
International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

DOI:10.5121/ijcsit.2015.7210 111

PROP - PATRONAGE OF PHP WEB APPLICATIONS

Sireesha C1, Jyostna G2, Raghu Varan P3 and P R L Eswari4

Centre for Development of Advanced Computing, Hyderabad, India

ABSTRACT

PHP is one of the most commonly used languages to develop web sites because of its simplicity, easy to

learn and it can be easily embedded with any of the databases. A web developer with his basic knowledge

developing an application without practising secure guidelines, improper validation of user inputs leads to

various source code vulnerabilities. Logical flaws while designing, implementing and hosting the web

application causes work flow deviation attacks. In this paper, we are analyzing the complete behaviour of a

web application through static and dynamic analysis methodologies.

KEYWORDS

Authentication and Authorization bypass, cross-site scripting, session hijacking, Code Injection,

Command Injection.

1. INTRODUCTION

Internet and web have made the entire world come together. Also now-a-days web is being used

heavily to offer citizen services including banking and governance services. However, these

advances in Internet technologies are being exploited to cause adverse effects. Vulnerabilities in

web applications are used as vehicles to launch various attacks. According to Symantec survey

report-2013 [1], small businesses and organizations are being targeted by attackers. Popular web

application threats according to OWASP [2] include SQL injection [3], Cross-Site Scripting

(XSS) [4], Authentication and Authorization bypass [5][6], Session Hijacking [7], Cross-Site

Request Forgery (CSRF) [8]. Most popular threat among these is SQL injection, which targets

backend database through the web application. The attackers make use of the compromised web

applications and acquire unauthorized access to the database. The [9] shows the risk factors of top

10 attacks incurred on specific application or organization’s technical impact and business

impacts.

XSS attack is launched by injecting malicious code through user supplied data. Popularly this

attack is made through java script code; attacker gives malicious web link in user input field

which internally calls or redirects to the web link supplied by the attacker. CSRF is another

dangerous attack in which the attacker inserts malicious links in the forms or forums of a

legitimate website which tempt users to click on those links leading to malicious activity.

Another attack is “Session Hijacking” where the attacker focuses more on finding the weaknesses

in session implementation. By using session fixation, prediction and capture methods attacker

gets session information which can be misused. The session fixation [10] occurs when an attacker

is able to trick the user in using a predefined session ID of his choice. Usually the session ID is

passed as URL parameter along with the requested page information from the client. If the web

server fills the session details with the predefined session ID from the client without regenerating

a new session ID then there is a possibility of attack. Another possible attack is sequence bypass

attack, where an attacker is able to access the unauthorized pages with the same privileges or by

forcible browsing.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

112

In addition to the above, Code Injection and command Execution are other popular attacks. In

Code Injection attack, malicious code is added as part of the application itself, which gets

executed when application is accessed. Shell code falls under this category. In Command

Execution attack, attacker injects and executes commands through vulnerable applications.

Configuration file settings are also exploited for launching the attacks. For example in PHP

[11][12], if register_global is turned ‘on’ in configuration file it automatically takes data from the

super global arrays ($_GET, $_POST, $_SERVER, $_COOKIE, $_REQUEST and $_FILE) and

assigns them to global variables, means $_POST['password'] would automatically assigned to

global variable $password. These global variable details are used by attacker to gain unauthorized

access to the application. All these attacks are made by compromising either web application or

exploiting the configuration details of .config files. In order to protect from these attacks, various

research efforts are made in developing browser side as well as web application side security

solutions. Through this paper we represent PROP- PatROnage of PHP Web Applications, which

analyzes and detects the source code vulnerabilities and prevents the run time execution attacks.

This security solution is implemented and tested for PHP based web application and results are

promising.

2. EXISTING SOLUTIONS

In order to detect & prevent web application attacks, source code as well as run time analysis

approaches [13] [14] [15] are used. Existing solutions pixy [16], rips [17], MIMOSA [18] and

IBM Rational AppScan [19] require scripting code of web application in order to detect the

vulnerabilities. Swaddler [20] is a solution, in which vulnerabilities are detected by analyzing the

state of web application based on session values at PHP interpreter level during runtime. Another

solution Acunetix web vulnerability scanner [21], audits web applications by checking for

exploitable hacking vulnerabilities through static analysis. Nemesis [22] approach addresses the

Authentication and Authorization bypass attacks with programmer-supplied access control rules

on files and database entries. To provide the security at web application level another possible

solution is the use of Web Application Firewalls (WAF) [23]. But WAFs are designed by white

listing the rules. The rule set of the WAFs describes the behaviour of the application. But these

WAFs are failing to prevent the Session Hijacking; Privilege Escalation and Logical flaws exist

in web applications due to the inability in white listing the rules of defected code and session

maintenance.

In this paper we propose PROP to detect source code vulnerabilities like XSS, SQL Injection,

Code Injection, Command Injection , File Inclusion and File Manipulation attacks and to detect &

prevents the work flow deviation attacks like SQL injection; authentication & authorization

bypass through session stealing and sequence bypass attacks at run time execution. The solution

works without disturbing the application database and without opening any external ports.

3. APPROACH

PROP includes Static Analyzer and Dynamic Analyzer which follows the source code analysis

and run time analysis techniques respectively. Figure 1 shows the working functionality of PROP.

Static Analyzer analyses the source code of PHP web application and detects the source code

vulnerabilities. It maintains the vulnerability checklist which includes the identified native PHP

vulnerable functions list and sources from which the vulnerabilities are exploited like user input,

file and database access methods. Analysis starts by tokenizing the source code, parsing and

identifying the vulnerabilities against provided vulnerable functions check list. And it generates a

report on identified vulnerabilities and the report includes the information like how many files it

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

113

scanned, detected vulnerabilities list and total scanning time. Detected vulnerabilities list contains

file name and line number of the vulnerability. It also saves the vulnerabilities report in pdf

format for further analysis.

Figure 1: PROP

Dynamic Analyzer of PROP analyzes the run time execution flow by capturing the web

communication. It captures web request and response messages along with the session flags.

These details are collected to create a behaviour model of the web application and are stored in

database at the server. Session flag in the model indicates the existence / non-existence of the

session. This behaviour model is enforced at runtime along with the details like user agent and

client IP address to detect the work flow deviation attacks. Figure 2 shows functionality of

Dynamic Analyzer.

PROP Dynamic Analyzer is carried out in two phases: Training Phase and Runtime Enforcement

Phase. During the Training Phase, PROP monitors the web application behaviour in attack free

environment. It uses the spidering technique [24] to crawl internally to each and every web page

and generates profiles and constructs the model by covering the complete behaviour of the web

application. During Runtime Enforcement Phase, along with the web request the user agent and

client IP address are also monitored and model is enforced to detect work flow deviation attacks.

The detected deviations are reported for further analysis.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

114

Figure 2: Functionality of Dynamic Analyzer

4. DESIGN LAYOUT

4.1. Static analyzer

PROP Static Analyzer performs 2 types of analysis: PHP Configuration file analysis and PHP

source code analysis. PHP Configuration file analysis reads the native PHP configuration file

(php.ini) and checks configured settings and display the mis-configured setting with current value

and recommended value.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

115

Figure 3: Functionality PHP Source code analyzer

PHP Source code analyzer analyzes the source code, it first identifies and lists the vulnerable

functions in the native PHP script which causes Cross-Site Scripting, SQL Injection, Command

Injection, Code Injection, File Inclusion and File Manipulation vulnerabilities and also lists

secure functions to prevent these vulnerabilities from exploitation.

To analyze the PHP source code, the PHP script is split into tokens. These tokens are used for

further analysis. Each token is represented in an array with token identifier, the line number and

token value. And tokens are analyzed against the configured vulnerable functions list, meanwhile

it creates a dependency stack, a file stack, list of declared variables and several registers to

indicate whether it is currently scanning a function, or class. If any vulnerable function is

detected, it creates a new parent and it checks parameters of that function by backtracking. And if

any vulnerable parameter found it adds as a child to that parent. And that node the details are sent

to for reporting. Figure 3 shows the functionality of PHP Source code analyzer. The same

procedure is repeated for all the tokens. And finally it displays the detected vulnerabilities and

can be saved in pdf format. Figure 4 shows the pdf report of Source code analyzer.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

116

Figure 4: Sample pdf report

4.2. Dynamic Analyzer

Working functionality of the Training Phase and Runtime Enforcement Phase are as follows.

4.2.1. Training Phase

Figure 5 shows the PROP Dynamic Analyzer functioning at Training Phase with Profiler Engine

and Model Generator modules. Profiler Engine captures the web communication for different

roles. For each role Profiler Engine collects the web request in the form of request header

information, records and passes to the web server. The response from the web server is forwarded

to the web client. Along with the request and response information, Profiler Engine also records

the sequence of web requests with respect to current and previous web request state.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

117

Figure 5 : PROP Dynamic Analyzer functioning at Training Phase

For each web request a separate communication id is created to differentiate between requests

coming from web clients. And corresponding request header information is saved in a file with

name “communicationid_request”. It also extracts the cookie id from the header to check the

session existence.. The session flag for that request is saved in “communication id_Srequest” file

name. And also sequence of pages crawled by each role user is saved in a “roleid.xml” file. For

example, with request communication id to be 1, corresponding header information is saved in

1_request and session flag is saved in 1_Srequestfile names.

After recording the request information it forwards the request to the web server for processing.

The response from the web server is collected and forwarded to the web client.

Profiler Engine internally spiders each web page and collects the request and response

information. Spider covers all the web pages internally for strengthening the model of the

application. The same process is repeated for all the roles of the web application.

Model generator is another module in Training Phase which works in offline mode. It analyzes

the profile records based on the communication id and role, builds a relational model database for

the particular web application behaviour. It first reads the “communicationid_request” file and

creates a request id based on the method of calling and requested resource name. If requested

URL is http://example.com/login.php using GET method, request id becomes GET_login.php.

From the corresponding “communicationid_Srequest” file reads the session flag. Based on the

profile records it creates Model database with 2 different types of model sets.

Model set1 represents MySQL database table and each row contains communication id, request

id, session flag and role. Figure 6 shows the Model set1.

http://example.com/login.php

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

118

Figure 6 : MySQL table with request, session flag and role

Model set2 refers the list of web pages accessible by each role including web page sequence.

Separate xml file is created for each role. Each tag in xml file other than a root element represents

a page and list of possible accessible pages from that page. Figure 7 shows the 2 different xml

sequence files for 2 different roles.

From the Figure 7, role1 user can access analysis.php, report.php, view.php and search.php pages

from home.php. For role2 management.php, report.php, view.php and search.php are accessible

from the home.php.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

119

Figure 7: Example of Sequence of pages accessed by role1 and role2

4.2.2. Runtime Enforcement Phase

During the enforcement phase, model is enforced and it continuously processes the web requests

and web responses. It has Enforcement Engine and Verifier Engine. Figure 6 shows PROP

Dynamic Analyzer functioning at Runtime Enforcement Phase.

Figure 8 : PROP Dynamic Analyzer functioning at Runtime Enforcement Phase

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

120

Enforcement Engine (EE) captures the web request before hitting the web server directly.

Captured request header information is sent to Verifier Engine. Verifier Engine (VE) checks the

given request against model sets and sends the status of verification to the Enforcement Engine. If

the request is a genuine behaviour of the application then the status represented as “don’t_block”

otherwise if any deviations occur with respect to model sets then represents status as “block” and

logs an error based on diversion. Depending on the verification status Enforcement Engine

proceeds further. If status is “don’t_block” Enforcement Engine forwards the request to the web

server application else it won’t send the request to the web server application and intimate the

web client about the diversion.

Verifier Engine first validates the web request information against Model Set1 which helps in

finding authentication bypass attacks which generally happens in any vulnerable web application

by changing the web page user input or by hijacking the session. Once the values satisfy the

Model Set1 behaviour then it should go for next level of validation with respect to Model Set2

otherwise VE sends the “block” status to the EE which stops the web communication.

Once the authentication is done, the authorization check and sequence is verified with respect to

Model Set 2. This verification addresses the vertical privilege escalation attacks where one role

user is trying to access the pages of other roles and also addresses the sequence bypass attacks

where the attacker is forcibly accessing the pages without following the sequence.

Once the request is satisfied with 2 levels of verification then only VE sends the “dont_block”

status to Enforcement Engine, from there the request is passd to the web server. Failure at any

level in the verification process, leads to VE sending “block” status to the EE and logging the

error. EE reject the request and sends the error page to the user. The same process is followed for

all requests.

5. IMPLEMENTATION DETAILS

5.1. Static Analyzer

PROP Static Analyzer is implemented with partial integration of open-source source code

analysis tools Pixy, RIPS and PhpSecinfo. It targets PHP Configuration, XSS, SQL Injection, File

Manipulation, File Inclusion, Command Injection and Code Injection related vulnerabilities in

PHP based web applications. Also, it checks these vulnerabilities against user input, file and

database related functions. After the complete scan of the web application it generates a well

formed pdf report which will be useful for further analysis. The pdf report contains details about

the scanned application name, time and date of the scan process and detected vulnerabilities

information.

5.2. Dynamic Analyzer

5.2.1. Training Phase

This phase generates the profile records by analyzing the request header information of each

request. Request() captures the request and creates corresponding request profile files.

Collected profile records are analyzed and model database is created for that web application.

Model database is represented in the form MySQL table and xml files. MySQL table contains

request information of each page with the combination of communication id, request id, session

flag and role. And separate xml files are created for each role. The xml file contains the sequence

of pages accessed by each role.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

121

5.2.2. Runtime Enforcement Phase

To analyze the application web requests coming from different web clients an apache module has

been integrated with Runtime Enforcement Phase component of work flow analyzer. Apache

module intercepts the request and sends the request to Verifier Engine for checking the requests

against model database. Request is genuine, apache module forwards the same request to the web

server otherwise blocks the request. IPC mechanism has been implemented between the Apache

module and Verifier Engine.

We are considering the user-agent, client IP of each web request for differentiating the web

clients and verifying against Model databases.

6. EXPERIMENTATION DETAILS

6.1. Static Analyzer

We have tested many applications with Static Analyzer and the details are mentioned below

Table 1

Table 1: Tested Applications with Static Analyzer

Application Name Detected Vulnerabilities

Portal
SQL Injection
File Manipulation
Cross-site Scripting

Scarf
File Manipulation
SQL Injection
Cross-site Scripting

CET Automation tool SQL Injection
Cross-site scripting

Bookstore SQL Injection
Cross-site scripting

Employee_dir
SQL Injection
Cross-site scripting
File Manipulation

6.2. Dynamic Analyzer

We have taken a web application with 2 roles manager and employer. Each user is having access

to different web pages depending on the role. Table 2 shows the requests being made to the web

application are represented in MySQL table during Training Phase.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

122

Table 2: Model Database

S.No Communication id Request id Session Role

0 1 GET_About.php 0 0

1 2 GET_Help.php 0 0

2 3 GET_Login.php 0 0

3 4 POST_Login.php 0 0

4 5 GET_Services.php 0 0

5 6 GET_Products.php 0 0

6 7 GET_home.php 1 manager

7 8 GET_Assign_works.php 1 manager

8 9 GET_User_mgmt.php 1 manager

9 10 GET_Update_users.php 1 manager

10 11 GET_Update_roles.php 1 manager

11 12 GET_View.php 1 manager

12 13 GET_Viewusers.php 1 manager

13 14 GET_Viewroles.php 1 manager

14 15 GET_Home.php 1 employer

15 16 GET_work_report.php 1 employer

16 17 GET_View.php 1 employer

17 18 GET_Viewusers.php 1 employer

18 19 GET_Viewroles.php 1 employer

Table 3 & 4 shows the list of pages accessed and sequence of pages follows the current page by

manager and employer respectively. For manager, possible list of pages accessible are Home.php,

Assign_works.php, User_mgmt.php, View.php, Update_users.php, Update_roles.php,

Viewusers.php and Viewroles.php. Viewusers.php & Viewroles.php can only accessible from

View.php page. Means the user can not directly access the Viewusers.php from any of the page

other than View.php.

Table 3: Role- manager

Current Page Next accessible pages

Home.php Assign_works.php; User_mgmt.php; View.php

User_mgmt.php Update_users.php; Update_roles.php

View.php Viewusers.php; Viewroles.php

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

123

Table 4: Role-employer

Current Page Next accessible pages

Home.php Work_report.php; View.php

View.php Viewusers.php; Viewroles.php

According to Table 4, employer can access Home.php, Work_report.php, View.php,

Viewusers.php and Viewroles.php pages.

7. PERFORMANCE DETAILS

7.1. Dynamic Analyzer

We deployed our security solution for PHP based web application and analyzed the performance.

We tested the solution with observed page load time for different web pages by using lori add-on

[25] installed in firefox with PROP Dynamic Analyzer Runtime Enforcement Phase and without

PROP Dynamic Analyzer Runtime Enforcement Phase. With PROP, the curve is going slightly

higher than without PROP because the runtime enforcement phase verifies each and every request

against model sets and forwards the request to the web server. Figure 9 shows performance

overhead with and without PROP.

Figure 9 : Performance Overhead

8. CONCLUSIONS

In this paper, we discussed about the PHP source code analysis through Static Analyzer,

monitoring web application behaviour at run time and an approach for detecting and preventing

workflow deviations through Dynamic Analyzer. PROP security solution identifies PHP source

code vulnerabilities like XSS, SQL Injection, Code Injection, Command Injection, File Inclusion,

File Manipulation and PHP configuration vulnerabilities with Static Analyzer component and

authentication bypass, session hijacking and sequence bypass attacks with Dynamic Analyzer

component. A pdf report has been generated to analyse the vulnerabilities details in case of Static

Analyzer and deviation logs are maintained in case of Dynamic Analyzer.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

124

Furthermore, it addresses the authorization bypass attack if users with role binding details are

known in the prior. PROP Dynamic Analyzer has its own limitation like, it is able to detect and

prevent Authorization bypass for different role users, but users within the same role is trying to

bypass is not addressed. By checking the user's session at every page can address this issue.

Another limitation is we are crawling the site by considering the href links and opening the

authentication pages (login and logout pages) for different roles in a browser which may not

cover all the web pages. If the web site is designed with form based actions where the manual

interaction is mandatory to pass the parameters, automatic crawl may not encompass. To

overcome this problem we are attempting to render the form action based pages in browser to

collect the data from the user which aids to crawl to next page.

ACKNOWLEDGEMENTS

Our sincere thanks to Department of Electronics & Information Technology (Deity), Ministry of

Communications and Information Technology, Government of India for supporting this research

work.

REFERENCES

[1] Symantec- Internet Security Threat Report 2013 :: Volume 18

[2] http://www.security-audit.com/blog/owasp-top-10-2013/

[3] http://en.wikipedia.org/wiki/SQL_injection

[4] Alexander Roy Geoghegan, Natarajan Meghanathan*. “Cross Site Scripting (XSS)”.

[5] http://www.enterprisenetworkingplanet.com/netsecur/article.php/3916331/Watch-for-Authentication-

Bypass-Vulnerabilities.htm

[6] http://www.w4rri0r.com/attacker-surface/bypass-authentication.html

[7] https://www.owasp.org/index.php/Session_hijacking_attack.

[8] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. “Preventing Cross Site Request Forgery

Attacks”.

[9] https://www.owasp.org/index.php/Top_10_2013-Details_About_Risk_Factors

[10] http://guides.rubyonrails.org/security.html#session-fixation

[11] Dafydd Stuttard, Marcus Pinto. The Web Application Hacker’s Handbook-Discovering and

Exploiting Security Flaws.

[12] David K. Liefer,Steven K. Ziegler. “PHP Vulnerabilities in Web Servers”.

[13] Marco Cova. Taming the Malicious Web: Avoiding and Detecting Web-based Attacks.

[14] Symantec.White Paper: Web Based Attacks,February 2009.

[15] Yao-Wen Huang , Fang Yu , Christian Hang , Chung-Hung Tsai , D. T. Lee , Sy-Yen Kuo. Securing

Web Application Code by Static Analysis and Runtime Protection.

[16] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting web application

vulnerabilities (short paper)

[17] Johannes Dahse. RIPS - A static source code analyser for vulnerabilities in PHP scripts.

[18] Davide Balzarotti, Marco Cova, Viktoria V. Felmetsger, and Giovanni Vigna.Multi-Module

Vulnerability Analysis of Web-based Applications.

[19] IBM Rational AppScan Standard -

http://public.dhe.ibm.com/common/ssi/ecm/en/rad14019usen/RAD14019USEN.PDF

[20] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and Giovanni Vigna. Swaddler: An Approach

for the Anomaly-based Detection of State Violations in Web Applications.

[21] Acunetix Web Vulnerability Scanner-http://www.acunetix.com.

[22] Michael Dalton, Christos Kozyrakis and Nickolai Zeldovich Nemesis: Preventing Authentication &

Access Control Vulnerabilities in Web Applications

[23] https://www.owasp.org/images/b/b0/Best_Practices_WAF_v105.en.pdf

[24] Jeff Heaton Web Spidering. http://www.developer.com/java/other/article.php/1573761/Programming-

a-Spider-in-Java.htm

[25] http://www.searchenginejournal.com/best-firefox-addons-to-analyze-the-page-load-time/12419/

http://www.security-audit.com/blog/owasp-top-10-2013/
http://en.wikipedia.org/wiki/SQL_injection
http://www.enterprisenetworkingplanet.com/netsecur/article.php/3916331/Watch-for-Authentication-Bypass-Vulnerabilities.htm
http://www.enterprisenetworkingplanet.com/netsecur/article.php/3916331/Watch-for-Authentication-Bypass-Vulnerabilities.htm
https://www.owasp.org/index.php/Session_hijacking_attack
https://www.owasp.org/index.php/Top_10_2013-Details_About_Risk_Factors
https://www.owasp.org/images/b/b0/Best_Practices_WAF_v105.en.pdf
http://www.developer.com/java/other/article.php/1573761/Programming-a-Spider-in-Java.htm
http://www.developer.com/java/other/article.php/1573761/Programming-a-Spider-in-Java.htm
http://www.searchenginejournal.com/best-firefox-addons-to-analyze-the-page-load-time/12419/

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

125

Authors

Mrs Sireesha Chiliveri is presently working at Centre for Development of Advanced

Computing(C-DAC), Hyderabad as a Technical officer. She is associated with C-DAC

from last 8 years in R&D of System Software and Network Security domain. Her areas

of interest include Web Application Security, End System Security, Malware Analysis

and Linux System Programming.

Mrs Jyostna G is presently working as a Senior Technical Officer at Centre for

Development of Advanced Computing (C-DAC), Hyderabad. She is associated with C-

DAC from last 9 years in R&D of System Software and Network Security domain. Her

areas of interest include Web Application Security, End System Security, Malware

Analysis and Linux System Programming. She has around 9 publications in International

Journals/conferences.

Mr Raghu Varan Reddy P is associated with R&D, Centre for Development of

Advanced Computing(C-DAC), Hyderabad from last 3 years in System Software and

Network Security domain. His areas of interest include Web Application Security, End

System Security and Linux System Programming & Driver Development.

Mrs P.R.Lakshmi Eswari, is presently working as Joint Director, e-Security R&D, C-

DAC Hyderabad. She is currently involved in the Research & Development of end

system security solutions focusing on anti Malware & device control solutions. As an

outcome of R&D efforts solutions like USB Pratirodh, AppSamvid, Browser JS Guard,

Malware Resist etc. are developed by their team. She is associated with C-DAC for the

past 14 years in various R&D projects and training activities. Earlier she worked as

lecturer at NIT Warangal for 2 years. She did her B.E and M.Tech in Computer Science

and Engg stream and currently pursuing her PhD with JNTU. She has around 12 publications in

International Journals/conferences.

	Abstract
	Keywords

