
International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

DOI:10.5121/ijcsit.2014.6601 1

PERFORMANCE AND POWER COMPARISONS BE-

TWEEN NVIDIA AND ATI GPUS

Ying Zhang1, Lu Peng1, Bin Li1, Jih-Kwon Peir2, and Jianmin Chen2

1Louisiana State University, Baton Rouge, Louisiana, USA
2University of Florida, Gainesville, Florida, USA

ABSTRACT

In recent years, modern graphics processing units have been widely adopted in high performance comput-
ing areas to solve large scale computation problems. The leading GPU manufacturers Nvidia and ATI have
introduced series of products to the market. While sharing many similar design concepts, GPUs from these
two manufacturers differ in several aspects on processor cores and the memory subsystem. In this paper,
we choose two recently released products respectively from Nvidia and ATI and investigate the architec-
tural differences between them. Our results indicate that these two products have diverse advantages that
are reflected in their performance for different sets of applications. In addition, we also compare the en-
ergy efficiencies of these two platforms since power/energy consumption is a major concern in the high
performance computing system.

KEYWORDS

Performance, Power, GPUs, Nvidia Fermi, ATI Radeon.

1. INTRODUCTION

With the emergence of extreme scale computing, modern graphics processing units (GPUs) have
been widely used to build powerful supercomputers and data centers. With large number of proc-
essing cores and high-performance memory subsystem, modern GPUs are perfect candidates to
facilitate high performance computing (HPC). The leading manufacturers in the GPU industry,
Nvidia and ATI have introduced series of products that are currently used in several preeminent
supercomputers. According to the Top500 list released in Jun. 2011, the world’s second fastest
supercomputer Tianhe-1A installed in China employs 7168 Nvidia Tesla M2050 general purpose
GPUs [15]. LOEWE-CSC, which is located in Germany and ranked at 22nd in the Top500 list
[15], includes 768 ATI Radeon HD 5870 GPUs for parallel computations.

Although typical Nvidia and ATI GPUs share several common design concepts; they deviate in
many architecture aspects from processor cores to the memory hierarchy. In this paper, we con-
centrate on two recently released GPUs: an Nvidia GeForce GTX 580 (Fermi) [11] and an ATI
Radeon HD 5870 (Cypress) [5], and compare their performance and power consumption features.
By running a set of representative general-purpose GPU (GPGPU) programs, we demonstrate the
key design difference between the two platforms and illustrate their impact on the performance.
The first architectural deviation between the target GPUs is that the ATI GPUs adopt very long
instruction word (VLIW) processors to carry out multiple operations in a single VLIW instruction
to gain an extra level of parallelism over its single instruction multiple data (SIMD) engines.
Typically, in an n-way VLIW processor, up to n independent instructions can be assigned to the
slots and be executed simultaneously. Obviously, if the n slots can be filled with valid instruc-
tions, the VLIW architecture can execute n operations per VLIW instruction. However, this is not
likely to always happen because the compiler may fail to find sufficient independent instructions

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

2

to generate compact VLIW instructions. On average, if m out of n slots are filled during an execu-
tion, the achieved packing ratio is m/n. The actual performance of a program running on a VLIW
processor largely depends on the packing ratio. In ATI Radeon HD 5870, up to 5 single precision
scalar operations can be executed in parallel. The Nvidia GPUs do not exploit this low-level
VLIW parallelism and rely on more aggressive thread (warp) scheduling to fully utilize the un-
derlying processing cores.

The second major difference between two GPUs exists in the memory subsystem. Inherent from
the graphics applications, both GPUs have separate global memories located off-chip for the
global, private (referred as local in Nvidia GPU), texture, and constant data. They also have fast
on-chip local memory (called shared memory in Nvidia and local data share in ATI) and caches
for the texture and constant data. The Nvidia Fermi introduces new L1 and L2 caches for caching
both global and local data that are not allowed in Radeon HD 5870. In the GTX 580, the L1 cache
and shared memory can be configured to two different size combinations. The L1 cache can also
be disabled by setting a compiler flag. All off-chip memory accesses go through the L2 in GTX
580. Given the additional L1 and L2 caches for global and local data, we will investigate and
compare the performance of the memory system of the target GPUs. Thirdly, power consumption
and energy efficiency stand as a first-order concern in high performance computing areas. Due to
the large amount of transistors integrated on chip, a modern GPU is likely to consume more pow-
er than a typical CPU. The resultant high power consumption tends to generate substantial heat
and increase the cost on the system cooling, thus mitigating the benefits gained from the perfor-
mance boost. Both Nvidia and ATI are well aware of this issue and have introduced effective
techniques to trim the power budget of their products. For instance, the PowerPlay technology [1]
is implemented on ATI Radeon graphics cards, which significantly drops the GPU idle power.
Similarly, Nvidia use the PowerMizer technique [12] to reduce the power consumption of its mo-
bile GPUs. In this paper, we measure and compare energy efficiencies of these two GPUs for fur-
ther assessment.

For a fair comparison between the two GPUs, it is essential to select a set of representative work-
loads to be measured on both systems. A key obstacle to a fair comparison is that software pro-
grammers usually use different programming language to develop HPC applications on Nvidia
and ATI GPUs. The Compute Unified Device Architecture (CUDA) language invented by Nvidia
is majorly used by Nvidia GPU developers, whereas the ATI community has introduced the Ac-
celerated Parallel Processing technology to encourage engineers to focus on the OpenCL stand-
ard. Taking this into consideration, we conduct a two-step comparison between the target GPUs
in our study. We first use representative benchmarks selected from the released SDKs [3][7]. This
means that a set of CUDA applications are used to investigate the Nvidia GPU while another set
of OpenCL programs are executed and profiled on the ATI GPU for analysis. Both sets have the
same computation tasks. Nvidia has made substantial efforts to improve and optimize the CUDA
language, which is currently the preferable tool for most Nvidia HPC application developers. On
the other hand, as one of the earliest organizations joining in the OpenCL community [14], ATI is
more interested in this standard and persistently improve the OpenCL performance on its prod-
ucts. Therefore, we believe that executing CUDA and OpenCL applications respectively on
Nvidia and ATI GPUs can reveal their optimal performance and assist us to explore the ad-
vantages and bottlenecks of these two products. In the second study, we choose a common set of
OpenCL applications from the NAS parallel benchmark suite for the comparison. By running
programs compiled from identical source code on two GPUs, we perform a fair comparison from
the conventional perspective.

According to the experiments, we can summarize the following interesting observations:

 For programs that involve significant data dependency and are difficult to generate compact
VLIW bundles, the GTX 580 (Fermi) is more preferable from the standpoint of high per-

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

3

formance. The ATI Radeon HD 5870 (Cypress), on the other hand, is a better option to run
programs with high VLIW packing ratio.

 The GTX 580 GPU outperforms its competitor on double precision computations. The Fermi
architecture is delicately optimized to deliver high performance in double precision, making it
more suitable in solving problems with high precision requirement.

 Memory transfer speed between the CPU and GPU is another important performance metric
which impacts the kernel initiation and completion. Our results show that Nvidia generally
has higher transfer speed. Besides the lower frequency of the device memory on the ATI HD
5870 GPU [5][11], another reason is that the memory copy in CUDA has smaller launch
overhead compared to the ATI OpenCL counterpart.

 Program executions can benefit from the new two level caches on Nvidia’s GPU. This is es-
pecially important when the application parallelism is relatively low and memory access la-
tencies cannot be fully hidden by multithreading.

 The ATI Radeon HD 5870 consumes less power in comparison with the GTX 580. If a prob-
lem can be solved on these two GPUs in similar time, the ATI GPU will be more energy effi-
cient.

The remainder of this paper is organized as follows. In section 2, we describe the architecture of
these two GPUs. In section 3, we introduce our experimental methodology including the statisti-
cal clustering technique. After that, we analyze and compare the different characteristics of the
target GPUs and the impacts on performance and energy efficiency by testing the selected
benchmarks from the SDKs in section 4. In section 5, we demonstrate the comparison results of
using a set of common OpenCL programs for the second comparison study. We review the relat-
ed work in section 6 and finally draw our conclusion in section 7.

2. BACKGROUND

In this section, we describe the architecture organizations of Nvidia GTX 580 and ATI Radeon
HD 5870. We also briefly introduce the programming languages that are used on these GPUs. A
summary of manufacturing parameters of these two GPUs along with a description of the host
system is listed in Table 1 [5][10].

Fig.1. Architecture of target GPUs

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

4

2.1 Fermi Architecture

Fermi is the latest generation of CUDA-capable GPU architecture introduced by Nvidia [16]. De-
rived from prior families such as G80 and GT200, the Fermi architecture has been improved to
satisfy the requirements of large scale computing problems. The GeForce GTX 580 used in this
study is a Fermi-generation GPU [10]. Figure 1(a) illustrates its architectural organization [16].
The major component of this device is an array of streaming multi-processors (SMs), each of
which contains 32 Streaming Processors (SPs, or CUDA cores). There are 16 SMs on the chip
with a total of 512 cores integrated in the GPU. Within a CUDA core, there exist a fully pipelined
integer ALU and a floating point unit (FPU). In addition, each SM also includes four special
function units (SFU) which are capable of executing transcendental operations such as sine, co-
sine, and square root.

The innovative design of the fast on-chip memory is an important feature on the Fermi GPU. In
specific, this memory region is now configurable to be either 16KB/48KB L1 cache/shared mem-
ory or vice versa. Such a flexible design provides performance improvement opportunities to pro-
grams with different resource requirement. The L1 cache can be disabled by setting the corre-
sponding compiler flag. By doing that, all global memory requests will be bypassed to the 768KB
L2 cache shared by all SMs directly. Note that we use the term Fermi, GTX 580, and Nvidia GPU
interchangeably in this paper.

The CUDA programming language is usually used to develop programs on Nvidia GPUs. A
CUDA application launches a kernel running on the GPU. A typical kernel includes several

TABLE 1. System Information

GPU information
 GTX 580 Radeon HD 5870
technology 40nm 40nm
#transistors 3.0 billion 2.15 billion
processor clock 1544 MHz 850 MHz
GDDR5 clock rate 2004 MHZ 1200 MHz
GDDR5 bandwidth 192.4 GB/s 153.6 GB/s
global memory size 1536MB 1024MB
shared memory,
local data share

16KB or
48KB/SM 32KB/CU

#SM, #CU 16 20
SPs/SM, TPs/CU 32 16
#proc elements/core - 5
#execution units 512 1600
blocks/SM, work-
groups/CU 8 8

threads/SM,
work-items/CU 1536 2048

threads/block,
work-items/workgroup 1024 256

threads/warp,
work-items/wavefront 32 64

warps/SM,
wavefronts/CU 48 32

registers/SM 32768 (32-bit) 256KB

L1/L2 cache
16KB or
48KB /
768KB

-

Host system information

CPU Intel Xeon
E5530

AMD Opteron
6172

main memory type PC3-8500 PC3-8500
memory size 6GB 6GB

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

5

thread blocks, each of which is further composed of many threads. During a kernel execution,
multiple blocks can reside on the same SM to improve the parallelism. Once a block is assigned
to an SM, it is divided into groups of 32 threads which are termed as warps. A warp is the small-
est scheduling unit to be run on the hardware function units in an SIMT fashion. All threads
within a warp execute the same instruction that operates on scalar registers. Specific to the GTX
580, a warp is executed on a group of 16 SPs and two warps can be concurrently issued on the
same SM because of the dual issue technology introduced on Fermi GPUs [9]. Multiple warps
from several thread blocks can be active simultaneously and the instruction and memory latency
is hidden by switching among these warps. Note that the number of warps that can reside on the
same SM is not arbitrarily large. As listed in Table 1, the maximal number of warps that can be
assigned to an SM on the GTX 580 is 48. In practice, the actual resident warps per SM may be
much fewer than this limit if each thread requires a large amount of hardware resources (e.g.,
shared memory and register). GTX 580 realizes the compute capability 2.0. Its resource con-
straints are summarized in Table 1.

2.2 Cypress Architecture

Cypress is the codename of the ATI Radeon HD 5800 series GPU [15]. Figure 1(b) illustrates its
architectural organization. In general, it is composed of 20 Compute Units (CUs), which are also
referred as Single-Instruction-Multiple-Data (SIMD) computation engines, and the underlying
memory hierarchy. Inside an SIMD engine, there are 16 thread processors (TP) and a 32KB local
data share. Basically, an SIMD engine is similar to a stream multiprocessor (SM) on an Nvidia
GPU while the local data share is equivalent to the shared memory on an SM. Note that on the
Radeon HD 5870 GPU, there is an 8KB L1 cache on each SIMD engine and a 512KB L2 cache
shared among all compute units. However, these components function differently from the caches
on the Fermi GPU in that they are mainly used to cache image objects. In this paper, we use the
term HD 5870, Cypress GPU, and ATI GPU interchangeably.

For software developers working on ATI GPUs, the Open Computing Language (OpenCL) is the
most popular programming tool. OpenCL is similar to CUDA in many design principles. For ex-
ample, an OpenCL kernel may include several work-groups that can be decomposed of many
work-items. This relation is comparable to that between CUDA blocks and threads. The equiva-
lent to a warp is called a wavefront in ATI’s OpenCL implementation. On the Radeon HD 5870, a
wavefront is composed of 64 work-items. Similar to the execution model on Nvidia GPUs, ATI
GPUs also allow multiple work-groups to be assigned on the same SIMD engine and the opera-
tion latencies are hidden by switching among the resident wavefronts. The resource constraints
for Radeon HD 5870 are summarized in Table 1. Note that OpenCL is designed as a cross-
platform parallel programming language; therefore, applications developed in OpenCL can also
run on Nvidia GPUs.

As described in section 1, a key difference between the Fermi GPU and Cypress GPU is that the
latter one adopts the VLIW architecture. This is illustrated in Figure 1(c) which visualizes the in-
ternal design of a thread processor on the Radeon HD 5870. As shown in the figure, each TP is a
five-way VLIW processor consisting of four identical ALUs and a special function unit. With this
design, each work-item executes a VLIW instruction and provides an additional level of parallel-
ism compared to the Nvidia’s implementation. The advantage of such an execution pattern is that
a work-item can perform multiple computations in a cycle, thus potentially relaxing the demand
of large number of thread processors on an SIMD engine. Obviously, the performance of pro-
grams running on the ATI GPU largely depends on the VLIW packing ratio. A well tuned kernel
that generates compact VLIW instructions can efficiently utilize the numerous processing ele-
ments on the GPU and thus deliver outstanding performance; on the contrary, running
unoptimized kernels with low packing ratios tends to waste the computing resources and signifi-
cantly prolongs the execution time.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

6

TABLE 2. Clustering result for Nvidia benchmarks

 Benchmarks

Cluster 1

Clock, ConvolutionSeparable, DwtHarr, Fast-
WalshTransform, Ptxjit, ScalarProd, SimpleAtomic-
sIntrincs, SimpleZeroCopy, Transpose_coarsegrain,
Transpose_coalesed, Transpose_diagonal, Trans-
pose_finegrain, Transpose_optimized, Trans-
pose_sharedmemory, Transpose_simplecopy, Vec-
torAdd, BinomialOption, QuasiRandomGenerator,
Scan, Reduction_k0, Reduction_k1, Reduction_k2,
Reduction_k3

Cluster 2
ConjugateGradient, FDTD3D, Histogram, Sim-
pleCUFFT, RadixSort

Cluster 3

ConvolutionFFT2D_builtin, Convolu-
tionFFT2D_custom, ConvolutionFFT2d_optimized,
dxtc, SortingNetworks, Transpose_naive, BlackScho-
les, Reduction_k4, Reduction_k5, Reduction_k6

Cluster 4

EstimatePiInlineP, EstimatePiInlineQ, EstimatePiP,
EstimatePiQ, MatrixMul_2_smem, MatrixMulDrv,
MatrixDylinkJIT, MonteCarlo, SimpleVoteIntrincs,
SingleAsianOptionP, threadFenceReduction, DCT8×8,
MersenneTwister

Cluster 5 EigenValue, Mergesort

TABLE 3. Clustering result for ATI benchmarks

 Benchmarks

Cluster 1

AESEncryptDecrypt, BlackScholes, DwtHarr, Monte-
CarloAsian, MersenneTwister, LDSBandwidth,

Cluster 2

HistogramAtomics, MatrixMulImage, Matrix-
Mul_no_smem, ConstantBandwidth, ImageBandwidth

Cluster 3 BinomialOption

Cluster 4 BitonicSort, FastWalshTransform

Cluster 5

BinarySearch, DCT, FFT, Histogram, MatrixTranspose,
PrefixSum, Reduction, SimpleConvolution, QuasiRan-
domSequence, ScanLargeArray

Cluster 6 EigenValue

Cluster 7 FloydWarshall

Cluster 8 MatrixMul_1_smem, MatrixMul_2_smem

Cluster 9 MonteCarloAsianDP, GlobalMemoryBandwidth

Cluster 10 RadixSort

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

7

3. METHODOLOGY

3.1 Experimental Setup

Our studies are conducted on two separate computers, equipped with an Nvidia Geforce GTX 580
and an ATI Radeon HD 5870 GPU respectively. The CUDA toolkit version 3.2 [7] is installed on
the Nvidia system while the ATI Stream SDK version 2.1 [3] is used on the ATI computer. Both
development kits provide visual profilers [2][7] for the performance analysis.

For power analysis, the power consumption of a GPU can be decoupled into the idle power
Pi_gpu and the runtime power Pr_gpu. To estimate the GPU idle power, we first use a
YOKOGAWA WT210 Digital Power Meter to measure the overall system power consumption
Pidle_sys when the GPU is added on. We then record the power Pidle_sys_ng by removing the
GPU from the system. No application is running during these two measurements; therefore, the
difference between them (i.e., Pidle_sys – Pidle_sys_ng) denotes the GPU idle power. When the
GPU is executing a CUDA or OpenCL kernel, we measure the system power Prun_sys and calcu-
late the GPU runtime power as Prun_sys – Pidle_sys. By summing up Pi_gpu and Pr_gpu, we
obtain the power consumption of the target GPU under stress. Note that Pi_gpu is a constant
while Pr_gpu is varying across different measurements. For the sake of high accuracy, we meas-
ure the power consumption of each program multiple times and use their average for the analysis.

3.2 Application Selection

As described in section 1, modern GPUs have been delicately designed to better execute large
scale computing programs from different domains. Therefore, we decide to use common GPGPU
applications to carry out our investigation. Recall that our study is conducted in two steps. For the
first study, we use representative CUDA and OpenCL applications respectively selected from
Nvidia and ATI SDKs for the comparison. For the second study, which will be detailed in section
5, we use a common set of OpenCL programs for our investigation. In this subsection, we will
introduce the procedure of choosing representative applications from two SDKs for our first
study.

In total, the Nvidia application suite contains 53 GPGPU applications while the ATI set including
32 such benchmarks. Considering that both SDKs include tens of programs, it will be fairly time
consuming to understand and study each of the problems in detail. Previous studies show that it is
effective to use a small set of applications to represent the entire benchmark suite, in order to in-
vestigate the underlying CPU hardware [35]. We believe that this approach is applicable to our
GPU work as well. In this study, we employ a statistical clustering technique to choose the most
representative programs from the SDKs. Cluster analysis is often used to group or segment a col-
lection of objects into subsets or “clusters”, so that the ones assigned to the same cluster tend to
be closer to each other than those in different clusters. Most of the proposed clustering algorithms
are mainly heuristically motivated (e.g., k-means), while the issue of determining the "optimal"
number of clusters and choosing a "good" clustering algorithm are not yet rigorously solved [24].
Clustering algorithms built on top of probability models stand as appropriate substitute to ap-
proaches based on heuristics. Specifically, the model-based methodology can be applied to da-
taset generated by a finite combination of probability distribution. Examples include multivariate
normal distributions. Studies have shown that the finite normal mixture model is a powerful tool
for many clustering applications [19][20][32].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

8

In the first study, we assume that the data are generated from a finite normal mixture model and
apply the model-based clustering. In order to determine the optimal clustering, we compute the
Bayesian Information Criterion (BIC) [38] given the maximized log-likelihood for a model. The
BIC allows the comparison of models with differing parameterizations and/or differing numbers
of clusters. It is computed as the summation of maximal log-likelihood and the parameter penalty
in the model. In general, a larger BIC value implies a stronger evidence for the model and number
of clusters [25]. This means that the clustering which yields the largest BIC value is the optimal.
In this paper, model-based clustering is run by using the mclust, which is contributed by Fraley
and Raftery [25].

In the second study, we use a common set of OpenCL programs from the NAS parallel bench-
mark suite [39] to make a more consistent comparison. The programs running on two GPUs are
compiled from the same source code and take identical input files. Therefore, by profiling these
programs, we are able to investigate that how architectural difference will impact the performance
of the same program. More detailed analysis of this study will be presented in section 5.

3.3 Procedure Overview

Our approach consists of three steps. First, we use the visual profilers to collect the execution be-
haviors of all general purpose applications included in the SDKs. Some applications provide more
than one kernel implementations with different optimization degrees. For example, the matrix
multiplication benchmark from the ATI SDK contains three versions: computation without using
the local data share, using the local data share to store data from one input matrix, and using the
local data share to store data from both input matrices. Each of the three versions can be invoked
individually. In this work, we treat these kernels as different programs since they have distinct
execution behaviors on the GPU. Another issue is that several benchmarks from two SDKs corre-
spond to the same application scenario. For such programs, we explore the code and ensure that

(a) Nvidia (b) ATI

Fig. 2. Validation results of the benchmark clustering.

TABLE 4. Common applications

Workload Description
BinomialOption Binomial option pricing for European options
BlackScholes Option pricing with the Black-Scholes model

EigenValue Eigenvalue calculation of a tridiagonal symmetric
matrix

FastWalsh Hadamard ordered Fast Walsh Transform
FloydWarshall Shortest path searching in a graph

Histogram Calculation of pixel intensities distribution of an
image

Matmul_2_smem Matrix multiplication, using the shared memory to
store data from both input matrices

Matmul_no_smem Matrix multiplication, without using shared mem-
ory

MonteCarloDP Monte Carlo simulation for Asian Option, using
double precision

RadixSort Radix-based sorting

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

9

the Nvidia and ATI implementations have identical input and output size. Second, by employing
the BIC based statistical clustering method, we classify all applications into a number of catego-
ries according to their performance profiles. We then choose a program from each cluster for our
analysis. For fair comparisons, each selected application based on clustering in one SDK is used
to find an “equivalent” application in the other SDK. We made the best effort including minor
code modifications to ensure the selected kernels to perform the same tasks when running on both
systems. Third, we use the selected set of applications to compare the architectural differences
and energy efficiency of two GPUs.

4. RESULT ANALYSIS

4.1 Benchmark Clustering

The clustering results for Nvidia and ATI benchmark suites are respectively listed in Table 2 and
Table 3. As can be seen, the optimal number of categories for Nvidia applications is five. The
ATI programs have a larger number of clusters, although this set has even fewer applications than
the Nvidia suite. Actually, our clustering analysis shows that the global optimal cluster number
for ATI programs is 31, while 10 is a suboptimal choice. Considering that the goal of this study is
to investigate and compare the architectural features of two GPUs using a manageable set of rep-
resentative applications, we decide to classify all ATI programs into 10 groups according to the
suboptimal classification.

The common set of applications used for this work should cover all clusters from both benchmark
suites. To achieve this goal, we select 10 programs including BinomialOptions, BlackScholes,
EigenValue, FastWashTransform, FloydWarshall, Histogram, Matrixmul_2_smem,
Matrixmul_no_smem, MontecarloDP, and RadixSort. By doing this, all the 5 clusters in the
Nvidia SDK and the 10 clusters in the ATI SDK application set are fully covered. Note that the
Nvidia benchmark suite does not provide CUDA implementations for applications including
FloydWarshall, Matrixmul_no_smem, and MontecarloDP; so we implement them manually. A
brief description of these 10 applications is given in Table 4.

For each benchmark suite, we validate the effectiveness of clustering by comparing the average of
selected programs and that of all applications for important metrics. The metrics used for valida-
tions on two GPUs are slightly different. For the execution rate, we employ the widely used mil-
lions of instructions per second (MIPS) as the criteria for each set individually. For the Nvidia
applications, we also compare the SM occupancy, which is defined as the ratio of active warps on
an SM to the maximal allowable warps on a streaming multiprocessor. This metric can reflect the
overall parallelism of an execution and is fairly important in the general purpose GPU computing.
For the ATI programs, we choose the ALUBusy and ALUPacking as additional validation metrics.
This is because that in the VLIW architecture, the packing ratio is one of the dominant factors
that determine the throughput. Moreover, the ALUBusy indicates the average ALU activity during
an execution, which is also critical to the overall performance.

The validation results are demonstrated in Figure 2. As observed, the average occupancy and
MIPS for all Nvidia applications can be well approximated by the selected programs. For the ATI
programs set, both ALUBusy and ALUPacking can be estimated reasonably well; however, we
notice that the metric MIPS leads to around 30% discrepancy when using the subset of programs.
As we described previously, the global optimal cluster number for the ATI programs is 31, mean-
ing that almost each application stands as an individual cluster. This indicates that the execution
patterns of ATI programs are not sufficiently close to each other compared to the Nvidia pro-
grams. As a consequence, the chosen 10 programs are not able to accurately represent the charac-

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

10

teristics of all applications. Nevertheless, considering the significant reduction on the number of
applications, we believe that the validation result is still acceptable to reduce the benchmarking
efforts. In general, the validation results indicate that our benchmark clustering is reasonable and
the selected programs are representative of the entire suite.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

11

4.2 Overall Execution Time Comparison

In general purpose GPU computing realm, the CPU side is usually referred as the host while the
GPU is termed as the device. Previous studies have demonstrated that the data transfer between
the host and the device costs even more time than the GPU computation does in some problems
[27]. Given this consideration, we collect the time spent on different stages during execution and
demonstrate the overall breakdown in Figure 3. As shown in the figure, the execution of each ap-
plication is decoupled into three stages: memory copy from the host to device (mem_H2D), kernel
execution (kernel), and the data transfer from the device back to the host (mem_D2H). Obviously,
the selected applications have distinct characteristics on the execution time distribution. For ap-
plications such as Histogram, the time spent on communication between the CPU and the GPU
dominates the total execution. On the contrary, the GPU computation takes most portion of the
time in benchmarks including EigenValue. Several interesting findings can be observed from the
figure.

First, for all 10 applications, the Nvidia computer system outperforms the ATI competitor from
the standpoint of host-to-device data transfer. In addition, the time spent on the memory copy
from the GPU to the CPU is also shorter on the Nvidia machine, except for BlackScholes. This
indicates that the Nvidia system is able to transfer data more efficiently than the ATI computer.
To further understand this issue, we conduct a group of experiments to test the memory transfer
performance on both computer systems. Figure 4(a) illustrates the communication time when
copying different sizes of data from the host to the device. Similarly, the time for mem_D2H is
shown in Figure 4(b). In general, the results support our inference. However, when copying a
large amount of data from the GPU to the CPU, ATI performs better.

In a CUDA application, the API cudamemcpy is called for data communication, whereas an
OpenCL program uses the CLEnqueueWritebuffer function to transfer data to the GPU and then
invokes the CLEnqueuReadbuffer routine to copy the computation result back to the host side. As
can be observed, the cudamemcpy takes fairly short time (i.e., tens of microseconds) when the
data size is small (e.g., < 1024KB); in contrast, the OpenCL API needs at least 1 millisecond (i.e.,
1000 μs) regardless of the data size. Note that in both systems, the time hardly changes when the
data size varies between 64KB and 1024KB. It is thereby reasonable to infer that the time should
be majorly taken by the configuration overhead such as source and destination setup in this case.
Therefore, the gap demonstrates that the OpenCL API for memory copies has a larger launch
overhead than the corresponding CUDA routine. On the other hand, the OpenCL function
CLEnqueueReadbuffer takes shorter transfer time when the data size is relatively large. This indi-
cates that the ATI OpenCL implementation has specific advantages on transferring large chunk of
data from the GPU to the CPU. The BlackScholes benchmark has the largest size of data that need
to be read back to the host side, making the ATI system to be a faster device.

The kernel execution on the GPU is always considered as the most important part in studying
GPU performance. In these 10 pairs of applications, seven of them run faster on the Nvidia GPU,
while ATI performing better on Blackscholes, MatMul_2_smem, and MatMul_no_smem bench-
marks. The kernel computation time of EigenValue, FloydWarshall, and RadixSort on Radeon
HD 5870 is substantially longer than those on GTX 580. Table 5 lists the ALUBusy rate and pack-
ing ratios of these ten programs when executed on the HD 5870. Note that for applications which
invoke multiple kernels with different behaviors, we calculate the performance metric (e.g.,
ALUBusy, Packing ratio) by averaging that of all individual kernels weighted by the correspond-
ing execution time. As shown in the table, the three programs running faster on the ATI GPU
have a common point that the VLIW packing ratio is fairly high (highlighted in light gray). Recall
that Radeon HD 5870 includes 320 five-way VLIW processors working at 850MHz. Therefore,
provided that the packing ratio is α, the theoretical peak performance can be calculated as [5]: 320

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

12

× 5 × α × 850MHz × 2 = 2.72 α TFLOPS. Note that in this equation, the factor 2 is included be-
cause that the fused multiply-add (FMA) operation, which includes two floating point operations,
is usually used while deriving peak throughput of a GPU in convention. Similarly, the maximal
performance of the GTX 580 GPU is 512×1544MHz×2 = 1.581 TFLOPS. In comparison, the
packing ratio α should be no less than 58% (i.e., 1.581/2.72) to make the ATI GPU run faster.
Since the packing ratios of BlackScholes, Matmul_2_smem, and Matmul_no_smem are all greater
than this threshold, these programs run faster. On the other aspect, Eigenvalue, FloydWarshall,
and RadixSort have fairly low packing ratios; even worse, their ALUBusy rate are low during the
execution (highlighted in dark grey). These two factors result in the poor performance of these
three programs.

The third point that deserves detailed analysis is the double precision performance because of its
importance in solving HPC problems. We use the MonteCarloDP application from financial en-
gineering to compare the double precision computing capability of these two GPUs. This bench-
mark approximately achieves 70% packing ratio and 50% ALU utilization when running on the
ATI GPU, which are adequately high for outstanding performance. However, its kernel execution
time is remarkably longer compared to that on the Nvidia GPU. Unlike native benchmarks select-
ed from the SDK, the CUDA version of MonteCarloDP is directly transformed from the OpenCL
implementation. This means that the two programs are identical on both the algorithm design and
the implementation details. It is thereby reasonable to conclude that the performance gap is from
the hardware difference. Each SM on the GTX 580 is able to execute up to 16 double precision
FMA operations per clock [17] with a peak throughput of 16×16×1544MHz×2 = 790.5 GFLOPS.
In the Radeon HD 5870, however, the four ALUs within a VLIW processor cooperate to perform
a double precision FMA per clock. Therefore, the maximal processing power is no more than
320×1×850MHz×2 = 544 GFLOPS. Obviously, the GTX 580 is more preferable for double preci-
sion computations.

4.3 Parallelism

Execution parallelism stands as the heart of general purpose GPU computing. A typical GPGPU
application usually launches a large amount of warps/wavefronts to hide long latencies encoun-
tered during the execution. In this section, we will investigate that how execution parallelism im-
pacts the overall performance on these two GPUs.

We first observe the performance variations for changing the thread block size in Nvidia pro-
grams (workgroup size for ATI programs). When the block size is changed, the number of
blocks/work-groups resided on an SM/SIMD may vary accordingly. This in turn changes the exe-
cution parallelism. Clearly, the parallelism will be greatly reduced if there are too few
warps/wavefronts on an SM or SIMD and the performance is likely to be degraded in that situa

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

13

tion. Figure 5 shows the normalized execution time of selected benchmarks when the block size is
set to 64, 128, and 256 respectively. Note that only a fraction of 10 applications are tested. The
reason is that the block size is tightly fixed in the program implementation for some benchmarks.
As a result, changing the configuration will violate the correctness of these applications. There-
fore, we don’t run such programs in this experiment.

As shown in Figure 5 (a), on the Nvidia platform, the execution time tends to become shorter
when the block size is enlarged since the occupancy keeps rising in this circumstance except for
BinomialOption and Matmul_no_smem, where the performance gets slightly worse if the block
size is increased from 128 to 256. This is due to the fact that the number of global memory ac-
cesses is significantly increased when the block size becomes larger. In this case a larger block
size may result in an even worse performance. The other exception is that the performance of
MonteCarloDP is hardly changed regardless of the thread block size. This is because that each
thread of the kernel requires substantial registers, resulting in extremely few active warps on an
SM due to the resource constraint. Actually, the occupancy remains fairly low regardless of the
block size while executing MonteCarloDP. Figure 5(b) demonstrates that the performance of the-
se applications do not change much with varying work-group sizes on the ATI GPU. As de-
scribed previously, the ATI GPU adopts the VLIW architecture; therefore, other factors including
the ALU packing ratio are also playing significant roles in determining the execution perfor-
mance.

Next, our second study concentrates on the impact of working size. The working size denotes the
number of output elements calculated by each thread/work-item. By setting the working size to
different values, it is conveniently to adjust the packing ratio on the ATI GPU. While executing
on the Nvidia GPU, an appropriate working size can lead to efficient usage of the data fetched
from the global memory and reduce the unnecessary memory accesses. This may improve the
overall performance. In order to simplify the packing ratio tuning, we choose the
Matmul_no_smem benchmark to conduct the study. Figure 6 illustrates the change of perfor-
mance when the working size increases from 1 to 8 on both GPUs. As can be observed, the HD

Fig. 6. Performance variation with changing the

working size.

Fig. 7. Occupancy and VLIW packing variations with

changing the working size.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

14

5870 GPU greatly benefits from larger working sizes while the Nvidia GPU is not notably im-
pacted by the variation of working sizes.

To further understand this issue, we record the occupancy and ALU packing ratio corresponding
to each working size and show them in Figure 7. Both occupancies on two GPUs are reducing
with the increase of working sizes. This is due to the resources constraint on an SM/SIMD. As
each thread computes more elements, the number of registers which are allocated to store inter-
mediate variables is inevitably increased. Therefore, fewer threads are allowed to reside on the
same SM, resulting in a decreased occupancy. On the GTX 580 GPU, such decreased parallelism
counteracts the advantage of increased efficiencies of single threads, making the overall perfor-
mance slightly changed. However on the ATI GPU, since the calculation of each matrix element
is independent, the compiler is able to assign the extra computations to the unoccupied slots with-
in a VLIW processor, thus increasing the packing ratio. When the working size varies within a
reasonable range, the high packing ratio is the dominant factor to the performance. Consequently,
the HD 5870 GPU shows a performance boost when working size increases.

In conclusion, the extraction of the optimal parallelism on two GPUs follows different patterns.
On Nvidia GPU, we shall aim at increasing the SM occupancy in general, while paying attention
to other factors such as the resource usage and memory access behavior. On the ATI GPU, im-
proving the VLIW packing ratio is of great importance for higher performance.

4.4 Cache Hierarchy

In general purpose GPU programming, long latency events including global memory accesses can
be hidden by switching among the available warps or wavefronts on an SM or SIMD. However,
due to limited available warps and wavefronts, frequently global memory accesses tend to be the
bottleneck for many GPU applications, especially when the parallelisms are not sufficiently high.
In this situation, including a cache that speeds up the memory access may notably boost the per-
formance. Therefore, it is meaningful to investigate the architectural features of caches on these
two GPUs.

We first focus on the GTX 580 GPU with new designs of on-chip fast memory. Our study starts
from the performance comparison of selected benchmarks with the L1 cache enabled or disabled.
The results are shown in Figure 8. As can be observed, eight out of ten applications show little
impact on the inclusion of the L1 cache, except for FloydWarshall and Matrixmul_ no_smem.
This indicates that those eight applications are running with superb parallelism, thus long laten-
cies due to global memory operations can be hidden. On the contrary, the execution of
FloydWarshall suffers from memory access latencies, therefore, the L1 cache is able to capture
data locality and effectively improve the performance. The result of MatrixMul_no_smem is sur-
prising since the execution time is getting even longer when the L1 cache is enabled. We thereby
conduct a case study based on this benchmark to reveal the underlying reasons.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

15

In MatrixMul_no_smem, each thread is responsible for calculating four adjacent elements in a
column of the output matrix. This is illustrated in Figure 9 (labeled as vertical in Matrix C). When
a thread is calculating the first element, it will load a block of consecutive data from the corre-
sponding line in matrix A. According to [9], the L1 cache line size in the GTX 580 is 128 bytes.
Therefore, when an L1 cache miss is encountered, a 128B segment transaction will be always
issued. As the thread continues to calculate the second element, a global memory read request is
issued again to load the data from the following line in matrix A. Note that all threads within the
same SM shares the L1 cache. This implies that a previously cached block might be evicted in
order to accommodate the new fetched data requested by a more recent L1 miss. In this program,
the memory access pattern is quite scattered. Only a small fraction of the 128-byte cached data is
utilized and the resultant global memory transactions tend to waste the memory bandwidth. How-
ever, when the L1 cache is disabled, all global memory requests directly go through the L2 cache
where memory transactions are served in 32-byte granularity. Therefore, the global memory
bandwidth is more efficiently used, leading to better performance.

Based on this analysis, we modify the kernel and make each thread calculate four adjacent ele-
ments in the same line of matrix C (labeled as horizontal in Figure 9) for better reuse of L1 cache
data. To validate these two cases (i.e., vertical and horizontal), we carry out a group of experi-
ments by setting the input matrix to different sizes. The result is demonstrated in Figure 10. As
we expect, in the horizontal implementation, the computation throughput is much higher when
the L1 cache is enabled. In contrast, disabling the L1 cache can yield better performance for the
vertical program.

The caches involved in the Radeon HD 5870 GPU have different design specifications from that
on the Nvidia GPU. In specific, both the L1 and L2 caches on the HD 5870 are only able to store
images and same-indexed constants [4]. Many data structures used in GPGPU application kernels
such as float type arrays are uncacheable. In the OpenCL programming, this can be worked
around by defining the target structures as image objects and use the corresponding routines for
data accesses. In order to understand the effect of the caches on the HD 5870, we compare the
performance of two matrix multiplication programs, one of which is designed to use the caches.
In Figure 11, the curve labeled by “image object” corresponds to the version using caches. Note
that these two programs are built on identical algorithms and neither of them uses the local data
share; hence the performance gap comes directly from caches. Obviously, when setting the data
array type to image object, the performance is boosted tremendously.

In summary, there are several architectural differences between the caches on the GTX 580 and
Radeon HD 5870 GPUs. While programming cache-sensitive applications on Fermi GPUs, the
data access patterns and kernel workflows should be carefully designed, in order to effectively

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

16

and efficiently use the L1 cache. The caches on the HD 5870 are less flexible compared to that on
the GTX 580. To take the advantage of caches on the ATI GPU, cacheable data structures such as
image objects should be appropriately used in the programs.

4.5 Energy Efficiency

As power-consuming GPUs are widely used in supercomputers, high energy efficiency is becom-
ing an increasingly important design goal. As we described in section 1, both Nvidia and ATI pay
substantial attention to trimming the power budget of their products while improving the perfor-
mance. Therefore, evaluating energy efficiencies of the target GPUs is of great importance.

Figure 12 shows the power consumptions of selected benchmarks running on two GPUs. Obvi-
ously, the Fermi GPU consumes more power than the ATI counterpart. Recall the manufacture
parameters listed in Table 1. The GTX 580 integrates more transistors and its processor cores are
running on a higher frequency compared to the HD 5870. Therefore, the Nvidia GPU tends to
consume more power during program execution. The energy consumption of these benchmarks is
shown in Figure 13. We observe four of those selected applications consume less energy on the
ATI GPU. Because of the relative low power consumption, the HD 5870 consumes less energy to
solve a problem when its execution time is not significantly longer than that on the GTX 580.

The energy efficiency can be interpreted by the metric Energy-delay product (EDP). We demon-
strate the normalized EDP for these applications in Figure 14. As shown in the figure, the HD
5870 GPU wins on four of them: BlackScholes, Histogram, MatrixMul_2sm, and
MatrixMul_nsm. Note that three benchmarks from these four contain efficient OpenCL kernels
with fairly high VLIW packing ratios. This indicates that the VLIW packing is also critical to the
energy efficiency of the HD 5870 GPU.

In case where a compact packing is easy to explore, the Radeon HD 5870 is more preferable from
the standpoint of high energy efficiency. In general, we can summarize a principle that the ATI
GPU can deliver better energy efficiency when the program can perfectly fit the VLIW proces-
sors; otherwise the GTX 580 card is more preferable.

5. OPENCL EXECUTIONS COMPARISON

As stated in section 1, using pairs of CUDA and OpenCL applications for the comparison is ef-
fective to explore the respective advantages of these two GPUs. However, in order to eliminate
the interference caused by the software-wise diversity, it is necessary to choose a set of truly iden-
tical applications to make a consistent comparison, by which we aim to investigate that how ar-
chitectural difference between Nvidia and ATI GPUs will impact the performance of the same
program.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

17

We choose the OpenCL version of the NAS parallel benchmark [39] to conduct this study. The
NAS benchmark suite includes a set of applications that are developed for the performance evalu-
ation of supercomputer systems. It is composed of five kernels – EP, IS, CG, MG, FT, and three
pseudo-applications – SP, BT, and LU, all of which are basically derived from computational flu-
id dynamic problems. Therefore, its OpenCL implementation is an appropriate candidate to assess
modern general-purpose GPUs. For each of the eight applications, there are five problem sizes
(i.e., S, W, A, B, C) requiring different system resources for the execution. Our testbeds are able
to execute 12 application-input combinations; therefore, we will run these 12 programs on two
GPUs and make the comparison accordingly.

Following the approach from the previous section, we start our analysis by demonstrating the ex-
ecution time breakdown of the selected programs, which is shown in Figure 15. Note that each
program is denoted by its name and problem size. For instance, BT.S means running the applica-
tion BT with the problem size S. As can be seen from the figure, the kernel computation time
dominates the entire execution for all programs on both GPUs; in addition, the ATI Cypress GPU
takes longer time to execute these programs than the Nvidia Fermi GPU does. To investigate the
reason of this, we collect the ALU busy rates of two GPUs while running these programs and list
them in Table 6. Note that the Nvidia profiler does not provide the ALU busy counter for kernel
executions, so we derive the utilizations of the Nvidia GPU from the reported active cycles and
the corresponding kernel execution time, where active cycles means the clock counts that the
stream processors are actually utilized to execute instructions, while kernel execution time indi-
cates the total time of a kernel to complete including the necessary stall time caused by memory

operations and threads synchronization, etc. The ALU busy rate is defined as the ratio of these
two counters. As can be observed from the table, the ATI GPU has fairly low ALU busy rates

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

18

while executing these programs. Examples include BT.S, LU.S, and SP.S, whose executions re-
sult in less than 1% utilization. In contrast, the Nvidia GPU can be more efficiently used for exe-
cutions, thus completing the tasks within much shorter time.

 The low ALU busy rates on the ATI GPU deserve further explorations. We summarize two rea-
sons that lead to the low utilizations by carefully analyzing profiling results: (1) most kernels in
these applications require a large number of registers and thus decrease the occupancy due to the
resource constraint. For example, each work-item of the most time-consuming kernel from BT.S
is assigned 63 registers, meaning that few workgroups can reside on the same SIMD engine. Re-
call that ATI GPUs hide the memory access latency by switching among a large number of wave-
fronts while executing OpenCL applications; therefore, few active wavefronts imply insufficient
ability to hide the memory latency. (2) The interleaving between ALU computations and memory
accesses of kernels from these workloads is not fully optimized for the best performance.

Generally, long runs of ALU instructions between consecutive memory operations are effective to
increase the execution throughput and are able to partially compensate the low parallelism (i.e.,
small number of wavefronts). We use the ALU/Fetch ratio metric provided by the profiler to in-
vestigate this feature of those kernels. Figure 16 plots the ALU/Fetch ratios of important kernels
(i.e., those which are frequently invoked and take relatively longer time to execute) from BT.S,
LU.S, SP.S and FT.S. Note that FT.S is chosen for comparison because it has the highest ALU
busy rates among the twelve programs. As can be observed, the kernels in BT.S, LU.S and SP.S
have much lower ALU/Fetch ratios than those from FT.S. This indicates that the former three
programs tend to frequently issue global memory requests after executing only a few ALU in-
structions, potentially resulting in memory stalls. In case where the occupancy is fairly low, the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

19

situation is getting even worse because all wavefronts might be waiting for the operands and the
scheduler cannot resume any wavefront for execution to overlap the memory access.

Due to the relatively low parallelism of these programs, the caches are playing an important role
to the performance. Table 7 lists the derived L1 and L2 cache miss rates when BT.S, LU.S, SP.S
and FT.S are executed on the Nvidia GPU. As can be observed, the two-level cache hierarchy on
this GPU can serve a large portion of memory requests and consequently reduce the number of
transactions accessing the global memory. This will assist to alleviate the impact of the low paral-
lelism and small ALU/Fetch ratios, resulting in much faster executions for those programs. On
the contrary, caches on the ATI GPU are majorly used to cache images and constants [4], thus
they are unable to provide fast accesses to normal read/write requests issued from different
workitems. Under this limitation, the program executions incline to suffer from the long-latency
global memory accesses and the execution time is subsequently prolonged.

We finally compare the power consumptions of both GPUs while executing these workloads and
demonstrate them in Figure 17. We notice that the ATI GPU consumes less power than the
Nvidia GPU for all selected programs. The reason is similar to that has been described in section
4.5. Given that the ATI GPU has fewer integrated transistors and runs at a lower frequency, it
tends to consume less power than the Nvidia competitor.

6. RELATED WORK

In recent years, several researchers have authored outstanding studies on modern GPU architec-
ture. On the performance analysis aspect, Hong et al. [29] introduce an analytical model with
memory-level and thread-level parallelism awareness to investigate the GPU performance. In
[41], Wong et al. explore the internal architecture of a widely used Nvidia GPU using a set of
microbenchmarks. More recently, Zhang and Owens [42] use a similar micro-benchmark based
approach to quantitatively analyze the GPU performance. Studies on typical ATI GPUs are even
fewer. Taylor and Li [40] develop a microbenchmark suite for ATI GPUs. By running the
microbenchmarks on different series of ATI products, they discover the major performance bot-
tlenecks on those devices. In [43], Zhang et al. adopt a statistical approach to investigate charac-
teristics of the VLIW structure in ATI Cypress GPU.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

20

Literature on the GPU power/energy analysis can also be found in prior studies. Hong and Kim
[30] propose an integrated GPU power and performance analysis model which can be applied
without performance measurements. Zhang [43] and Chen [21] use similar strategies to statistical-
ly correlate the GPU power consumption and its execution behaviors. The established model is
able to identify important factors to the GPU power consumption, while providing accurate pre-
diction for the runtime power from observed execution events. Huang et al. [31] evaluate the per-
formance, energy consumption and energy efficiency of commercial GPUs running scientific
computing benchmarks. They demonstrate that the energy consumption of a hybrid CPU+GPU
environment is significantly less than that of traditional CPU implementations. In [37], Rofouei et
al. draw a similar conclusion that a GPU is more energy efficient compared to a CPU when the
performance improvement is above a certain bound. Ren et al. [36] consider even more compli-
cated scenarios in their study. The authors implement different versions of matrix multiplication
kernels, running them on differ ent platforms (i.e., CPU, CPU+GPU, CPU+GPUs) and comparing
the respective performance and energy consumptions. Their experiment results show that when
the CPU is given an appropriate share of workload, the best energy efficiency can be delivered.

Efforts are also made to evaluate comparable architectures in Prior works. Peng et al. [33][34]
analyze the memory hierarchy of early dual-core processors from Intel and AMD and demon-
strate their respective characteristics. In [28], Hackenberg et al. conduct a comprehensive investi-
gation on the cache structures on advanced quad-core multiprocessors. In recent years, compari-
son between general purpose GPUs is becoming a promising topic. Danalis et al. [22] introduce a
heterogeneous computing benchmark suite and investigate the Nvidia GT200 and G80 series
GPU, ATI Evergreen GPUs, and recent multi-core CPUs from Intel and AMD by running the
developed benchmarks. In [23], Du et al. compare the performance between an Nvidia Tesla
C2050 and an ATI HD 5870. However, their work emphasizes more on the comparison between
OpenCL and CUDA from the programming perspective. Recently, Ahmed and Haridy [18] con-
duct a similar study by using an FFT benchmark to compare the performance of an Nvidia GTX
480 and an ATI HD 5870. However, power and energy issues are not considered in their work.

On the other hand, benchmark clustering has been proved to be useful for computer architecture
study. Phansalkar et al. [35] demonstrate that the widely used SPEC CPU benchmark suite can be
classified into a number of clusters based on the program characteristics. In [26], Goswami et al.
collect a large amount of CUDA applications and show that they can also be grouped into a few
subsets according to their execution behaviors.

Our previous work [44] adopts the benchmark clustering approach. We believe that the applica-
tions in the SDKs provide the most typical GPU programming patterns that reflect the character-
istics of these two devices. Therefore, we can extract and compare the important architectural fea-
tures by running the selected applications.

In this paper, we further include a set of OpenCL implementations of NAS benchmarks to per-
form a further comparison.

7. CONCLUSION

In this paper, we use a systematic approach to compare two recent GPUs from Nvidia and ATI.
While sharing many similar design concepts, Nvidia and ATI GPUs differ in several aspects from
processor cores to the memory subsystem. Therefore, we conduct a comprehensive study to in-
vestigate their architectural characteristics by running a set of representative applications. Our
study shows that these two products have distinct advantages and favor different applications for
better performance and energy efficiency. The Nvidia Fermi GPU will be more preferable to
compute double-precision problems and execute programs that are difficult to form compact

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

21

VLIW bundles, while the ATI Radeon GPU can be more energy-efficient if the task can be solved
in similar time on two platforms.

REFERENCES

[1] AMD Corporation. AMD PowerPlay Technology. http://www.amd.com/us/products/technologies/ati-

powerplay/Pages/ati-power-play.aspx
[2] AMD Corporation. AMD Stream Profiler.

http://developer.amd.com/gpu/amdappprofiler/pages/default.aspx
[3] AMD Corporation. AMD Stream SDK.http://developer.amd.com/gpu/amdappsdk/pages/default.aspx
[4] AMD Corporation. ATI Stream Computing OpenCL Programming Guide.

http://developer.amd.com/gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf
[5] AMD Corporation. ATI Radeon HD 5870 Graphics.

http://www.amd.com/us/products/desktop/graphics/ati-radeonhd-5000/hd-5870/Pages/ati-radeon-hd-
5870-overview.aspx#2

[6] NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html
[7] Nvidia Corporation. Nvidia CUDA C programming guide 4.0.
[8] Nvidia Corporation. CUDA Toolkit 3.2. http://developer.nvidia.com/cuda-toolkit-32-downloads
[9] Nvidia Corporation. Fermi Optimization and advice.pdf
[10] Nvidia Corporation. Fermi whitepaper.pdf
[11] Nvidia Corporation. GeForce GTX 580. http://www.nvidia.com/object/product-geforce-gtx-580-

us.html
[12] Nvidia Corporation. Nvidia PowerMizer Technolo-

gy.http://www.nvidia.com/object/feature_powermizer.html
[13] Nvidia Corporation. What is CUDA? http://www.nvidia.com/object/what_is_cuda_new.html
[14] OpenCL – The open standard for parallel programming of heterogeneous systems.

http://www.khronos.org/opencl
[15] Top 500 Supercomputer sites. http://www.top500.org
[16] AMD Corparation. ATI Radeon HD5000 Series: In inside view. June 2010
[17] Nvidia Corporation. Nvidia’s Next Generation CUDA Compute Architecture: Fermi. September 2009
[18] M. F. Ahmed and O. Haridy, “A comparative benchmarking of the FFT on Fermi and Evergreen

GPUs”, in Poster session of IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2011

[19] J. D. Banfield and A. E. Raftery, “Model-based Gaussian and non-Gaussian clustering. Biometrics”,
Biometrics, vol. 49, September 1993, pp. 803-821

[20] G. Celeux and G. Govaert, “Comparison of the mixture and the classification maximum likelihood in
cluster analysis”, The Journal of Statistical Computation and Simulation. vol. 47, September 1991, pp.
127-146

[21] J. Chen, B. Li, Y. Zhang, L. Peng, and J.-K. Peir, “Tree structured analysis on GPU power study”, in
Proceedings of the 29th IEEE international Conference on Computer Design (ICCD), Amherst, MA,
Oct. 2011

[22] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and J. S.
Vetter, “The scalable heterogeneous computing (SHOC) benchmark suite”, in Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units (GPGPU), March 2010

[23] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From CUDA to OpenCL:
towards a performance-portable solution for multi-platform GPU programming”, Technical report.
De-partment of Computer Science, UTK, September 2010

[24] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-
wide expression patterns”, in Proceedings of the National Academy of Sciences of the USA, vol. 95,
Octo-ber 1998, pp. 14863-14868

[25] C. Fraley and A. E. Raftery, “Model-based clustering, discriminant analysis and density estimation”,
Journal of the American Statistical Association, vol. 97, June 2002, pp. 611–631.

[26] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring GPGPU workloads: characterization meth-
odology, analysis and microarchitecture evaluation implication”, in Proceedings of IEEE International
Symposium on Workload Characterization (IISWC), December 2010

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

22

[27] C. Gregg and K. Hazelwood, “Where is the data? Why you cannot debate CPU vs. GPU without the
answer”, in Proceedings of IEEE International Symposium on Performance Analysis of Systems and
Soft-ware (ISPASS), April 2011

[28] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing cache architectures and coherency protocols
on x86-64 multicore SMP systems”, in Proceedings of 42nd International Symposium on Microarchi-
tecture (MICRO), New York, December 2009

[29] S. Hong and H. Kim, “An analytical model for a GPU architecture with memory-level and thread-
level parallelism awareness,” in Proceedings of 36th Annual International Symposium on Computer
Architecture (ISCA), June 2009

[30] S. Hong and H. Kim, “An integrated gpu power and performance model,” in Proceedings of 37th An-
nual International Symposium on Computer Architecture (ISCA), June 2010.

[31] S. Huang, S. Xiao and W. Feng, “On the energy efficiency of graphics processing units for scientific
computing,” in Proceedings of 5th IEEE Workshop on High-Performance, Power-Aware Computing
(in conjunction with the 23rd International Parallel & Distributed Processing Symposium), June 2009

[32] G. J. McLachlan, and K. E. Basford, “Mixture Models: Inference and Applications to Clustering.
Dek-ker” , New York, 1998

[33] L. Peng, J.-K. Peir, T. K. Prakash, C. Staelin, Y-K. Chen, and D. Koppelman, “Memory hierarchy
per-formance measurement of commercial dual-core desktop processors”, in Journal of Systems Ar-
chitecture, vol. 54, August 2008, pp. 816-828

[34] L. Peng, J.-K. Peir, T. K. Prakash, Y-K. Chen, and D. Koppelman, “Memory performance and scala-
bility of Intel’s and AMD’s dualcore processors: a case study”, in Proceedings of 26th IEEE Interna-
tional Performance Computing and Communications Conference (IPCCC), April 2007.

[35] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, “Measuring program similarity: experiments
with SPEC CPU Benchmark Suites”, in Proceedings of IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), March 2005.

[36] D. Ren and R. Suda, “Investigation on the power efficiency of multicore and gpu processing element
in large scale SIMD computation with CUDA”, in Proceeding of 1st Green Computing Conference,
August 2010.

[37] M. Rofouei, T. Stathopulous, S. Ryffel, W. Kaiser, and M. Sarrafzadeh, “Energy-aware high perfor-
mance computing with graphics processing units”, in Workshop on Power-Aware Computing and
Systems (HotPower), December 2008

[38] G. Schwarz, “Estimating the dimension of a model”, The Annals of Statistics, vol. 6, March 1978, pp.
461–464

[39] S. Seo, G. Jo and J. Lee, “Performance Characterization of the NAS Parallel Benchmarks in
OpenCL”, in Proceedings of IEEE International Symposium on Workload Characterization, Novem-
ber 2011.

[40] R. Taylor and X. Li, “A micro-benchmark suite for AMD GPUs”, in Proceedings of 39th Internation-
al Conference on Parallel Processing Workshops, September 2010.

[41] H. Wong, M. Papadopoulou, M, Alvandi, and A. Moshovos, “Demistifying GPU microarchitecture
through microbenchmarking”, in Proceedings of International Symposium on Performance Analysis
of Systems and Software (ISPASS), March 2010

[42] Y. Zhang and J. Owens, “A quantitative performance analysis model for GPU architectures,” in Pro-
ceedings of 17th IEEE Symposium on High Performance Computer Architecture (HPCA), February
2011.

[43] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and Power Analysis of ATI GPU: A statistical
approach”, in Proceedings of the 6th IEEE International Conference on Networking, Architecture, and
Stor-age (NAS), Dalian, China, July 2011

[44] Y. Zhang, L. Peng, B. Li, J.-K. Peir and J. Chen, “Architecture Comparisons between NVidia and
ATI GPUs: Computation Parallelism and Data Communications,” In Proceedings of The 2011 IEEE
Interna-tional Symposium on Workload Characterization (IISWC), Austin, TX, Nov. 2011.

