overall performance is better whereas MARIANE is slower than Hadoop [9].

MARLA proves to be much faster over other MapReduce implementations in both stress-free
clusters and stressed clusters. Phoenix++ is an enhancement over Phoenix that is a MapReduce
framework for shared memory CMPs and SMPs. Unlike other shared memory MapReduce
frameworks Phoenix++ does not modify the MapReduce interface [11] but uses modularity and
function in lining to achieve high locality and low resource usage. Phoenix allows user to write
simple, high performance MapReduce code with an increased scalability.

SASReduce Framework is also an implementation of MapReduce in BASE/SAS®. The Map
Reduce technology Hadoop, is implemented by SAS technologies such as BASE/SAS®,
SAS/MACRO® and

SAS/CONNECT®. The SAS DATASTEP® works as the ‘Map’ function, and SAS procedures
are used to implement the “Reducer”. Though it replicates the major functionalities of
MapReduce but it does not support Fault tolerance, Data replication and Shared-nothing

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

123

architecture [5]. Also the map task is performed on single SMP machine rather than individual
machines. Bitdew-MR as stated by Lu Lu is another implementation of MapReduce on Desktop
Grid [3]. The results from [3] depict that BitDew-MapReduce performs better when run on
Internet Desktop Grid and outperforms Hadoop on several aspects such as fairness, scalability,
resilience to node failures and network disconnection. The other extensions to the Map Reduce
model is MRPGA (An Extension of MapReduce for Parallelizing Genetic Algorithms)

As MPI’s are associated with some drawbacks of being unable to handle heterogeneity, failures
etc and that is why it not suitable for cloud applications, another author [2] presented his work of
executing PGAs on a MapReduce model. The parallel design pattern support provided by the
model eases the task of application development in distributed environments. As this model is not
suitable to express PGA’s directly, they presented an extension to MapReduce model through an
additional reduce phase for global selection, called once at the end of each iteration of the GA
loop. To manage faults during execution, they made the master to replicate the optimum
individuals selected by MRPGA for each round of evolvement in their architecture.

Themis is another MapReduce implementation designed to have the 2-IO property and focuses on
minimizing the I/O operations [33]. Themis performs a wide variety of MapReduce jobs and
outperforms Hadoop by a factor of 16 on a variety of common jobs. Most of the map reduce jobs
are performed such as click log analysis, DNA read sequence alignment, and PageRank (that is
performed with nearly the speed of TritonSort's) [33][34] but it is usually used for small clusters
where the there are few chances of node failure. Themis achieves this high performance by
reading and writing each record to disk exactly twice. Themis and TritonSort that may also be
termed as its predecessor hold four large-scale sorting records as of 2012. Themis is comparable
to Triton Sort in terms of the speed that is equivalent to the sequential speed of the disks for I/O-
bound jobs, which is approximately the same rate as Triton Sort's record-setting performance.
Themis has flexible memory subsystem and provides support to handle large amounts of data
skew while ensuring efficient operation record-setting sort performance. Themis accommodates
the flexibility of the MapReduce programming model while simultaneously delivering high
efficiency. This is achieved by considering fundamentally different points in the design space
than existing MapReduce implementations. The comparison of Hadoop version 1.0.3 and Themis
done on the Sort-500G and CloudBurst applications shows that Themis has outperformed Hadoop
by a factor of 3-16 [33]. Even after the best optimization, Hadoop encountered difficulties in
running many large parallel transfers without having the nodes blacklisted for running out of
memory. Therefore the performance of a Map Reduce job can be significantly improved, but the
ideal candidates for Themis are the clusters that can process petabytes of jobs yet are small
enough to experience a lower failure rate than warehouse clusters.

 A very recent addition to the Map Reduce Community is the release of MR4C Map Reduce for C
that is developed at SkyBox Imaging as an open source framework and allows the execution of
native code in Hadoop . It is basically meant to facilitate large scale satellite image processing
and geospatial data science, and at the same time also provides the efficiency of natively
developed algorithms with the flexibility and scalability present in Hadoop [41].

 Other systems have also been developed mainly by the industry and renowned organization to
support Big Data analysis, such as Facebook [13], Microsoft’s SCOPE [16][24], Yahoo’s PNUTS
[15], Twitter’s Storm [17], LinkedIn’s Kafka [18] and Walmart Labs’ Muppet [19]. Scope is
designed in a way to provide the advantages from both traditional parallel databases and
MapReduce execution engines to allow easy programmability and deliver massive scalability and
high performance through advanced optimization. The system supports SQL-like declarative
scripting language with no explicit parallelism, compliant to efficient parallel execution on large
clusters. Microsoft SCOPE, Apache Pig [22, 23] and Apache Hive[20, 21] all aim at supporting

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

124

declarative query languages for the MapReduce framework. There has been a spurt in High-level
declarative languages, such as Pig, Hive, and Jaql to allow developers to program at a higher
level of abstraction. Other runtime platforms, including Nephele/PACTs [4] and Hyracks [6],
have been developed to improve the MapReduce execution model.

3. RELATED WORK

Feng etal [29] attempts to present the current research on enhancing MapReduce to better address
modern data intensive applications without losing its fundamental advantages and also reviews a
number of map reduce implementations. They also discuss ongoing work to provide
enhancements to the MapReduce framework to efficiently deal with a richer set of workloads
such as streaming data, iterative computations. Other researchers have also explored Map Reduce
implementations. Map Reduce implementation in cloud environment is also much researched
area [35]. Liu describes Cloud MapReduce for Amazon. This programming model is supported
by the Amazon cloud OS. The scalability offered by the cloud OS is an added advantage as
compared to the server OS as it is much faster and scalable. The work in [36] compare two
implementations of cloud MapReduce in cloud computing environments, AzureMapReduce [38]
and Amazon Elastic MapReduce [37].

4. CONCLUSION

The analysis and comparison of these various MapReduce implementations specifically in
reference to the Hadoop that has some standard features such as support for various types of
input/output format support, compression techniques, a customized scheduler etc, it is observed
that there are salient differences between them, for example task scheduling, data management
approaches, the language support and the language used to implement the system, the file system
employed, the indexing strategies, the design for multiple jobs and the master slave node
designing. The discussion in the paper highlights different MapReduce implementations. Some of
them are either built on top of Hadoop, or implemented using different scripting languages such
as Apache Pig, Apache Hive, Apache HBase, Apache Spark, and others. Spark for example
claims to run applications much faster than Hadoop by using a new storage primitive called
resilient distributed datasets (RDD) that overcomes the problem of sharing data across multiple
MapReduce steps. Similarly Dryad that is a Microsoft product which promotes easy creation of
large-scale distributed applications without requiring them to master any concurrency techniques.
It runs application in form of data flow graphs and so the user does not need to perform sequence
of map/distribute/sort/reduce operations. The popularity of Map Reduce implementations and
specifically Hadoop for the analysis of massive data sets , the open-source communities and
researchers have developed a number of higher-level languages and programming libraries for
Hadoop. Among those approaches are Hive , Pig , JAQL , and Cascading. Data processing tasks
written in any of these languages are compiled into one or multiple MapReduce jobs which are
executed on Hadoop. All of them aim to ease the development of data parallel program, however,
all approaches are applicable on different use-cases and have considerably varying feature sets.
For example the Hive system focuses on data warehousing, JAQL is a query language for the
JSON data model and Pig’s data and processing model is rather designed to fit in somewhere
between the declarative style of SQL, and the low-level, procedural style of MapReduce . Then
there are certain databases also that offer built in MapReduce support such as MongoDB,Aster
etc. Table 1 highlights different MapReduce implementations a nd their comparisons on the
basis of language used, file system and task scheduling. The newer systems that are introduced
after Hadoop tend to either ease up the task or make it faster than Hadoop but still Hadoop with
its richer APIs, features and administrative tools still rules as the most popular and most adopted
Map Reduce framework.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

125

REFERENCES

[1] J.Dean and S. Ghemawat, “MapReduce: Simplifed Data Processing on Large Clusters,” Operating
Systems Design and Implementation, 2004, 137-149.

[2] Z.Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan. Mariane, “ Mapreduce implementation
adapted for HPC Environments”, IEEE/ACM International Workshop on Grid computing. 0:82–89,
2011.

[3] Lu Lu, Hai Jin, Xuanhua Shi & G. Fedak, “Assessing MapReduce for Internet Computing: A
Comparison of Hadoop and BitDew-MapReduce”, in GRID '12 Proceedings of the 2012 ACM/IEEE
13th International Conference on Grid Computing, Pages 76-84
IEEE Computer Society Washington, DC, USA ©2012.

[4] M.Zaharia, M.Chowdhury, T.Das, A.Dave. etal, “Fast and Interactive Analytics over Hadoop Data
with Spark” USENIX, Aug 2012.

[5] D.Moors, “SASReduce - An implementation of MapReduce in BASE/SAS”, Paper 1507-2014
Whitehound Limited, UK, 2014.

[6] Apache Hadoop. [Online]. Available: http://hadoop.apache.org
[7] J.Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox, “Twister: a runtime for

iterative mapreduce,” in HPDC, 2010, pp. 810–818.
[8] Z.Fadika and M.Govindaraju, “Lemo-mr:Low overhead and elastic mapreduce implementation

optimized for memory and cpu-intensive applications,” IEEE International Conference on Cloud
Computing Technology and Science”, vol.0,pp. 1-8,2010.

[9] Z.Fadika, E. Dede., Hartog,J., M. Govindaraju. , “MARLA:MapReduce for Heterogenous Clusters”,
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2012 .

[10] K.Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system. In Mass
Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1 –10, May 2010.

[11] J.Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: modular mapreduce for shared-memory systems.
In Proceedings of the second international workshop on MapReduce and its applications, MapReduce
’11, pages 9–16, New York, NY, USA, 2011. ACM.

[12] E.Dede, Z. Fadika, J. Hartog, M. Govindaraju, L. Ramakrishnan, D. Gunter, and R. Canon, “Marissa:
Mapreduce implementation for streaming science applications,” in E-Science (e-Science), 2012 IEEE
8th International Conference on, Oct 2012, pp. 1–8.

[13] J.Chao, V.Christian and B.Rajkumar, “MRPGA: An Extension of MapReduce for Parallelizing
Genetic Algorithms”, in Proceedings of the 4th IEEE International Conference on e-Science 2008.

[14] Nokia Research Center. Disco: Massive data- minimal code. http://discoproject.org, 2010.
[15] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,

D. Weaver, and R. Yerneni, “ PNUTS: Yahoo!'s hosted data serving platform”, Proceedings of the
VLDB Endowment (PVLDB), 1(2):1277{1288, 2008.

[16] J.Zhou, N. Bruno, M.-C. Wu, P.-˚A. Larson, R. Chaiken, and D. Shakib, “ SCOPE: parallel databases
meet MapReduce”, VLDB Journal, 21(5):611–636, 2012.

[17] J.Leibiusky, G. Eisbruch, and D. Simonassi. “Getting Started with Storm”. O’Reilly, 2012.
[18] K.Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park, J. Rao, and V. Y. Ye, “Building LinkedIn’s

real-time activity data pipeline”, IEEE Data Engineering Bulletin, 35(2):33–45, 2012.
[19] W.Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan. Muppet, “ MapReduce-style

processing of fast data”, Proceedings of the VLDB Endowment (PVLDB), 5(12):1814–1825, 2012.
[20] A.Thusoo et al. “Hive: a warehousing solution over a map-reduce framework”, Proceedings of the

VLDB Endowment, 2(2):1626–1629, 2009.
[21] A.Thusoo et al. “Hive-a petabyte scale data warehouse using Hadoop”, In Proceedings of the 26th

IEEE ICDE, pages 996–1005, 2010.
[22] B.He et al. “Mars: a MapReduce framework on graphics processors”, In Proceedings of the 17th

PACT, pages 260–269, 2008.
[23] C.Olston et al. “Pig latin: a not-so-foreign language for data processing”, In Proceedings of the ACM

SIGMOD, pages1099–1110, 2008.
[24] R.Chaiken, B. Jenkins, P.Larson, B. Ramsey, D. Shakib. S.Weaver, J. Zhou, “SCOPE: easy and

efficient parallel processing of massive data sets”, in: Proceedings of VLDB Conference (2008).
[25] Isard, M. et al., “Dryad: distributed data-parallel programs from sequential building blocks”, in

Proceedings of EuroSys Conference (2007).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

126

[26] Y.Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. Gunda, and J. Currey, “DryadLINQ: A
System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language,”
Symposium on Operating System Design and Implementation (OSDI), CA, December 8-10, 2008.

[27] http://research.microsoft.com/en-us/downloads/03960cab-bb92-4c5c-be23-ce51aee0792c/
[28] J.Gray, A. Szalay, A. Thakar, P. Kunszt, C.Stoughton, D. Slutz, and Vandenberg, J. Data Mining the

SDSS SkyServer database. In Distributed Data and Structures 4: Records of the 4th International
Meeting, 2002.

[29] L.Feng, Beng Chin Ooi, M. Tamer Özsu, Sai Wu, “Distributed data management using MapReduce”,
ACM Comput. Surv. 46(3): 31 (2014)

[30] http://hadoop.apache.org/hdfs/
[31] S.Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and D. Reeves, “Sailfish: a framework for

large scale data processing”, In Proc. 3rd ACM Symp. on Cloud Computing. 4:1–4:14.2012
[32] http://skynet.rubyforge.org/
[33] Rasmussen, A., Lam, V. T., Onley, M., Porter, G., Kapoor, R., and Vahdat, a. 2012. Themis: an I/O-

efficient MapReduce. In Proc. 3rd ACM Symp. on Cloud Computing. 13:1–13:14.
[34] A.Rasmussen, G. Porter, M. Conley, H. V. Madhyastha, R. N. Mysore, A. Pucher, and A. Vahdat.

TritonSort: A Balanced Large-Scale Sorting System. In NSDI, 2011.
[35] H.Liu and D. Orban, “Cloud mapreduce: a mapreduce implementation on top of a cloud operating

system,” 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2011 .

[36] B.Rashidi, E. Asyabi and J. Talie, “A Comparison of Amazon Elastic Mapreduce and Azure
Mapreduce”, Elixir International Journal Computer Science and Engineering.

[37] Amazon Web Services LLC, “Amazon Elastic MapReduce (Amazon EMR),”
http://aws.amazon.com/elasticMapReduce/,

[38] T.Gunarathne, T. Lon Wu, J. Qiu et al., " MapReduce in the Clouds for Science," 2nd IEEE
International Conference on Cloud Computing Technology and Science, Nov. 29- Dec. 1, 2011,
Athens, Greece.

[39] K.Beyer, V. Ercegovac, J. Rao, and E. Shekita, “Jaql: A JSON Query Language”. URL:
http://jaql.org.

[40] Cascading. URL: http://www.cascading.org/.
[41] https://github.com/google/mr4c

