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ABSTRACT 
 
In recent years, modern graphics processing units have been widely adopted in high performance comput-
ing areas to solve large scale computation problems. The leading GPU manufacturers Nvidia and ATI have 
introduced series of products to the market. While sharing many similar design concepts, GPUs from these 
two manufacturers differ in several aspects on processor cores and the memory subsystem. In this paper, 
we choose two recently released products respectively from Nvidia and ATI and investigate the architec-
tural differences between them. Our results indicate that these two products have diverse advantages that 
are reflected in their performance for different sets of applications. In addition, we also compare the en-
ergy efficiencies of these two platforms since power/energy consumption is a major concern in the high 
performance computing system. 
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1. INTRODUCTION 
 
With the emergence of extreme scale computing, modern graphics processing units (GPUs) have 
been widely used to build powerful supercomputers and data centers. With large number of proc-
essing cores and high-performance memory subsystem, modern GPUs are perfect candidates to 
facilitate high performance computing (HPC). The leading manufacturers in the GPU industry, 
Nvidia and ATI have introduced series of products that are currently used in several preeminent 
supercomputers. According to the Top500 list released in Jun. 2011, the world’s second fastest 
supercomputer Tianhe-1A installed in China employs 7168 Nvidia Tesla M2050 general purpose 
GPUs [15]. LOEWE-CSC, which is located in Germany and ranked at 22nd in the Top500 list 
[15], includes 768 ATI Radeon HD 5870 GPUs for parallel computations. 
 
Although typical Nvidia and ATI GPUs share several common design concepts; they deviate in 
many architecture aspects from processor cores to the memory hierarchy. In this paper, we con-
centrate on two recently released GPUs: an Nvidia GeForce GTX 580 (Fermi) [11] and an ATI 
Radeon HD 5870 (Cypress) [5], and compare their performance and power consumption features. 
By running a set of representative general-purpose GPU (GPGPU) programs, we demonstrate the 
key design difference between the two platforms and illustrate their impact on the performance. 
The first architectural deviation between the target GPUs is that the ATI GPUs adopt very long 
instruction word (VLIW) processors to carry out multiple operations in a single VLIW instruction 
to gain an extra level of parallelism over its single instruction multiple data (SIMD) engines. 
Typically, in an n-way VLIW processor, up to n independent instructions can be assigned to the 
slots and be executed simultaneously. Obviously, if the n slots can be filled with valid instruc-
tions, the VLIW architecture can execute n operations per VLIW instruction. However, this is not 
likely to always happen because the compiler may fail to find sufficient independent instructions 
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to generate compact VLIW instructions. On average, if m out of n slots are filled during an execu-
tion, the achieved packing ratio is m/n. The actual performance of a program running on a VLIW 
processor largely depends on the packing ratio. In ATI Radeon HD 5870, up to 5 single precision 
scalar operations can be executed in parallel. The Nvidia GPUs do not exploit this low-level 
VLIW parallelism and rely on more aggressive thread (warp) scheduling to fully utilize the un-
derlying processing cores. 
 
The second major difference between two GPUs exists in the memory subsystem. Inherent from 
the graphics applications, both GPUs have separate global memories located off-chip for the 
global, private (referred as local in Nvidia GPU), texture, and constant data. They also have fast 
on-chip local memory (called shared memory in Nvidia and local data share in ATI) and caches 
for the texture and constant data. The Nvidia Fermi introduces new L1 and L2 caches for caching 
both global and local data that are not allowed in Radeon HD 5870. In the GTX 580, the L1 cache 
and shared memory can be configured to two different size combinations. The L1 cache can also 
be disabled by setting a compiler flag. All off-chip memory accesses go through the L2 in GTX 
580. Given the additional L1 and L2 caches for global and local data, we will investigate and 
compare the performance of the memory system of the target GPUs. Thirdly, power consumption 
and energy efficiency stand as a first-order concern in high performance computing areas. Due to 
the large amount of transistors integrated on chip, a modern GPU is likely to consume more pow-
er than a typical CPU. The resultant high power consumption tends to generate substantial heat 
and increase the cost on the system cooling, thus mitigating the benefits gained from the perfor-
mance boost. Both Nvidia and ATI are well aware of this issue and have introduced effective 
techniques to trim the power budget of their products. For instance, the PowerPlay technology [1] 
is implemented on ATI Radeon graphics cards, which significantly drops the GPU idle power. 
Similarly, Nvidia use the PowerMizer technique [12] to reduce the power consumption of its mo-
bile GPUs. In this paper, we measure and compare energy efficiencies of these two GPUs for fur-
ther assessment.  
 
For a fair comparison between the two GPUs, it is essential to select a set of representative work-
loads to be measured on both systems. A key obstacle to a fair comparison is that software pro-
grammers usually use different programming language to develop HPC applications on Nvidia 
and ATI GPUs. The Compute Unified Device Architecture (CUDA) language invented by Nvidia 
is majorly used by Nvidia GPU developers, whereas the ATI community has introduced the Ac-
celerated Parallel Processing technology to encourage engineers to focus on the OpenCL stand-
ard. Taking this into consideration, we conduct a two-step comparison between the target GPUs 
in our study. We first use representative benchmarks selected from the released SDKs [3][7]. This 
means that a set of CUDA applications are used to investigate the Nvidia GPU while another set 
of OpenCL programs are executed and profiled on the ATI GPU for analysis. Both sets have the 
same computation tasks. Nvidia has made substantial efforts to improve and optimize the CUDA 
language, which is currently the preferable tool for most Nvidia HPC application developers. On 
the other hand, as one of the earliest organizations joining in the OpenCL community [14], ATI is 
more interested in this standard and persistently improve the OpenCL performance on its prod-
ucts. Therefore, we believe that executing CUDA and OpenCL applications respectively on 
Nvidia and ATI GPUs can reveal their optimal performance and assist us to explore the ad-
vantages and bottlenecks of these two products. In the second study, we choose a common set of 
OpenCL applications from the NAS parallel benchmark suite for the comparison. By running 
programs compiled from identical source code on two GPUs, we perform a fair comparison from 
the conventional perspective. 
 

According to the experiments, we can summarize the following interesting observations: 
 

 For programs that involve significant data dependency and are difficult to generate compact 
VLIW bundles, the GTX 580 (Fermi) is more preferable from the standpoint of high per-
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formance. The ATI Radeon HD 5870 (Cypress), on the other hand, is a better option to run 
programs with high VLIW packing ratio. 

 The GTX 580 GPU outperforms its competitor on double precision computations. The Fermi 
architecture is delicately optimized to deliver high performance in double precision, making it 
more suitable in solving problems with high precision requirement. 

 Memory transfer speed between the CPU and GPU is another important performance metric 
which impacts the kernel initiation and completion. Our results show that Nvidia generally 
has higher transfer speed. Besides the lower frequency of the device memory on the ATI HD 
5870 GPU [5][11], another reason is that the memory copy in CUDA has smaller launch 
overhead compared to the ATI OpenCL counterpart. 

 Program executions can benefit from the new two level caches on Nvidia’s GPU. This is es-
pecially important when the application parallelism is relatively low and memory access la-
tencies cannot be fully hidden by multithreading. 

 The ATI Radeon HD 5870 consumes less power in comparison with the GTX 580. If a prob-
lem can be solved on these two GPUs in similar time, the ATI GPU will be more energy effi-
cient. 
 

The remainder of this paper is organized as follows. In section 2, we describe the architecture of 
these two GPUs. In section 3, we introduce our experimental methodology including the statisti-
cal clustering technique. After that, we analyze and compare the different characteristics of the 
target GPUs and the impacts on performance and energy efficiency by testing the selected 
benchmarks from the SDKs in section 4. In section 5, we demonstrate the comparison results of 
using a set of common OpenCL programs for the second comparison study. We review the relat-
ed work in section 6 and finally draw our conclusion in section 7. 
 

2. BACKGROUND 
 
In this section, we describe the architecture organizations of Nvidia GTX 580 and ATI Radeon 
HD 5870. We also briefly introduce the programming languages that are used on these GPUs. A 
summary of manufacturing parameters of these two GPUs along with a description of the host 
system is listed in Table 1 [5][10]. 
 

 
 

Fig.1. Architecture of target GPUs 
 

 
 
 
 
 
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014 
 

4 

 
2.1 Fermi Architecture 
 
Fermi is the latest generation of CUDA-capable GPU architecture introduced by Nvidia [16]. De-
rived from prior families such as G80 and GT200, the Fermi architecture has been improved to 
satisfy the requirements of large scale computing problems. The GeForce GTX 580 used in this 
study is a Fermi-generation GPU [10]. Figure 1(a) illustrates its architectural organization [16]. 
The major component of this device is an array of streaming multi-processors (SMs), each of 
which contains 32 Streaming Processors (SPs, or CUDA cores). There are 16 SMs on the chip 
with a total of 512 cores integrated in the GPU. Within a CUDA core, there exist a fully pipelined 
integer ALU and a floating point unit (FPU). In addition, each SM also includes four special 
function units (SFU) which are capable of executing transcendental operations such as sine, co-
sine, and square root. 
 
The innovative design of the fast on-chip memory is an important feature on the Fermi GPU. In 
specific, this memory region is now configurable to be either 16KB/48KB L1 cache/shared mem-
ory or vice versa. Such a flexible design provides performance improvement opportunities to pro-
grams with different resource requirement. The L1 cache can be disabled by setting the corre-
sponding compiler flag. By doing that, all global memory requests will be bypassed to the 768KB 
L2 cache shared by all SMs directly. Note that we use the term Fermi, GTX 580, and Nvidia GPU 
interchangeably in this paper. 
 
The CUDA programming language is usually used to develop programs on Nvidia GPUs. A 
CUDA application launches a kernel running on the GPU. A typical kernel includes several 

TABLE 1. System Information 
 

GPU information 
 GTX 580 Radeon HD 5870 
technology 40nm 40nm 
#transistors 3.0 billion 2.15 billion 
processor clock 1544 MHz 850 MHz 
GDDR5 clock rate 2004 MHZ 1200 MHz 
GDDR5 bandwidth 192.4 GB/s 153.6 GB/s 
global memory size 1536MB 1024MB 
shared memory,  
local data share 

16KB or 
48KB/SM 32KB/CU 

#SM, #CU 16 20 
SPs/SM, TPs/CU 32 16 
#proc elements/core - 5 
#execution units 512 1600 
blocks/SM, work-
groups/CU 8 8 

threads/SM,  
work-items/CU 1536 2048 

threads/block,  
work-items/workgroup 1024 256 

threads/warp,  
work-items/wavefront 32 64 

warps/SM,  
wavefronts/CU  48 32 

registers/SM 32768 (32-bit) 256KB  

L1/L2 cache 
16KB or 
48KB / 
768KB 

-  

Host system information 

CPU Intel Xeon 
E5530 

AMD Opteron 
6172 

main memory type PC3-8500 PC3-8500 
memory size 6GB 6GB 
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thread blocks, each of which is further composed of many threads. During a kernel execution, 
multiple blocks can reside on the same SM to improve the parallelism. Once a block is assigned 
to an SM, it is divided into groups of 32 threads which are termed as warps. A warp is the small-
est scheduling unit to be run on the hardware function units in an SIMT fashion. All threads 
within a warp execute the same instruction that operates on scalar registers. Specific to the GTX 
580, a warp is executed on a group of 16 SPs and two warps can be concurrently issued on the 
same SM because of the dual issue technology introduced on Fermi GPUs [9]. Multiple warps 
from several thread blocks can be active simultaneously and the instruction and memory latency 
is hidden by switching among these warps. Note that the number of warps that can reside on the 
same SM is not arbitrarily large. As listed in Table 1, the maximal number of warps that can be 
assigned to an SM on the GTX 580 is 48. In practice, the actual resident warps per SM may be 
much fewer than this limit if each thread requires a large amount of hardware resources (e.g., 
shared memory and register). GTX 580 realizes the compute capability 2.0. Its resource con-
straints are summarized in Table 1. 
 
2.2 Cypress Architecture 
 
Cypress is the codename of the ATI Radeon HD 5800 series GPU [15]. Figure 1(b) illustrates its 
architectural organization. In general, it is composed of 20 Compute Units (CUs), which are also 
referred as Single-Instruction-Multiple-Data (SIMD) computation engines, and the underlying 
memory hierarchy. Inside an SIMD engine, there are 16 thread processors (TP) and a 32KB local 
data share. Basically, an SIMD engine is similar to a stream multiprocessor (SM) on an Nvidia 
GPU while the local data share is equivalent to the shared memory on an SM. Note that on the 
Radeon HD 5870 GPU, there is an 8KB L1 cache on each SIMD engine and a 512KB L2 cache 
shared among all compute units. However, these components function differently from the caches 
on the Fermi GPU in that they are mainly used to cache image objects. In this paper, we use the 
term HD 5870, Cypress GPU, and ATI GPU interchangeably. 

 
For software developers working on ATI GPUs, the Open Computing Language (OpenCL) is the 
most popular programming tool. OpenCL is similar to CUDA in many design principles. For ex-
ample, an OpenCL kernel may include several work-groups that can be decomposed of many 
work-items. This relation is comparable to that between CUDA blocks and threads. The equiva-
lent to a warp is called a wavefront in ATI’s OpenCL implementation. On the Radeon HD 5870, a 
wavefront is composed of 64 work-items. Similar to the execution model on Nvidia GPUs, ATI 
GPUs also allow multiple work-groups to be assigned on the same SIMD engine and the opera-
tion latencies are hidden by switching among the resident wavefronts. The resource constraints 
for Radeon HD 5870 are summarized in Table 1. Note that OpenCL is designed as a cross-
platform parallel programming language; therefore, applications developed in OpenCL can also 
run on Nvidia GPUs. 
 
As described in section 1, a key difference between the Fermi GPU and Cypress GPU is that the 
latter one adopts the VLIW architecture. This is illustrated in Figure 1(c) which visualizes the in-
ternal design of a thread processor on the Radeon HD 5870. As shown in the figure, each TP is a 
five-way VLIW processor consisting of four identical ALUs and a special function unit. With this 
design, each work-item executes a VLIW instruction and provides an additional level of parallel-
ism compared to the Nvidia’s implementation. The advantage of such an execution pattern is that 
a work-item can perform multiple computations in a cycle, thus potentially relaxing the demand 
of large number of thread processors on an SIMD engine. Obviously, the performance of pro-
grams running on the ATI GPU largely depends on the VLIW packing ratio. A well tuned kernel 
that generates compact VLIW instructions can efficiently utilize the numerous processing ele-
ments on the GPU and thus deliver outstanding performance; on the contrary, running 
unoptimized kernels with low packing ratios tends to waste the computing resources and signifi-
cantly prolongs the execution time. 
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TABLE 2.  Clustering result for Nvidia benchmarks 

 Benchmarks 

Cluster 1 

Clock, ConvolutionSeparable, DwtHarr, Fast-
WalshTransform, Ptxjit, ScalarProd, SimpleAtomic-
sIntrincs, SimpleZeroCopy, Transpose_coarsegrain, 
Transpose_coalesed, Transpose_diagonal, Trans-
pose_finegrain, Transpose_optimized, Trans-
pose_sharedmemory, Transpose_simplecopy, Vec-
torAdd, BinomialOption, QuasiRandomGenerator, 
Scan, Reduction_k0, Reduction_k1, Reduction_k2, 
Reduction_k3 

Cluster 2 
ConjugateGradient, FDTD3D, Histogram, Sim-
pleCUFFT, RadixSort 

Cluster 3 

ConvolutionFFT2D_builtin, Convolu-
tionFFT2D_custom, ConvolutionFFT2d_optimized, 
dxtc, SortingNetworks, Transpose_naive, BlackScho-
les, Reduction_k4, Reduction_k5, Reduction_k6 

Cluster 4 

EstimatePiInlineP, EstimatePiInlineQ, EstimatePiP, 
EstimatePiQ, MatrixMul_2_smem, MatrixMulDrv, 
MatrixDylinkJIT, MonteCarlo, SimpleVoteIntrincs, 
SingleAsianOptionP, threadFenceReduction, DCT8×8, 
MersenneTwister 

Cluster 5 EigenValue, Mergesort 
 

TABLE 3.   Clustering result for ATI benchmarks 

 Benchmarks 

Cluster 1 

AESEncryptDecrypt, BlackScholes, DwtHarr, Monte-
CarloAsian, MersenneTwister, LDSBandwidth, 

Cluster 2 

HistogramAtomics, MatrixMulImage, Matrix-
Mul_no_smem, ConstantBandwidth, ImageBandwidth 

Cluster 3 BinomialOption 

Cluster 4 BitonicSort, FastWalshTransform 

Cluster 5 

BinarySearch, DCT, FFT, Histogram, MatrixTranspose, 
PrefixSum, Reduction, SimpleConvolution, QuasiRan-
domSequence, ScanLargeArray 

Cluster 6 EigenValue 

Cluster 7 FloydWarshall 

Cluster 8 MatrixMul_1_smem, MatrixMul_2_smem  

Cluster 9 MonteCarloAsianDP, GlobalMemoryBandwidth 

Cluster 10 RadixSort 
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3. METHODOLOGY 
 
3.1 Experimental Setup 
 
Our studies are conducted on two separate computers, equipped with an Nvidia Geforce GTX 580 
and an ATI Radeon HD 5870 GPU respectively. The CUDA toolkit version 3.2 [7] is installed on 
the Nvidia system while the ATI Stream SDK version 2.1 [3] is used on the ATI computer. Both 
development kits provide visual profilers [2][7] for the performance analysis. 
 
For power analysis, the power consumption of a GPU can be decoupled into the idle power 
Pi_gpu and the runtime power Pr_gpu. To estimate the GPU idle power, we first use a 
YOKOGAWA WT210 Digital Power Meter to measure the overall system power consumption 
Pidle_sys when the GPU is added on. We then record the power Pidle_sys_ng by removing the 
GPU from the system. No application is running during these two measurements; therefore, the 
difference between them (i.e., Pidle_sys – Pidle_sys_ng) denotes the GPU idle power. When the 
GPU is executing a CUDA or OpenCL kernel, we measure the system power Prun_sys and calcu-
late the GPU runtime power as Prun_sys – Pidle_sys. By summing up Pi_gpu and Pr_gpu, we 
obtain the power consumption of the target GPU under stress. Note that Pi_gpu is a constant 
while Pr_gpu is varying across different measurements. For the sake of high accuracy, we meas-
ure the power consumption of each program multiple times and use their average for the analysis. 
 

3.2 Application Selection 
 
As described in section 1, modern GPUs have been delicately designed to better execute large 
scale computing programs from different domains. Therefore, we decide to use common GPGPU 
applications to carry out our investigation. Recall that our study is conducted in two steps. For the 
first study, we use representative CUDA and OpenCL applications respectively selected from 
Nvidia and ATI SDKs for the comparison. For the second study, which will be detailed in section 
5, we use a common set of OpenCL programs for our investigation. In this subsection, we will 
introduce the procedure of choosing representative applications from two SDKs for our first 
study. 
 
In total, the Nvidia application suite contains 53 GPGPU applications while the ATI set including 
32 such benchmarks. Considering that both SDKs include tens of programs, it will be fairly time 
consuming to understand and study each of the problems in detail. Previous studies show that it is 
effective to use a small set of applications to represent the entire benchmark suite, in order to in-
vestigate the underlying CPU hardware [35]. We believe that this approach is applicable to our 
GPU work as well. In this study, we employ a statistical clustering technique to choose the most 
representative programs from the SDKs. Cluster analysis is often used to group or segment a col-
lection of objects into subsets or “clusters”, so that the ones assigned to the same cluster tend to 
be closer to each other than those in different clusters. Most of the proposed clustering algorithms 
are mainly heuristically motivated (e.g., k-means), while the issue of determining the "optimal" 
number of clusters and choosing a "good" clustering algorithm are not yet rigorously solved [24]. 
Clustering algorithms built on top of probability models stand as appropriate substitute to ap-
proaches based on heuristics. Specifically, the model-based methodology can be applied to da-
taset generated by a finite combination of probability distribution. Examples include multivariate 
normal distributions. Studies have shown that the finite normal mixture model is a powerful tool 
for many clustering applications [19][20][32]. 
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In the first study, we assume that the data are generated from a finite normal mixture model and 
apply the model-based clustering. In order to determine the optimal clustering, we compute the 
Bayesian Information Criterion (BIC) [38] given the maximized log-likelihood for a model. The 
BIC allows the comparison of models with differing parameterizations and/or differing numbers 
of clusters. It is computed as the summation of maximal log-likelihood and the parameter penalty 
in the model. In general, a larger BIC value implies a stronger evidence for the model and number 
of clusters [25]. This means that the clustering which yields the largest BIC value is the optimal. 
In this paper, model-based clustering is run by using the mclust, which is contributed by Fraley 
and Raftery [25]. 
 
In the second study, we use a common set of OpenCL programs from the NAS parallel bench-
mark suite [39] to make a more consistent comparison. The programs running on two GPUs are 
compiled from the same source code and take identical input files. Therefore, by profiling these 
programs, we are able to investigate that how architectural difference will impact the performance 
of the same program. More detailed analysis of this study will be presented in section 5. 
 
3.3 Procedure Overview 
 
Our approach consists of three steps. First, we use the visual profilers to collect the execution be-
haviors of all general purpose applications included in the SDKs. Some applications provide more 
than one kernel implementations with different optimization degrees. For example, the matrix 
multiplication benchmark from the ATI SDK contains three versions: computation without using 
the local data share, using the local data share to store data from one input matrix, and using the 
local data share to store data from both input matrices. Each of the three versions can be invoked 
individually. In this work, we treat these kernels as different programs since they have distinct 
execution behaviors on the GPU. Another issue is that several benchmarks from two SDKs corre-
spond to the same application scenario. For such programs, we explore the code and ensure that 

   
(a) Nvidia              (b) ATI 

Fig. 2. Validation results of the benchmark clustering. 

TABLE 4.   Common applications 

Workload Description 
BinomialOption Binomial option pricing for European options 
BlackScholes Option pricing with the Black-Scholes model 

EigenValue Eigenvalue calculation of a tridiagonal symmetric 
matrix 

FastWalsh Hadamard ordered Fast Walsh Transform 
FloydWarshall Shortest path searching in a graph 

Histogram Calculation of pixel intensities distribution of an 
image 

Matmul_2_smem Matrix multiplication, using the shared memory to 
store data from both input matrices 

Matmul_no_smem Matrix multiplication, without using shared mem-
ory 

MonteCarloDP Monte Carlo simulation for Asian Option, using 
double precision 

RadixSort Radix-based sorting 
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the Nvidia and ATI implementations have identical input and output size. Second, by employing 
the BIC based statistical clustering method, we classify all applications into a number of catego-
ries according to their performance profiles. We then choose a program from each cluster for our 
analysis. For fair comparisons, each selected application based on clustering in one SDK is used 
to find an “equivalent” application in the other SDK. We made the best effort including minor 
code modifications to ensure the selected kernels to perform the same tasks when running on both 
systems. Third, we use the selected set of applications to compare the architectural differences 
and energy efficiency of two GPUs. 
 
4. RESULT ANALYSIS 
 
4.1 Benchmark Clustering 
 
The clustering results for Nvidia and ATI benchmark suites are respectively listed in Table 2 and 
Table 3. As can be seen, the optimal number of categories for Nvidia applications is five. The 
ATI programs have a larger number of clusters, although this set has even fewer applications than 
the Nvidia suite. Actually, our clustering analysis shows that the global optimal cluster number 
for ATI programs is 31, while 10 is a suboptimal choice. Considering that the goal of this study is 
to investigate and compare the architectural features of two GPUs using a manageable set of rep-
resentative applications, we decide to classify all ATI programs into 10 groups according to the 
suboptimal classification. 
 
The common set of applications used for this work should cover all clusters from both benchmark 
suites. To achieve this goal, we select 10 programs including BinomialOptions, BlackScholes, 
EigenValue, FastWashTransform, FloydWarshall, Histogram, Matrixmul_2_smem, 
Matrixmul_no_smem, MontecarloDP, and RadixSort. By doing this, all the 5 clusters in the 
Nvidia SDK and the 10 clusters in the ATI SDK application set are fully covered. Note that the 
Nvidia benchmark suite does not provide CUDA implementations for applications including 
FloydWarshall, Matrixmul_no_smem, and MontecarloDP; so we implement them manually. A 
brief description of these 10 applications is given in Table 4.  
 
For each benchmark suite, we validate the effectiveness of clustering by comparing the average of 
selected programs and that of all applications for important metrics. The metrics used for valida-
tions on two GPUs are slightly different. For the execution rate, we employ the widely used mil-
lions of instructions per second (MIPS) as the criteria for each set individually. For the Nvidia 
applications, we also compare the SM occupancy, which is defined as the ratio of active warps on 
an SM to the maximal allowable warps on a streaming multiprocessor. This metric can reflect the 
overall parallelism of an execution and is fairly important in the general purpose GPU computing. 
For the ATI programs, we choose the ALUBusy and ALUPacking as additional validation metrics. 
This is because that in the VLIW architecture, the packing ratio is one of the dominant factors 
that determine the throughput. Moreover, the ALUBusy indicates the average ALU activity during 
an execution, which is also critical to the overall performance. 
 
The validation results are demonstrated in Figure 2. As observed, the average occupancy and 
MIPS for all Nvidia applications can be well approximated by the selected programs. For the ATI 
programs set, both ALUBusy and ALUPacking can be estimated reasonably well; however, we 
notice that the metric MIPS leads to around 30% discrepancy when using the subset of programs. 
As we described previously, the global optimal cluster number for the ATI programs is 31, mean-
ing that almost each application stands as an individual cluster. This indicates that the execution 
patterns of ATI programs are not sufficiently close to each other compared to the Nvidia pro-
grams. As a consequence, the chosen 10 programs are not able to accurately represent the charac-
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teristics of all applications. Nevertheless, considering the significant reduction on the number of 
applications, we believe that the validation result is still acceptable to reduce the benchmarking  
efforts. In general, the validation results indicate that our benchmark clustering is reasonable and 
the selected programs are representative of the entire suite. 
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4.2 Overall Execution Time Comparison 
 
In general purpose GPU computing realm, the CPU side is usually referred as the host while the 
GPU is termed as the device. Previous studies have demonstrated that the data transfer between 
the host and the device costs even more time than the GPU computation does in some problems 
[27]. Given this consideration, we collect the time spent on different stages during execution and 
demonstrate the overall breakdown in Figure 3. As shown in the figure, the execution of each ap-
plication is decoupled into three stages: memory copy from the host to device (mem_H2D), kernel 
execution (kernel), and the data transfer from the device back to the host (mem_D2H). Obviously, 
the selected applications have distinct characteristics on the execution time distribution. For ap-
plications such as Histogram, the time spent on communication between the CPU and the GPU 
dominates the total execution. On the contrary, the GPU computation takes most portion of the 
time in benchmarks including EigenValue. Several interesting findings can be observed from the 
figure. 
 
First, for all 10 applications, the Nvidia computer system outperforms the ATI competitor from 
the standpoint of host-to-device data transfer. In addition, the time spent on the memory copy 
from the GPU to the CPU is also shorter on the Nvidia machine, except for BlackScholes. This 
indicates that the Nvidia system is able to transfer data more efficiently than the ATI computer. 
To further understand this issue, we conduct a group of experiments to test the memory transfer 
performance on both computer systems. Figure 4(a) illustrates the communication time when 
copying different sizes of data from the host to the device. Similarly, the time for mem_D2H is 
shown in Figure 4(b). In general, the results support our inference. However, when copying a 
large amount of data from the GPU to the CPU, ATI performs better. 
 
In a CUDA application, the API cudamemcpy is called for data communication, whereas an 
OpenCL program uses the CLEnqueueWritebuffer function to transfer data to the GPU and then 
invokes the CLEnqueuReadbuffer routine to copy the computation result back to the host side. As 
can be observed, the cudamemcpy takes fairly short time (i.e., tens of microseconds) when the 
data size is small (e.g., < 1024KB); in contrast, the OpenCL API needs at least 1 millisecond (i.e., 
1000 μs) regardless of the data size. Note that in both systems, the time hardly changes when the 
data size varies between 64KB and 1024KB. It is thereby reasonable to infer that the time should 
be majorly taken by the configuration overhead such as source and destination setup in this case. 
Therefore, the gap demonstrates that the OpenCL API for memory copies has a larger launch 
overhead than the corresponding CUDA routine. On the other hand, the OpenCL function 
CLEnqueueReadbuffer takes shorter transfer time when the data size is relatively large. This indi-
cates that the ATI OpenCL implementation has specific advantages on transferring large chunk of 
data from the GPU to the CPU. The BlackScholes benchmark has the largest size of data that need 
to be read back to the host side, making the ATI system to be a faster device. 
 
The kernel execution on the GPU is always considered as the most important part in studying 
GPU performance. In these 10 pairs of applications, seven of them run faster on the Nvidia GPU, 
while ATI performing better on Blackscholes, MatMul_2_smem, and MatMul_no_smem bench-
marks. The kernel computation time of EigenValue, FloydWarshall, and RadixSort on Radeon 
HD 5870 is substantially longer than those on GTX 580. Table 5 lists the ALUBusy rate and pack-
ing ratios of these ten programs when executed on the HD 5870. Note that for applications which 
invoke multiple kernels with different behaviors, we calculate the performance metric (e.g., 
ALUBusy, Packing ratio) by averaging that of all individual kernels weighted by the correspond-
ing execution time. As shown in the table, the three programs running faster on the ATI GPU 
have a common point that the VLIW packing ratio is fairly high (highlighted in light gray). Recall 
that Radeon HD 5870 includes 320 five-way VLIW processors working at 850MHz. Therefore, 
provided that the packing ratio is α, the theoretical peak performance can be calculated as [5]: 320 
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× 5 × α × 850MHz × 2 = 2.72 α TFLOPS. Note that in this equation, the factor 2 is included be-
cause that the fused multiply-add (FMA) operation, which includes two floating point operations, 
is usually used while deriving peak throughput of a GPU in convention. Similarly, the maximal 
performance of the GTX 580 GPU is 512×1544MHz×2 = 1.581 TFLOPS. In comparison, the 
packing ratio α should be no less than 58% (i.e., 1.581/2.72) to make the ATI GPU run faster. 
Since the packing ratios of BlackScholes, Matmul_2_smem, and Matmul_no_smem are all greater 
than this threshold, these programs run faster. On the other aspect, Eigenvalue, FloydWarshall, 
and RadixSort have fairly low packing ratios; even worse, their ALUBusy rate are low during the 
execution (highlighted in dark grey). These two factors result in the poor performance of these 
three programs. 
 

 
 
The third point that deserves detailed analysis is the double precision performance because of its 
importance in solving HPC problems. We use the MonteCarloDP application from financial en-
gineering to compare the double precision computing capability of these two GPUs. This bench-
mark approximately achieves 70% packing ratio and 50% ALU utilization when running on the 
ATI GPU, which are adequately high for outstanding performance. However, its kernel execution 
time is remarkably longer compared to that on the Nvidia GPU. Unlike native benchmarks select-
ed from the SDK, the CUDA version of MonteCarloDP is directly transformed from the OpenCL 
implementation. This means that the two programs are identical on both the algorithm design and 
the implementation details. It is thereby reasonable to conclude that the performance gap is from 
the hardware difference. Each SM on the GTX 580 is able to execute up to 16 double precision 
FMA operations per clock [17] with a peak throughput of 16×16×1544MHz×2 = 790.5 GFLOPS. 
In the Radeon HD 5870, however, the four ALUs within a VLIW processor cooperate to perform 
a double precision FMA per clock. Therefore, the maximal processing power is no more than 
320×1×850MHz×2 = 544 GFLOPS. Obviously, the GTX 580 is more preferable for double preci-
sion computations. 
 
4.3 Parallelism 
 
Execution parallelism stands as the heart of general purpose GPU computing. A typical GPGPU 
application usually launches a large amount of warps/wavefronts to hide long latencies encoun-
tered during the execution. In this section, we will investigate that how execution parallelism im-
pacts the overall performance on these two GPUs.  
 
We first observe the performance variations for changing the thread block size in Nvidia pro-
grams (workgroup size for ATI programs). When the block size is changed, the number of 
blocks/work-groups resided on an SM/SIMD may vary accordingly. This in turn changes the exe-
cution parallelism. Clearly, the parallelism will be greatly reduced if there are too few 
warps/wavefronts on an SM or SIMD and the performance is likely to be degraded in that situa 
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tion. Figure 5 shows the normalized execution time of selected benchmarks when the block size is 
set to 64, 128, and 256 respectively. Note that only a fraction of 10 applications are tested. The 
reason is that the block size is tightly fixed in the program implementation for some benchmarks. 
As a result, changing the configuration will violate the correctness of these applications. There-
fore, we don’t run such programs in this experiment. 
 
As shown in Figure 5 (a), on the Nvidia platform, the execution time tends to become shorter 
when the block size is enlarged since the occupancy keeps rising in this circumstance except for 
BinomialOption and Matmul_no_smem, where the performance gets slightly worse if the block 
size is increased from 128 to 256. This is due to the fact that the number of global memory ac-
cesses is significantly increased when the block size becomes larger. In this case a larger block 
size may result in an even worse performance. The other exception is that the performance of 
MonteCarloDP is hardly changed regardless of the thread block size. This is because that each 
thread of the kernel requires substantial registers, resulting in extremely few active warps on an 
SM due to the resource constraint. Actually, the occupancy remains fairly low regardless of the 
block size while executing MonteCarloDP. Figure 5(b) demonstrates that the performance of the-
se applications do not change much with varying work-group sizes on the ATI GPU. As de-
scribed previously, the ATI GPU adopts the VLIW architecture; therefore, other factors including 
the ALU packing ratio are also playing significant roles in determining the execution perfor-
mance.  
 
Next, our second study concentrates on the impact of working size. The working size denotes the 
number of output elements calculated by each thread/work-item. By setting the working size to 
different values, it is conveniently to adjust the packing ratio on the ATI GPU. While executing 
on the Nvidia GPU, an appropriate working size can lead to efficient usage of the data fetched 
from the global memory and reduce the unnecessary memory accesses. This may improve the 
overall performance. In order to simplify the packing ratio tuning, we choose the 
Matmul_no_smem benchmark to conduct the study. Figure 6 illustrates the change of perfor-
mance when the working size increases from 1 to 8 on both GPUs. As can be observed, the HD 

 
Fig. 6. Performance variation with changing the     

working size. 

                                    
Fig. 7. Occupancy and VLIW packing variations with 

changing the working size. 
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5870 GPU greatly benefits from larger working sizes while the Nvidia GPU is not notably im-
pacted by the variation of working sizes.  
 

 
 
To further understand this issue, we record the occupancy and ALU packing ratio corresponding 
to each working size and show them in Figure 7. Both occupancies on two GPUs are reducing 
with the increase of working sizes. This is due to the resources constraint on an SM/SIMD. As 
each thread computes more elements, the number of registers which are allocated to store inter-
mediate variables is inevitably increased. Therefore, fewer threads are allowed to reside on the 
same SM, resulting in a decreased occupancy. On the GTX 580 GPU, such decreased parallelism 
counteracts the advantage of increased efficiencies of single threads, making the overall perfor-
mance slightly changed. However on the ATI GPU, since the calculation of each matrix element 
is independent, the compiler is able to assign the extra computations to the unoccupied slots with-
in a VLIW processor, thus increasing the packing ratio. When the working size varies within a 
reasonable range, the high packing ratio is the dominant factor to the performance. Consequently, 
the HD 5870 GPU shows a performance boost when working size increases. 
 
In conclusion, the extraction of the optimal parallelism on two GPUs follows different patterns. 
On Nvidia GPU, we shall aim at increasing the SM occupancy in general, while paying attention 
to other factors such as the resource usage and memory access behavior. On the ATI GPU, im-
proving the VLIW packing ratio is of great importance for higher performance. 
 
4.4 Cache Hierarchy 
 
In general purpose GPU programming, long latency events including global memory accesses can 
be hidden by switching among the available warps or wavefronts on an SM or SIMD. However, 
due to limited available warps and wavefronts, frequently global memory accesses tend to be the 
bottleneck for many GPU applications, especially when the parallelisms are not sufficiently high. 
In this situation, including a cache that speeds up the memory access may notably boost the per-
formance. Therefore, it is meaningful to investigate the architectural features of caches on these 
two GPUs. 
 
We first focus on the GTX 580 GPU with new designs of on-chip fast memory. Our study starts 
from the performance comparison of selected benchmarks with the L1 cache enabled or disabled. 
The results are shown in Figure 8. As can be observed, eight out of ten applications show little 
impact on the inclusion of the L1 cache, except for FloydWarshall and Matrixmul_ no_smem. 
This indicates that those eight applications are running with superb parallelism, thus long laten-
cies due to global memory operations can be hidden. On the contrary, the execution of 
FloydWarshall suffers from memory access latencies, therefore, the L1 cache is able to capture 
data locality and effectively improve the performance. The result of MatrixMul_no_smem is sur-
prising since the execution time is getting even longer when the L1 cache is enabled. We thereby 
conduct a case study based on this benchmark to reveal the underlying reasons.  
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In MatrixMul_no_smem, each thread is responsible for calculating four adjacent elements in a 
column of the output matrix. This is illustrated in Figure 9 (labeled as vertical in Matrix C). When 
a thread is calculating the first element, it will load a block of consecutive data from the corre-
sponding line in matrix A. According to [9], the L1 cache line size in the GTX 580 is 128 bytes. 
Therefore, when an L1 cache miss is encountered, a 128B segment transaction will be always 
issued. As the thread continues to calculate the second element, a global memory read request is 
issued again to load the data from the following line in matrix A. Note that all threads within the 
same SM shares the L1 cache. This implies that a previously cached block might be evicted in 
order to accommodate the new fetched data requested by a more recent L1 miss. In this program, 
the memory access pattern is quite scattered. Only a small fraction of the 128-byte cached data is 
utilized and the resultant global memory transactions tend to waste the memory bandwidth. How-
ever, when the L1 cache is disabled, all global memory requests directly go through the L2 cache 
where memory transactions are served in 32-byte granularity. Therefore, the global memory 
bandwidth is more efficiently used, leading to better performance. 
 
Based on this analysis, we modify the kernel and make each thread calculate four adjacent ele-
ments in the same line of matrix C (labeled as horizontal in Figure 9) for better reuse of L1 cache 
data. To validate these two cases (i.e., vertical and horizontal), we carry out a group of experi-
ments by setting the input matrix to different sizes. The result is demonstrated in Figure 10. As 
we expect, in the horizontal implementation, the computation throughput is much higher when 
the L1 cache is enabled. In contrast, disabling the L1 cache can yield better performance for the 
vertical program. 
 
The caches involved in the Radeon HD 5870 GPU have different design specifications from that 
on the Nvidia GPU. In specific, both the L1 and L2 caches on the HD 5870 are only able to store 
images and same-indexed constants [4]. Many data structures used in GPGPU application kernels 
such as float type arrays are uncacheable. In the OpenCL programming, this can be worked 
around by defining the target structures as image objects and use the corresponding routines for 
data accesses. In order to understand the effect of the caches on the HD 5870, we compare the 
performance of two matrix multiplication programs, one of which is designed to use the caches. 
In Figure 11, the curve labeled by “image object” corresponds to the version using caches. Note 
that these two programs are built on identical algorithms and neither of them uses the local data 
share; hence the performance gap comes directly from caches. Obviously, when setting the data 
array type to image object, the performance is boosted tremendously. 
 
In summary, there are several architectural differences between the caches on the GTX 580 and 
Radeon HD 5870 GPUs. While programming cache-sensitive applications on Fermi GPUs, the 
data access patterns and kernel workflows should be carefully designed, in order to effectively  
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and efficiently use the L1 cache. The caches on the HD 5870 are less flexible compared to that on 
the GTX 580. To take the advantage of caches on the ATI GPU, cacheable data structures such as 
image objects should be appropriately used in the programs. 
 

4.5 Energy Efficiency 
 
As power-consuming GPUs are widely used in supercomputers, high energy efficiency is becom-
ing an increasingly important design goal. As we described in section 1, both Nvidia and ATI pay 
substantial attention to trimming the power budget of their products while improving the perfor-
mance. Therefore, evaluating energy efficiencies of the target GPUs is of great importance.  
 
Figure 12 shows the power consumptions of selected benchmarks running on two GPUs. Obvi-
ously, the Fermi GPU consumes more power than the ATI counterpart. Recall the manufacture 
parameters listed in Table 1. The GTX 580 integrates more transistors and its processor cores are 
running on a higher frequency compared to the HD 5870. Therefore, the Nvidia GPU tends to 
consume more power during program execution. The energy consumption of these benchmarks is 
shown in Figure 13. We observe four of those selected applications consume less energy on the 
ATI GPU. Because of the relative low power consumption, the HD 5870 consumes less energy to 
solve a problem when its execution time is not significantly longer than that on the GTX 580. 
 
The energy efficiency can be interpreted by the metric Energy-delay product (EDP). We demon-
strate the normalized EDP for these applications in Figure 14. As shown in the figure, the HD 
5870 GPU wins on four of them: BlackScholes, Histogram, MatrixMul_2sm, and 
MatrixMul_nsm. Note that three benchmarks from these four contain efficient OpenCL kernels 
with fairly high VLIW packing ratios. This indicates that the VLIW packing is also critical to the 
energy efficiency of the HD 5870 GPU. 
 
In case where a compact packing is easy to explore, the Radeon HD 5870 is more preferable from 
the standpoint of high energy efficiency. In general, we can summarize a principle that the ATI 
GPU can deliver better energy efficiency when the program can perfectly fit the VLIW proces-
sors; otherwise the GTX 580 card is more preferable. 
 
5. OPENCL EXECUTIONS COMPARISON 
 
As stated in section 1, using pairs of CUDA and OpenCL applications for the comparison is ef-
fective to explore the respective advantages of these two GPUs. However, in order to eliminate 
the interference caused by the software-wise diversity, it is necessary to choose a set of truly iden-
tical applications to make a consistent comparison, by which we aim to investigate that how ar-
chitectural difference between Nvidia and ATI GPUs will impact the performance of the same 
program. 
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We choose the OpenCL version of the NAS parallel benchmark [39] to conduct this study. The 
NAS benchmark suite includes a set of applications that are developed for the performance evalu-
ation of supercomputer systems. It is composed of five kernels – EP, IS, CG, MG, FT, and three 
pseudo-applications – SP, BT, and LU, all of which are basically derived from computational flu-
id dynamic problems. Therefore, its OpenCL implementation is an appropriate candidate to assess 
modern general-purpose GPUs. For each of the eight applications, there are five problem sizes 
(i.e., S, W, A, B, C) requiring different system resources for the execution. Our testbeds are able  
to execute 12 application-input combinations; therefore, we will run these 12 programs on two 
GPUs and make the comparison accordingly. 
 
Following the approach from the previous section, we start our analysis by demonstrating the ex-
ecution time breakdown of the selected programs, which is shown in Figure 15. Note that each 
program is denoted by its name and problem size. For instance, BT.S means running the applica-
tion BT with the problem size S. As can be seen from the figure, the kernel computation time 
dominates the entire execution for all programs on both GPUs; in addition, the ATI Cypress GPU 
takes longer time to execute these programs than the Nvidia Fermi GPU does. To investigate the 
reason of this, we collect the ALU busy rates of two GPUs while running these programs and list 
them in Table 6. Note that the Nvidia profiler does not provide the ALU busy counter for kernel 
executions, so we derive the utilizations of the Nvidia GPU from the reported active cycles and 
the corresponding kernel execution time, where active cycles means the clock counts that the 
stream processors are actually utilized to execute instructions, while kernel execution time indi-
cates the total time of a kernel to complete including the necessary stall time caused by memory  
 
operations and threads synchronization, etc. The ALU busy rate is defined as the ratio of these 
two counters. As can be observed from the table, the ATI GPU has fairly low ALU busy rates 
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while executing these programs. Examples include BT.S, LU.S, and SP.S, whose executions re-
sult in less than 1% utilization. In contrast, the Nvidia GPU can be more efficiently used for exe-
cutions, thus completing the tasks within much shorter time. 
 

 
 
 The low ALU busy rates on the ATI GPU deserve further explorations. We summarize two rea-
sons that lead to the low utilizations by carefully analyzing profiling results: (1) most kernels in 
these applications require a large number of registers and thus decrease the occupancy due to the 
resource constraint. For example, each work-item of the most time-consuming kernel from BT.S 
is assigned 63 registers, meaning that few workgroups can reside on the same SIMD engine. Re-
call that ATI GPUs hide the memory access latency by switching among a large number of wave-
fronts while executing OpenCL applications; therefore, few active wavefronts imply insufficient 
ability to hide the memory latency. (2) The interleaving between ALU computations and memory 
accesses of kernels from these workloads is not fully optimized for the best performance. 
 

 
 
Generally, long runs of ALU instructions between consecutive memory operations are effective to 
increase the execution throughput and are able to partially compensate the low parallelism (i.e., 
small number of wavefronts). We use the ALU/Fetch ratio metric provided by the profiler to in-
vestigate this feature of those kernels. Figure 16 plots the ALU/Fetch ratios of important kernels 
(i.e., those which are frequently invoked and take relatively longer time to execute) from BT.S, 
LU.S, SP.S and FT.S. Note that FT.S is chosen for comparison because it has the highest ALU 
busy rates among the twelve programs. As can be observed, the kernels in BT.S, LU.S and SP.S 
have much lower ALU/Fetch ratios than those from FT.S. This indicates that the former three 
programs tend to frequently issue global memory requests after executing only a few ALU in-
structions, potentially resulting in memory stalls. In case where the occupancy is fairly low, the 
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situation is getting even worse because all wavefronts might be waiting for the operands and the 
scheduler cannot resume any wavefront for execution to overlap the memory access. 
 

 
 

 
 

Due to the relatively low parallelism of these programs, the caches are playing an important role 
to the performance. Table 7 lists the derived L1 and L2 cache miss rates when BT.S, LU.S, SP.S 
and FT.S are executed on the Nvidia GPU. As can be observed, the two-level cache hierarchy on 
this GPU can serve a large portion of memory requests and consequently reduce the number of 
transactions accessing the global memory. This will assist to alleviate the impact of the low paral-
lelism and small ALU/Fetch ratios, resulting in much faster executions for those programs. On 
the contrary, caches on the ATI GPU are majorly used to cache images and constants [4], thus 
they are unable to provide fast accesses to normal read/write requests issued from different 
workitems. Under this limitation, the program executions incline to suffer from the long-latency 
global memory accesses and the execution time is subsequently prolonged. 
 
We finally compare the power consumptions of both GPUs while executing these workloads and 
demonstrate them in Figure 17. We notice that the ATI GPU consumes less power than the 
Nvidia GPU for all selected programs. The reason is similar to that has been described in section 
4.5. Given that the ATI GPU has fewer integrated transistors and runs at a lower frequency, it 
tends to consume less power than the Nvidia competitor. 
 
6. RELATED WORK 
 
In recent years, several researchers have authored outstanding studies on modern GPU architec-
ture. On the performance analysis aspect, Hong et al. [29] introduce an analytical model with 
memory-level and thread-level parallelism awareness to investigate the GPU performance. In 
[41], Wong et al. explore the internal architecture of a widely used Nvidia GPU using a set of 
microbenchmarks. More recently, Zhang and Owens [42] use a similar micro-benchmark based 
approach to quantitatively analyze the GPU performance. Studies on typical ATI GPUs are even 
fewer. Taylor and Li [40] develop a microbenchmark suite for ATI GPUs. By running the 
microbenchmarks on different series of ATI products, they discover the major performance bot-
tlenecks on those devices. In [43], Zhang et al. adopt a statistical approach to investigate charac-
teristics of the VLIW structure in ATI Cypress GPU. 
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Literature on the GPU power/energy analysis can also be found in prior studies. Hong and Kim 
[30] propose an integrated GPU power and performance analysis model which can be applied 
without performance measurements. Zhang [43] and Chen [21] use similar strategies to statistical-
ly correlate the GPU power consumption and its execution behaviors. The established model is 
able to identify important factors to the GPU power consumption, while providing accurate pre-
diction for the runtime power from observed execution events. Huang et al. [31] evaluate the per-
formance, energy consumption and energy efficiency of commercial GPUs running scientific 
computing benchmarks. They demonstrate that the energy consumption of a hybrid CPU+GPU 
environment is significantly less than that of traditional CPU implementations. In [37], Rofouei et 
al. draw a similar conclusion that a GPU is more energy efficient compared to a CPU when the 
performance improvement is above a certain bound. Ren et al. [36] consider even more compli-
cated scenarios in their study. The authors implement different versions of matrix multiplication 
kernels, running them on differ ent platforms (i.e., CPU, CPU+GPU, CPU+GPUs) and comparing 
the respective performance and energy consumptions. Their experiment results show that when 
the CPU is given an appropriate share of workload, the best energy efficiency can be delivered. 
 
Efforts are also made to evaluate comparable architectures in Prior works. Peng et al. [33][34] 
analyze the memory hierarchy of early dual-core processors from Intel and AMD and demon-
strate their respective characteristics. In [28], Hackenberg et al. conduct a comprehensive investi-
gation on the cache structures on advanced quad-core multiprocessors. In recent years, compari-
son between general purpose GPUs is becoming a promising topic. Danalis et al. [22] introduce a 
heterogeneous computing benchmark suite and investigate the Nvidia GT200 and G80 series 
GPU, ATI Evergreen GPUs, and recent multi-core CPUs from Intel and AMD by running the 
developed benchmarks. In [23], Du et al. compare the performance between an Nvidia Tesla 
C2050 and an ATI HD 5870. However, their work emphasizes more on the comparison between 
OpenCL and CUDA from the programming perspective. Recently, Ahmed and Haridy [18] con-
duct a similar study by using an FFT benchmark to compare the performance of an Nvidia GTX 
480 and an ATI HD 5870. However, power and energy issues are not considered in their work. 
 
On the other hand, benchmark clustering has been proved to be useful for computer architecture 
study. Phansalkar et al. [35] demonstrate that the widely used SPEC CPU benchmark suite can be 
classified into a number of clusters based on the program characteristics. In [26], Goswami et al. 
collect a large amount of CUDA applications and show that they can also be grouped into a few 
subsets according to their execution behaviors.  
 
Our previous work [44] adopts the benchmark clustering approach. We believe that the applica-
tions in the SDKs provide the most typical GPU programming patterns that reflect the character-
istics of these two devices. Therefore, we can extract and compare the important architectural fea-
tures by running the selected applications. 
 
In this paper, we further include a set of OpenCL implementations of NAS benchmarks to per-
form a further comparison. 
 

7. CONCLUSION 
 
In this paper, we use a systematic approach to compare two recent GPUs from Nvidia and ATI. 
While sharing many similar design concepts, Nvidia and ATI GPUs differ in several aspects from 
processor cores to the memory subsystem. Therefore, we conduct a comprehensive study to in-
vestigate their architectural characteristics by running a set of representative applications. Our 
study shows that these two products have distinct advantages and favor different applications for 
better performance and energy efficiency. The Nvidia Fermi GPU will be more preferable to 
compute double-precision problems and execute programs that are difficult to form compact 
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VLIW bundles, while the ATI Radeon GPU can be more energy-efficient if the task can be solved 
in similar time on two platforms. 
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