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ABSTRACT  
 

Transportation Network Design Problem (TNDP) aims to select the best project sets among a number of 
new projects. Recently, metaheuristic methods are applied to solve TNDP in the sense of finding better 
solutions sooner. PSO as a metaheuristic method is based on stochastic optimization and is a parallel 
revolutionary computation technique. The PSO system initializes with a number of random solutions and 
seeks for optimal solution by improving generations. This paper studies the behavior of PSO on account of 
improving initial generation and fitness value domain to find better solutions in comparison with previous 
attempts. 
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1. INTRODUCTION   
  
 In transportation planning, Transportation Network Design Problem (TNDP) is a substantial area 
in which specific objectives are minimized through selection among a given set of projects under 
constraints (1). Solving TNDP requires too much time. Various approaches have been taken to 
solve TNDP (1,2,3). One of the typical methods to solve TNDP are Meta-Heuristic algorithms 
(such as Genetic Algorithm). Particle Swarm optimization (PSO) is a Meta-Heuristic algorithm 
that has shown good performance to solve TNDP. 
  
In this paper, particle swarm optimization (PSO) algorithm developed with some variations or 
added methods is presented to solve the TNDP (4,5). The results of each method are compared 
together and with Original PSO method. The remainder of the paper is organized as follows. The 
next section is devoted to define the TNDP mathematically. In the following sections, the PSO is 
described in details, and then applied to the TNDP. After that Binary Sorting, Binary Count, and 
Roulette methods are defined and used to enhance the efficiency of PSO for solving the TNDP on 
the Sioux Falls network. The results are obtained by a computer program in VISUAL BASIC 6.0 
on a laptop with Intel core 2 due 2.4 GHz processor. In this program, each algorithm is terminated 
after a fixed number of 1000 iterations. Due to the stochastic nature of PSO, the algorithms have 
been solved 50 times and the results are based on the average values of the 50 runs. 
Computational results and figures are reported in the final section. 
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2. TNDP 
     
Let ),( AVG   be a graph representing a transportation network with node set V and arc set A, 
and define }:),{( srVVsrP   as the set of origin-destination (OD) pairs. For each OD 
pair Psr ),( , there is a nonnegative flow rate (travel demand) from r to s, denoted by rsd . In 
order to simplify the presentation, suppose that G  is strongly connected, that is each node j can 
be reached from every other node i by following a directed path in G , and let rsK be the non-
empty set of paths from the origin r to the destination s.  
 
Define Ā	(Ā ≠  ݕ ∈Ā with(ݕ) = as the set of project arcs, and let the decision vector be y (ܣ
being the binary project decision variable, taking values 0 or 1 depending on rejection or 
acceptance of any project ∈ Ā . For a given vector y, define the decision network G(௬) =
∪with A(y) = A ((ݕ)ܣ,ܸ) {ܽ ∈ 	Ā ∶ 	 ݕ = 1} as the set of arcs followed by decision y, and for 
each (r, s) ∈ ܲ denote by ܭ௦(ݕ) the set of paths joining r to s in	G(௬). For each path k ∈ ܭ௦(ݕ) 
let ݂ be the flow of path k from origin r to destination s. Moreover, let ߜ equals 1 if arc a 
∈  .lies on path k, and 0 otherwise (ݕ)ܣ
 
    Assume further that each arc a ∈ ܣ ∪ Ā has a node creasing and continuously differentiable 
travel time function ݐ(ݔ): [0,∞) → [0,∞) with ݔ being the flow rate assigned to arc a. Then, 
letting ܿ 	be the construction cost of project arc a	∈ 	Ā	, and considering the total construction 
cost being limited to the level of Budget B, the TNDP can be illustrated with upper level problem, 
ULP: 
 
[ULP]    	௬		

ெ T(y) = ∑ ∈(௬)	(ݐݔ  (ݔ
     s.t.    ∑ Ā	∈	(ݔ)ݐݔ  
ݕ               =0 or 1       ∀a ∈ 	Ā 
             X(y) is a solution of [LLP(y)] 
 
     Where x(y) = (ݔ)	∈(௬) is the user equilibrium flow in the decision network G(y), given as 
the solution of the lower level (traffic assignment) problem, LLP(y), for given y: 
 
[LLP(y)]   Min  ∑ ∫ ௫ೌݓ݀(ݓ)ݐ

∈(௬)  
        s.t.           ∑ ݂∈ೝೞ(௬)  = ݀௦     ∀(ݎ, (ݏ ∈ ܲ 
        ݂ ≥ 0      ∀	݇	 ∈ ,ݎ)	∀ ,(ݕ)௦ܭ	 (ݏ ∈ ܲ 
ݔ         = 	 ∑ ∑ ݂ߜ∈ೝೞ(,௦)∈        ∀	ܽ	 ∈  (ݕ)ܣ
 
    This is a well-known bi-level programming problem, where the [ULP] seeks a decision vector 
y for minimizing the total travel time T(y) of the (assigned) traveler, and the [LLP(y)] is the traffic 
assignment model which estimates the traveler flows, given the decision y (6,7,8). 
 
3. PARTICLE SWARM OPTIMIZATION 
 
Particle Swarm Optimization (PSO) is a meta-heuristic optimization approach which has been 
widely applied to various problems (4). PSO technique that was developed by Kennedy and 
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Eberhart is originated from the behavior of birds ’flocks in which individuals convey information 
between themselves and the leader in order to seek the best direction to food (9, 10). 
 
In a problem space, each particle has a position and a velocity and it moves in the search space 
with the velocity according to its own previous best position and the group’s previous best 
position. The dimension of the search space can be any positive number. Considering D as the 
dimension of the search space, the ith particle’s position and velocity are represented as 

 
1,...,i ij j D

P p


 and  
1,... ,i ij j D

V v


 respectively. Each particle maintains its own best position so 

far achieved as  * *

1,...,i ij j D
P p


 and the global best position so far recorded by the population as

 * *

1,...,g gj j D
P p


 . 

 
During the iteration time t, the velocity of the jth dimension of each particle i is updated by:  

* *
1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))ij ij ij ij gj ijv t wv t c r p t p t c r p t p t       Where w  is called as the 

inertia weight, 1c  and 2c  are constant values and 1r , 2r  are random numbers in the interval 0,1 . 
The current position of each particle is then defined by the sum of its current velocity and its 
previous position (11,12,13).  
 

( 1) ( ) ( 1)ij ij ijp t p t v t     
 
In order to avoid the particles from moving out of the search space, the maximum velocity during 
the iterations is restricted by maxv . As proposed by Hong Zhang, et al 2005, the maximum velocity 

( maxv ) is set to maxx . This results in moving more effectively in the search space and accordingly 
better algorithm performance. 
 
4. ADAPTING THE PSO TO THE TNDP  
      
Employing the PSO for solving TNDP needs some modifications to the algorithm given in the 
previous section. First, the PSO is basically developed for continuous optimization problems(14). 
This is while the TNDP is formulated as a combinatorial optimization problem in terms of 
variables y  denoted as A -bit binary strings. To adapt the algorithm for this combinatorial 

nature, one may provide some mapping from the one-dimensional real-valued space to the A -

dimensional binary space. This is done here by transforming each real number ip  to its nearest 

integer in 0 , 2 1A   
, and then transforming the resulting integer in to the base-2 number 

system as an A -bit binary code. To facilitate the presentation, the latter transformation is 

illustrated by the function  ( ) : 0 , 2 1 0 ,1 .A A
iy p Z     

  

 
The PSO must also be adapted for budget constraint embedded in the [ULP](15).  



International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 1, February 2015 
 

 
62 

5. PSO ALGORITHM 
 
Step 1. Initialization 
Select the particle swarm size n, the parameters 1c  and 2c , the value of the inertia weight w , and 
the maximum velocity maxv .  

For i 1 to n do: initialize the decision variable ip  so that Bpyc iaaAa   )( ; set  

and 0iv .  

Set ))(..,.),((minarg 1 ng pfpfp  . Set the iteration counter 0t .  
Step 2.   Updating each particle's position and velocity 
For i 1 to n do: generate random numbers 1r and 2r  in [0, 1]; update  

)()( 2211 igiiii pprcpprcwvv   ; clamp in iv  between the range ],[ maxmax vv  as

)|,min(|)sign( maxvvvv iii  ; update iii vpp  ; transform ip  to its nearest integer in

12,0[ || A ].   
Step 3. Calculating each particle's fitness value  
For i 1 to n  do: set )( ipyy  ; if  Byc aaAa    then set Mpf i )( (large fitness value); 

else, solve the user equilibrium problem [LLP ( y )] to compute )(yT , and set )()( yTpf i  . 
Step 4. Updating local bests and global best 
For i 1 to n  do: update ))(),((minarg iii pfpfp   . 

Update ))(..,.),(),((minarg 1 ngg pfpfpfp   . 
Step 5.   End criterion. 
Set 1 tt . If end criterion is not met, go to Step 2. Otherwise, )(  gpyy  is the best solution 

found so far with the objective function value )()(  gpfyT  Collect the necessary information 
and stop.  
 
6. SIOUX FALLS NETWORK 
 
The Sioux Falls network has 24 nodes and 76 arcs, as shown in Fig. 1. The parameters of the 
travel time function 4)( aaaaa xxt    for each arc a, and the OD (origin/destination) 
demands are basically those given in Poorzahedy and Turnquist (1982), and LeBlanc (1975), and 
are eliminated here for brevity(16).  
 
There are 10 pairs of project arcs )10|(| A , of which 5 projects are improvement on existing arcs, 
and 5 are new arcs. The construction costs of the projects 1-10 are, respectively, 625, 650, 850, 
1000, 1200, 1500, 1650, 1800, 1950, and 2100 units of money (Poorzahedy and Abulghasemi 
2005). Considering 10 projects, there are )1024(210   alternative networks. A complete 
enumeration was used to compute the optimal solution of the TNDP for any given budget level 
for checking purposes (Poorzahedy and Abulghasemi 2005; Poorzahedy and Rouhani 2007). 
 

ii pp 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 1, February 2015 
 

 
63 

7. BINARY SORTING (BS) 
 

Binary Sorting is a type of mapping the objective function value domain from 
:[0 , 2 1]n

ix Z  to :[0 ,2 1]n
mp Z  . This results in a more effective sorting on the 

function domain and puts the decision variables with the same number of projects beside each 
other, therefore the PSO algorithm searches with more intelligence toward the optimum solution. 
The algorithm is expressed below:  
 

Let iB  be the binary value of :[0 , 2 1]n
ix Z   in base-2 number system then count the iB  

number of digits and put them into iC . 
m=1 
for  d=0 to n 

for  i=0 to 2n-1 
if   ݔ > −1 then 

if  iC =d  then 

m ip x  

1ix    
m = m+1 

End if 
End if 

Next i 
Next d 

 

8. BINARY COUNT (BC) 
 

Binary Count is an initialization strategy which is defined for this specific problem. The idea 
comes from choosing more particles which are near to the budget level. The algorithm is outlined 
below. 

For d=0 to n 
For i=0 to 2n-1  

If Ci=d then count (d) =count (d) + 1 
Next i 

Next d 
Assume b/c 
all=int(b/c * n)+1 
For i=0 to all 

numb(i)=i / ∑ ݊
   * n 

sum numb= numb(i)+sumnumb 
Next i 
m=1 
for i=1 to all 

for d=1 to numb(i) 
Select a particle that has i binary digit 

Next d 
Next i 
Do while sum numb(i) < n 
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Select a particle that has at most all binary digits 
Loop 
 

9. ROULETTE WHEEL SELECTION (ALGORITHM) 
 
It is the most common selection strategy. It will assign to each individual a selection probability 
that is proportional to its relative fitness. Let ݂ be the fitness of the individual  in the population 
P. Its probability to be selected is  = ݂ / (∑ ݂


ୀଵ ).Suppose a pie graph where each individual is 

assigned a space on the graph that is proportional to its fitness. An outer roulette wheel is placed 
around the pie. The selection of μ individuals is performed by μ independent spins of the roulette 
wheel. Each spin will select a single individual. Better individuals have more space, and then 
more chance to be chosen. Moreover, when all individuals are equally fit, this selection strategy 
does not introduce a sufficient pressure to select the best individuals. This method is applied on 
the initialization step of the PSO algorithm to improve its initial generation and the combined 
algorithm is named as Roulette in the following discussions.    
 
10. COMPUTATIONAL RESULTS 
 
In this study, the algorithms comprised of the above strategies are compared from various 
perspectives. First, Average Objective Function Value (OFV) related to the initial generation of 
each algorithm is shown in figure 2. According to this figure, Roulette and Roulette-BS (Binary 
Sorting) generate better initial particles than the other methods. 
 
In figure 3, BC method shows a good convergence performance concerning its decreasing 
behavior despite of the relative large quantity of the initial average OFV and after 70 iterations 
average OFV of BC method gets very close to average OFV of the Roulette-BS. Still, it is 
obvious that the Roulette-BS method shows the best performance based on initialization and 
convergence capability and its graph stands under the others in figure 3.  
 
To perceive the effectiveness of Binary Sorting, Random and Random-BS methods are compared 
with each other. The Random-BS method has more decreasing behavior than the Random method 
and shows more convergence to the optimum solutions in the last iterations. So we can figure out 
that the BS method makes an improvement on the PSO algorithm which is adapted to the TNDP. 
 
Figure 4 depicts the frequency of finding the optimal solution in iterations for each method. It is 
clear that each algorithm graph that stands upper than the other graphs is more powerful to find 
the optimum solution. Comparison of these methods proves that the Roulette and Random 
methods have less capability than the other three methods which have used binary sorting to find 
the optimum solution.  
 
The average Number of Traffic Assignment Problem Solved (NTAPS) of each method is shown 
in figure 5. All of the graphs are showing decreasing behavior. This fact proves that all methods 
are trying to decrease the NTAPS. As the results show, Roulette and Random graphs stand upper 
than others after 50 iterations.  
 
Figure 6 displays initialization time and PSO algorithm time usage in each method. Initialization 
time of BC method is shorter than the other methods. It’s obvious that initialization time for BC 
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method is shorter than Roulette and Roulette-BS methods, but the reason why this time is shorter 
than Random method’s time is related to unsuccessful tries of generating particles with higher 
budget than the problem’s budget constraint in Random method. As a result, we can figure out 
that in TNDP problems with large scale of particles, the BC method shows better performance 
and can find the optimum solution sooner. 
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                                    Figure 1. The Sioux Falls Network 
 

 

Figure 2. Average Objective Function Value for first 10 Particles 
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Figure 3. Average Objective Function Value 
 

 

Figure 4. Frequency of Finding 
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Figure 5. Average Number of Traffic Assignment Problem Solved 

 

Figure 6. Initialization time and PSO algorithm time 
 


