
International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

DOI:10.5121/ijcsit.2014.6603 39

A DESIGN OF A FAST PARALLEL-PIPELINED

IMPLEMENTATION OF AES: ADVANCED
ENCRYPTION STANDARD

Ghada F.Elkabbany, Heba K.Aslan and Mohamed N.Rasslan

Informatics Department, Electronics Research Institute, Cairo, Egypt

ABSTRACT

The Advanced Encryption Standard (AES) algorithm is a symmetric block cipher which operates on a
sequence of blocks each consists of 128, 192 or 256 bits. Moreover, the cipher key for the AES algorithm is
a sequence of 128, 192 or 256 bits. AES algorithm has many sources of parallelism. In this paper, a design
of parallel AES on the multiprocessor platform is presented. While most of the previous designs either use
pipelined parallelization or take advantage of the Mix_Column parallelization, our design is based on
combining pipelining of rounds and parallelization of Mix_Column and Add_Round_Key transformations.
This model is divided into two levels: the first is pipelining different rounds, while the second is through
parallelization of both the Add_Round_Key and the Mix_Column transformations. Previous work proposed
for pipelining AES algorithm was based on using nine stages, while, we propose the use of eleven stages in
order to exploit the sources of parallelism in both initial and final round. This enhances the system
performance compared to previous designs. Using two-levels of parallelization benefits from the highly
independency of Add_Round_Key and Mix_Column/ Inv_Mix_Colum transformations. The analysis shows
that the parallel implementation of the AES achieves a better performance. The analysis shows that using
pipeline increases significantly the degree of improvement for both encryption and decryption by
approximately 95%. Moreover, parallelizing Add_Round_Key and Mix_Column/ Inv_Mix_Column
transformations increases the degree of improvement by approximately 98%. This leads to the conclusion
that the proposed design is scalable and is suitable for real-time applications.

KEYWORDS

 Advanced Encryption Standard AES, Parallel processing, Pipelining

1. INTRODUCTION

On June 2, 1997, the American National Institute for Standardization and Technology (NIST)
proposed a competition to propose a new encryption algorithm to replace the aging and
increasingly vulnerable Data Encryption Standard (DES). The new Advanced Encryption
Standard (AES) chosen from the competitors was Rijndael [1 and 2]. Since becoming the AES,
Rijndael has been the focus of countless analyses and has been implemented both in hardware
and software for many different platforms. To accelerate the AES computation time, parallel
computing is incorporated [3-19].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

40

In this paper, a design of parallel AES on the multiprocessor platform is presented. While most of
the previous designs either use pipelined parallelization or take advantage of the Mix_Column
parallelization, our design is based on combining pipelining of rounds and parallelization of
Mix_Column and Add_Round_Key transformations. This model is divided into two levels: the
first one is pipelining different rounds, while the second one is through parallelization of both the
Add_Round_Key and the Mix_Column transformations. Previous work proposed for pipelining
AES algorithm was based on using nine stages, while, we propose the use of eleven stages in
order to exploit the sources of parallelism in both initial and final round. The paper is organized
as follows: in Section 2, a description of AES algorithm and a survey of different designs for its
implementation in parallel are detailed. Then, the proposed design is illustrated in Section 3. In
Section 4, a performance evaluation of the proposed design is given. Finally, the paper concludes
in Section 5.

2. RELATED WORK

2.1. Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) algorithm is a symmetric block cipher which can
convert data to an unintelligible form (encryption) and convert the data back into its original form
(decryption). Both encryption and decryption consist of sequences of blocks each consists of 128-
bits. Moreover, the cipher key for the AES algorithm is a sequence of 128, 192 or 256 bits.
Internally, the AES algorithm’s operations are performed on a two-dimensional (2-D) array of
bytes called the State array. The State array consists of four rows of bytes, each containing "Nb"
bytes, where "Nb" is the block length divided by 32 (the word size).

Description of the AES Algorithm

The AES algorithm consists of three distinct phases as shown in Figure 1 [3]:

 In the first phase, an initial addition (XORing) is performed between the input data (plaintext)

and the given key (cipher key).
 Then, in the second phase, a number of standard rounds (Nr-1) are performed, which

represents the kernel of the algorithm and consumes most of the execution time. The number
of these standard rounds depends on the key size; nine for 128-bits, eleven for 192-bits, or
thirteen for 256-bits. Each standard round includes four fundamental algebraic function
transformations on arrays of bytes namely:

(1) Byte substitution using a substitution table (Sbox)
(2) Shifting rows of the State array by different offsets (ShiftRow)
(3) Mixing the data within each column of the State array (Mix_Column), and
(4) Adding a round key to the State array (Key-Addition).

 Finally, the third phase of the AES algorithm represents the final round of the algorithm,

which is similar to the standard round, except that it does not have Mix_Column operation.
For detailed information of the abovementioned transformations, the reader could refer to [1].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

41

Figure 1. The AES algorithm (Nr: 10, 12, or 14 depending on key length) [4]

2.2. The Parallel Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) can be deployed in fully hardware [3-11], hybrid software-
hardware [12-16], and fully software implementations [17-19]. This fact allows parallelization of
AES in different ways. In literature, parallelizing Rijndael has been visited many times for
hardware implementation. In [4], Yoo et al. presented a hardware-efficient design that increases
AES throughput by making use of a high-speed parallel pipelined architecture. Yoo et al. used an
efficient inter-round and intra-round pipeline design in order to achieve a high throughput in
encryption. In each round, there are three pipeline stages, the first stage follows the byte-sub
operation, the second one is located after the shift-row operation, and the last stage is before data
output. Moreover, this design has one pipeline stage in key generation blocks. On the other hand,
Hodjad el at. [5] introduce a design that has four or seven pipeline stages, one after a byte-sub
operation and three or six in a byte-sub operation. In [7], Ananth et al. present a fully pipelined
AES encryption/decryption system that is fully unrolled in order to implement a very deep level
of pipelining (i.e. all ten cipher rounds were unrolled.) For more designs for hardware
implementation of AES, the reader could refer to [8-11].

On the other hand, AES in software-hardware co-design is performed by using extended special
instructions and the other transforms are performed by general instructions [12-16]. S. Mahmoud

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

42

[12] presented a parallel implementation for AES algorithm by using the MPI (Message Passing
Interface) based cluster approach. MPI is one of the most established methods used in parallel
programming mainly. This is due to the fact that the relative simplicity of deploying the method
by writing a set of library functions or an API (Application Program Interface) callable from C,
C++ or Fortran Programs. In [13], So-In shows that the 16-bytes AES block can be individually
encrypted. As an essential technique of AES parallelism is to execute parallel AES by applying
each thread or each node into each AES block to establish a complete encrypted parallel block.
This technique excludes the key expansion step required before entering the parallel state. So-In
applies AES encryption in ECB mode for the sake of performance evaluation. Similarly, CTR
mode can be encrypted without the dependency of the previous blocks, but not other modes.
Other designs that use instruction set to increase the efficiency of 32-bit processors for AES
encryption algorithm could be find in [14-16].

In [17], Brisk et al. introduce an example of fully software implementation of AES. In their work,
they derived the asymptotic sequential runtime for the algorithm and describe two parallel
implementations. The first one is optimal in terms of time consuming and the other one is optimal
in terms of cost. In the cost-optimal implementation, they sacrifice acceleration in order to reduce
the number of processors required for encryption. Other examples of fully software
implementations are presented in [18 and 19].

In this paper, a design of parallel AES on the multiprocessor platform is presented. While most of
the previous designs either use pipelined parallelization or take advantage of the Mix_Column
parallelization, in our work, we design a parallel model for the AES algorithm. This model is
divided into two levels. The first one is pipelining different rounds, while the second one is
through parallelization both Add_Round_Key and Mix_Column transformations. In the next
section, the proposed parallel AES design is presented.

3. THE PROPOSED PARALLEL ADVANCED ENCRYPTION

STANDARD (AES) DESIGN

Advanced Encryption Standard (AES) algorithm has many sources of parallelization as
mentioned in Section 2. In this work, we design a parallel model for the AES algorithm, this
model is divided into two levels. The first one is pipelining different rounds, while the second one
is through parallelization both the Add_Round_Key and the Mix-Column. In this section, the
parallel design of the AES algorithm is explained, while in the next section its analysis is detailed.

3.1. The Parallel Encryption Model

Based on the AES description in Section 2.1, AES algorithm is divided into three distinct phases.
The first phase contains the initial round. The Second phase contains "Nr-1" standard rounds, in
which each round includes four transformations namely: Byte_Sub, Shift_Row, Mix_Column,
and Add_Round_Key. Finally, the third phase contains the final round. That is similar to any
standard round, except that it does not have Mix_Column transformation. Both Byte_Sub, and
Shift_Row transformations are executed sequentially because they operate on single bytes,
independently of their position in the State matrix. On the other hand, Mix_Column and
Add_Round_Key operations can be executed in parallel. While the Add_Round_Key operation is
used to perform an arithmetic XOR operation, the Mix_Column transformation, which represents

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

43

the kernel of the AES algorithm and consumes most of the execution time, is used to perform 64
XOR operations and 32 shift operations.

In this work, we design a parallel model for the AES algorithm, this model is divided into two
levels. The first one is pipelining different rounds (from round zero to round 10), while the
second one is through parallelization of both Add_Round_Key and Mix-Column transformations.

3.1.1 Pipelined Encryption Rounds

As shown in Figure 1, round number zero (initial round) through round number "Nr, Nr=10"
represent the individual rounds in the AES-128 encryption. The pipelining between these rounds
will achieve a high performance implementation. The data generated in each individual round is
used as the input to the next round. This is one of the easiest methods where high performance
can be achieved in a very minimal amount of time, thus, reducing the overall design
implementation cycle.

We assume that our system contains eleven stages {S0,S1,S2 ,….., S9, and, S10}, and the total
number of processors equals "M". Moreover, each processor has its local memory, and the
processor and its memory are called processing element. The "M" processing elements connected
to each other via multiport Shared Memory (SM). The content of a multi-port memory can be
accessed through different ports simultaneously. In our work, each stage can be performed by Mr
processing elements PEs, where Mr = M/11. Each group of "Mr" PEs has a direct independent
access to a certain memory module, and each PE has a dedicated path to each module in order to
achieve a better performance. On the other hand, different stages are connected through pipelined
stream. That is to say, the pipelined stream contains eleven functions each function is executed by
a single stage. There is a pipeline stage between each round and the parallelization inside each
round which will be described in Section 3.1.2. Our pipeline design is different from [4] by
adding two stages S0 and S10 to the pipeline stream. Each of these stages are used to execute the
Add_Round_Key transformation (this transformation consists of sixteen XOR operations), i.e. the
design is fully pipelined. This technique of pipelining will increase the concurrency and reduce
the total execution time.

3.1.2 Parallelization inside Individual Round

Each individual round consists of four transformations. As mentioned earlier, Mix_Column and
Add_Round_key transformations can be executed in parallel. Add_Round_key consists of 16
independent XOR operations, therefore, it could be executed in parallel. In addition,
Mix_Column transformation consists of 64 XOR operations and 32 shift operations.
Mix_Column represents the kernel of the AES algorithm and consumes most of the execution
time. This necessitates its implementation in parallel to reduce its execution time. In this section,
the mathematical derivation of Mix_Column is discussed in details. In our design, "E" represents
the matrix used for encryption, while "D" represents the matrix used for decryption. On the other
hand, we assume that "Bi" and "Ci" are the input and output of the Mix_Column operation in case
of encryption, and are inversed at the decryption process. In order to encrypt "L" number of data
blocks (1 ≤ i ≤ L), E, Bi, and Ci, for each block can be represented as follows:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

44

Bi =





















16,15,14,13,

12,11,10,9,

8,7,6,5,

4,3,2,1,

iiii

iiii

iiii

iiii

bbbb
bbbb
bbbb
bbbb

 and E =


















02010103
03020101
01030201
01010302

Ci = E * Bi (1)





















16,15,14,13,

12,11,10,9,

8,7,6,5,

4,3,2,1,

iiii

iiii

iiii

iiii

cccc
cccc
cccc
cccc

=


















02010103
03020101
01030201
01010302

 *





















16,15,14,13,

12,11,10,9,

8,7,6,5,

4,3,2,1,

iiii

iiii

iiii

iiii

bbbb
bbbb
bbbb
bbbb

 (2)

Mix_Column transformation is then represented by the following set of equations and is
illustrated in Figure 2:

ci,1 = (2 • bi,1)  (3 • bi,5)  bi,9  bi,1 (3)

ci,5 = bi,1  (2 • bi,5)  (3 • bi,9)  bi,13 (4)

ci,9 = bi,1  bi,5  (2 • bi,9)  (3 • bi,13) (5)

ci,13 = (3 • bi,1)  bi,5  bi,9  (2 • bi,13) (6)

This is repeated for the other three columns of the matrix. The above description shows that the
elements of Mix_Column matrix can be computed independently. The Mix_Column
transformation can be executed by more than one processor. The maximum number of processors
is thirty-two processors in each stage. Figure 3 represents the proposed parallel design for the
AES encryption operation, while Figure 4 describes the details of computing each matrix element
in parallel. As shown in this figure, two processors can cooperate to compute one or more
element ci,j.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

45

Figure 2: Dataflow graphs for AES algorithm (Encryption Mode): Mix-Column operation

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

46

Figure 3: Parallelization of AES encryption operation

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

47

Figure 4: Execute the Mix_Column operation

3.2. The Decryption Model

As the encryption operation, the parallelization of decryption can be done in two levels. In the
first level of parallelism (pipelining different rounds), the decryption operation is done in the
same way as the encryption operation (Section 3.1.1). In order to decrypt "L" number of data
blocks (1 ≤ i ≤ L), D, Ci, and Bi, for each block can be represented as follows:

Ci =





















16,15,14,13,

12,11,10,9,

8,7,6,5,

4,3,2,1,

iiii

iiii

iiii

iiii

cccc
cccc
cccc
cccc

 and D =


















EDB
BED
DBE

DBE

00900
00090
00009
09000

Bi = D * Ci (7)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

48





















16,15,14,13,

12,11,10,9,

8,7,6,5,

4,3,2,1,

iiii

iiii

iiii

iiii

bbbb
bbbb
bbbb
bbbb

=


















EDB
BED
DBE

DBE

00900
00090
00009
09000

*


















16,15,14,13,

12,11,10,9,

8,7,6,5,

4,3,2,1,

iiii

iiii

iiii

iiii

cccc
cccc
cccc
cccc

 (8)

Inv_Mix_Column is then represented by the following set of equations and illustrated in Figure 5:

bi,1 = (0E • ci,1)  (0B • ci,5)  (0D • ci,9) (09 •ci,13) (9)

bi,5 = (09 • ci,1)  (0E • ci,5)  (0B • ci,9) (0D •ci,13) (10)

bi,9 = (0D • ci,1)  (09 • ci,5)  (0E • ci,9) (0B •ci,13) (11)

bi,13= (0B • ci,1)  (0D • ci,5)  (09 • ci,9) (0E •ci,13) (12)

This is repeated for the other three columns of the matrix. As mentioned earlier, both
Inv_Mix_Column and Add_Round_key transforms can be executed in parallel. Inv_Mix_Column
transformation consists of 160 XOR operations and 192 shift operations. Similar to
Mix_Columnu matrix, the elements of Inv_Mix_Column matrix can be computed independently.
The Inv_Mix_Column transformation can be executed by at most 64 processors in each stage.
Figure 6 describes the details of computing each matrix element in parallel when using 16
processors. As shown in this figure, four processors can cooperate to compute one or more
element bi,j. In the next section, analysis of the proposed design is detailed.

4. ANALYSIS OF THE PROPOSED PARALLEL AES DESIGN

In this section, for both encryption and decryption operations, we discuss the mathematical
derivation of the proposed parallel AES design on a pipeline architecture of eleven stages. In our
design, "Mr" processing elements cooperate to execute each stage (as discussed in Section 3). For
simplicity, we assume a block and key sizes of 128 bits.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

49

Figure 5: Dataflow graphs for AES algorithm (decryption mode) Inv_Mix_Column operation

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

50

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

51

Figure 6: Execute the Inv_Mix_Column operation

4.1. Encryption Operation

The total sequential time "TES" needed to execute the encryption operation is given by:

TES = TAdd_Round_Key + {(Nr-1) * TNr-1} + TNr (13)

Where

TNr-1 = TByte_Sub + TShift_Row + TMix_Column + TAdd_Round_Key (14)

TNr = TByte_Sub + TShift_Row + TAdd_Round_Key (15)

TAdd_Round_Key = 16 * TXOR (16)

(TXOR: the time needed to execute one XOR operation)

TShift_Row = 48 * Tshift (17)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

52

(Tshift : the time needed to execute one shift operation)

TMix_Column= 16 * (2*Tshift + 4*TXOR) (18)

TXOR = 6 * Tshift (19)

From equations (13, 14, 15, 16, 17, 18, and 19), we deduce:

TES = 880*TXOR + 10 TByte_Sub (20)

TByte_Sub is very small and can be neglected. For "L" blocks, the total sequential time is given by:

 TLES = L* TES = 880*L*TXOR (21)

4.1.1. Pipelining the AES encryption rounds

Assuming that the total number of processing elements M =11* Mr, and "Mr" processing elements
are used to execute each stage, the pipeline time "Tpipeline" is given by:

Tpipeline = L*t1+ 9*t2 + t3 (22)

Tpipeline = L* 







 321 t*
L
1

t*
L
9

t (23)

Where

t1: is the time needed to execute the initial round
t2:is the time needed to execute any round Nj (1 ≤ j ≤9)
t3: is the time needed to execute the final round

t1 = TAdd_Round_Key = 16* TXOR (24)

t2 = TByte_Sub + TShift_Row + TMix_Column+ TAdd_Round_Key

 = TByte_Sub + 48* TShift + 16 * (2*Tshift + 4*TXOR) +16* TXOR (25)

t3 = TByte_Sub +TShift_Row + TAdd_Round_Key

 = TByte_Sub + 48* TShift + 16* TXOR (26)

TByte_Sub is very small and can be neglected. From Eqs. (22 to 26), the pipelined time "Tpipeline" is
given by:

Tpipeline=
    

  















 

XORshift

XORshiftXOR

T*64 + T*32*
9

 T *16 + T *48
10

T*16
*

L

LL (27)

4.1.2. Parallelization of Add_Round_Key and Mix_Column transformations

We assume that the total number of PEs that compute each round equals to "Mr", where 2≤ Mr
≤32. Therefore, the time needed to execute Add_Round_key transformation is given by:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

53

TAdd_Round_Key = 








rM
16 * TXOR (28)

While, the time needed for execute Mix_Column transformation is given by:

TMix_Column =   )32
ov1PEkPEk TT,TMax*

rM








 (29)

Where

PEkT = (Tshift + 3*TXOR) (30)

1PEkT = (Tshift+ TXOR)
(31)

ovT = the overhead Time

4.2. Decryption Operation

The total sequential time "TDS" needed to execute the decryption operation is given by:

TDS = TAdd_Round_Key + (Nr-1) * TNr-1 + TNr (32)

Where

TNr-1 = TInv_Byte_Sub + T Inv_Shift_Row + T Inv_Mix_Column + TAdd_Round_Key (33)

TNr = TInv_Byte_Sub + T Inv_Shift_Row+ TAdd_Round_Key (34)

TInv_Mix_Column = 16 * (12*Tshift + 10*TXOR) (35)

By using the same assumptions at Eqs. (16-19), and from Eqs. (32-35), we deduce:

TDS = 1984*TXOR + 10 TInv_Byte_Sub (36)

TInv_Byte_Sub is very small and can be neglected. For "L" blocks, the total sequential time is given
by:

TLDS= L*TDS =1984*L*TXOR (37)

4.2.1. Pipelining the AES decryption rounds

As discussed in the previous subsection (encryption case), the pipeline time is given by:

Tpipeline = L*t4+ 9*t5 + t6 (38)

Tpipeline = L* 







 654 *
1

*
9

t
L

t
L

t (39)

Where

t4: is the time needed to execute the initial round
t5: is the time needed to execute any round Nj (1≤ j≤9)
t6: is the time needed to execute the final round
t4 = TAdd_Round_Key = 16*TXOR (40)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

54

t5 = TInv_Byte_Sub +TInv_Shift_Row + TInv_Mix_Column + TAdd_Round_Key

 = TInv_Byte_Sub + 48* TShift + (192*Tshift + 160*TXOR) +16 * TXOR (41)

t6 = TInv-Byte_Sub +TInv_Shift_Row + TAdd_Round_Key

 = TInv_Byte_Sub + 48* TShift + 16* TXOR (42)

From Eqs. (37-42) and with the assumption that TInv_Byte_Sub is very small and can be neglected,
the pipelined time "Tpipeline" is given by:

Tpipeline=
    

  





















XORshift

XORshiftXOR

T*T**
L

 T* + T* 48
L

T*
*L

160192
9

16
10

16
 (43)

4.2.2. Parallelization of Add_Round_Key and Inv_Mix_Column transformations

Assuming that the total number of PEs that compute each round equals "Mr", where 4≤ Mr ≤64,
therefore, the total time for Add_Round_Key transformation is given by:

TAdd_Round_Key =









rM
16 * TXOR (44)

While, the time needed to execute the Inv_Mix_Column transformation is given by:

TInv_Mix_Column=   ov3PEk2PEk1PEkPEk TT,T,T,TMax*
rM








 64 (45)

Where PEkT = (3*Tshift + 4*TXOR) (46)

1PEkT = (3*Tshift+ 2*TXOR) (47)

2PEkT = (3*Tshift + 3*TXOR) (48)

3PEkT = (3*Tshift+ TXOR) (49)

ovT = the overhead time

4.3. Discussion of Results

In literature, there are some metrics [20] used to evaluate the system performance such as:

 Execution time (parallel time) Tpar is referred to the total running time of the program.
 Speedup Sp, which relates the time taken to solve the problem on a single processor machine to

the time taken to solve the same problem using parallel implementation.
 Efficiency, Ep, is defined as the ratio Sp/M.
 Degree of improvement is the percentage of improvement in system performance with respect

to sequential execution and can be determined by (Ts-Tpar)/Ts.

Tables 1 and 3 illustrate the improvement of the proposed design with respect to the sequential
model for both encryption and decryption operations. On the other hand, Tables 2, and 4 show the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

55

effect of parallelization of both Add_Round_Key and Mix_Column/ Inv_Mix_Column
transformations for the cases of encryption and decryption respectively for different number of
blocks (L = 10, 25, and 40).

Table (1): Degree of improvement with respect to sequential time (TLES= L*880*TXOR)

(a) Pipelined encryption without parallelization of Add_Round_Key and Mix_Column

Number of blocks Sequential time Pipelining time Degree of improvement
L=10 8800*TXOR 1024*TXOR 88%
L=25 22000*TXOR 1262.5*TXOR 94.2%
L=40 35200*TXOR 1556*TXOR 95.5%

(b) Pipelined encryption with parallelization of Add_Round_Key and Mix_Column

Mr L=10 L=25 L=40
2 92% 96% 97%
4 95% 97% 98.5%
8 97.3% 98.8% 98.9%

Table (2): The effect of parallelization of Add_Round_Key and Mix_Column

(a) L=10

Mr Execution time Speedup Efficiency Degree of improvement
1 1022*TXOR 1 1 -
2 696*TXOR 1.47 0.73 32%
4 388*TXOR 2.63 0.65 62%
8 234*TXOR 4.34 0.53 77%

(b) L=25

Mr Execution time Speed up Efficiency Degree of improvement
1 1264*TXOR 1 1 -
2 815*TXOR 1.55 0.77 35%
4 447.5*TXOR 2.88 0.705 65%
8 264*TXOR 4.78 0.59 79%

(c) L=40

Mr Execution time Speed up Efficiency Degree of improvement
1 1556*TXOR 1 1 -
2 936*TXOR 1.66 0.89 39.8%
4 508*TXOR 3.06 0.76 67.2%
8 292*TXOR 5.3 0.66 81.2%

Table (3): Degree of improvement with respect to sequential time (TLDS= L*1984*TXOR)

(a) Pipelined decryption without parallelization of Add_Round_Key and Inv_Mix_Column

Number of blocks Sequential time Pipelining time Degree of improvement

L=10 19840*TXOR 1984*TXOR 90%
L=25 49600*TXOR 2224*TXOR 95.5%
L=40 79360*TXOR 2464*TXOR 96.8%

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

56

(b) Pipelined encryption with parallelization of Add_Round_Key and Mix_Column

Mr L=10 L=25 L=40
2 93.7% 97.2% 98%
4 95.9% 98.2% 98.8%
8 97.7% 98.9% 99%

Table (4): The effect of parallelization of Add_Round_Key and Inv_Mix_Column

(a) L=10

Mr Execution time Speedup Efficiency Degree of improvement
1 1984*TXOR 1 1 -
2 1248 TXOR 1.59 0.79 37.1%
4 804 TXOR 2.46 0.61 59.5%
8 444* TXOR 4.46 0.56 77.6%

16 262 TXOR 7.57 0.47 86.7%

(b) L=25

Mr Execution time Speedup Efficiency Degree of improvement
1 2224*TXOR 1 1 -
2 1368 TXOR 1.62 0.81 38.5%
4 864TXOR 2.57 0.64 61.2%
8 474 TXOR 4.71 0.59 78.7%

16 277 TXOR 8.02 0.50 87.5%

(c) L=40

Mr Execution time Speedup Efficiency Degree of improvement
1 2464*TXOR 1 1 -
2 1488 TXOR 1.66 0.81 39.6%
4 924 TXOR 2.67 0.67 62.5%
8 504 TXOR 4.88 0.61 79.5%

16 292 TXOR 8.43 0.51 88.1%

From the above tables, the following facts could be deduced:

- Tables 1(a) and 3(a) show that using pipeline increases significantly the system performance
for the cases of encryption and decryption. In addition, as the number of blocks increases, for
cases of encryption and decryption, the degree of improvement increases.

-
- As shown in Table 1(b) and 3(b), as the number of processors used to execute each stage (2 to

16) increases, the improvement degree increases irrespective of the block size. To obtain a
reasonable efficiency, we will be satisfied with an improvement degree equals to 98%. Which
can be satisfied when Mr =8 for the encryption case and Mr =16 for the decryption case.

- Tables 2 and 4 show the effect of parallelizing Add_Round_Key and Mix_Column/
Inv_Mix_Column transformations on the system performance inside each stage. The
comparison with the case of using only one processor is illustrated. As the number of
processors increases, the total execution time decreases. In addition, the speedup increases for
both encryption and decryption operations. Moreover, the improvement degree increases

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

57

irrespective of the block size. This is true for L =10, 25, and 40. This leads to the conclusion
that the proposed design is scalable and is suitable for real-time applications.

Previous work proposed for pipelining AES algorithm was based on using nine stages. In our
work, we propose the use of eleven stages in order to exploit the sources of parallelism in both
initial and final round. This enhances the system performance compared to previous designs. In
addition, we use two-levels of parallelism: the first level is pipelining different rounds (from
round zero to round 10), while the second one is through parallelization both the
Add_Round_Key and the Mix-Column transformations. Using two-levels of parallelization
benefits from the highly independency of Mix_Column/Inv_Mix_Colum transformation which
leads to a better performance.

5. CONCLUSIONS

The Advanced Encryption Standard (AES) algorithm is a symmetric block cipher which operates
on a sequence of blocks each consists of 128, 192 or 256 bits. Moreover, the cipher key for the
AES algorithm is a sequence of 128, 192 or 256 bits. AES algorithm has many sources of
parallelism. In this work we proposed an optimized version of AES algorithm. Both the
encryption and the decryption algorithms have been optimized. In the present paper, we detailed a
design for implementation of AES algorithm on a multiprocessor platform. While most of the
previous designs either use pipelined parallelization or take advantage of the Mix_Column
parallelization, our design is based on combining pipelining of rounds and parallelization of
Mix_Column and Add_Round_Key transformations. This model is divided into two levels: the
first one is pipelining different rounds, while the second one is through parallelization of both the
Add_Round_Key and the Mix_Column transformations. Previous work proposed for pipelining
AES algorithm was based on using nine stages, while, we propose the use of eleven stages in
order to exploit the sources of parallelism in both initial and final round. This enhances the
system performance compared to previous designs. Using two-levels of parallelization benefits
from the highly independency of Add_Round_Key and Mix_Column/ Inv_Mix_Colum
transformations. The analysis shows that using pipeline increases significantly the degree of
improvement for both encryption and decryption by approximately 95%. Moreover, parallelizing
Add_Round_Key and Mix_Column/ Inv_Mix_Column transformations increases the degree of
improvement by approximately 98%. To obtain a reasonable efficiency, we will be satisfied with
an improvement degree equals to 98%. This could be achieved using eight processors for each
stage in case of encryption and sixteen processors for the decryption case. Since, the increase of
number of processors will decrease the efficiency. The analysis shows that the improvement
degree increases irrespective of the block size. This is true for L =10, 25, and 40. This leads to the
conclusion that the proposed design is scalable and is suitable for real-time applications.

REFRENCES

[1] Joan Daemen and Vincent Rijmen, (1998) "AES Proposal: Rijndael"
[2] W.Stallings (2010), Cryptography and Network Security: Principles and Practice, Prentice Hall.
[3] Mostafa I. Soliman and Ghada Y. Abozaid, (2010) "FastCrypto: Parallel AES Pipelines Extension for

General-Purpose Processors", Neural, Parallel, and Scientific Computations, No. 18, pp. 47 – 58.
[4] S.-M. Yoo, D. Kotturi, D.W. Pan, and J. Blizzard, (2005) "An AES crypto chip using a high-speed

parallel pipelined architecture", Microprocessors and Microsystems, No.29, pp. 317–326.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

58

[5] A.Hodjat, and I. Verbauwhede (2004), "A 21.54 Gbits/s fully pipelined AES processor on FPGA", in
Proc. of 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM'04), pp. 308-309

[6] Bin Liu, and Bevan M. Baas (2013) "Parallel AES Encryption Engines for Many-Core Processor
Arrays", IEEE Transactions on Computers, Vol. 62, no. 3, pp. 536-547.

[7] C.Ananth and K. Ramu (2008) "Fully pipelined implementations of AES with speeds exceeding 20
Gbits/s with S-boxes implemented using logic only", Technical report Department of ECE, George
Mason University.

[8] Y.Mitsuyama, M. Kimura, T. Onoye, and I. Shirakawa, (2005) "Architecture of IEEE802.11i Cipher
Algorithms for Embedded Systems", IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, Vol. E88-A, no.4, pp.899-906.

[9] S.Arrag, A. Hamdoun, A. Tragha and S. Khamlich, (2012) "Design and Implementation A different
Architectures of Mix_Column in FPGA", International Journal of VLSI Design and Communication
Systems, Vol. 3, Issue 4, p.11.

[10]M.Anitha and S. Priya, (2014) "Design of Low Power Mixcolumn in Advanced Encryption Standard
Algorithm", International Journal of Scientific and Engineering Research (IJSER), Vol. 5, Issue 4, pp.
64-68.

[11] P.Noo-intara, S. Chantarawong, and S. Choomchuay, (2004) "Architectures for MixColumn
Transform for the AES", in Proc. of ICEP 2004, Phuket, Thailand, pp. 152-156.

[12] Sabbir Mahmud, (2004) "A Study on Parallel Implementation of Advanced Encryption Standard
(AES)", M.S. thesis, Computer Science, Independent University, Bangladesh, May, 2004.

[13] C.So-In, S. Poolsanguan, C. Poonriboon, K. Rujirakul, and C. Phudphut, (2013) "Performance
Evaluation of Parallel AES Implementations over CUDAGPU Framework", International Journal of
Digital Content Technology and its Applications (JDCTA), Vol.7, no.5, pp. 501-511.

[14] S.Tillich, and J. Großschädl, (2006) "Instruction Set Extensions for Efficient AES Implementation on
32-bit Processors, Cryptographic Hardware and Embedded Systems (CHES)", Lecture Notes in
Computer Science, Vol.4249, pp 270-284.

[15] A.Elbirt, (2007) "Fast and Efficient Implementation of AES Via Instruction Set Extensions", in Proc.
of the 21st International Conference on Advanced Information Networking and Applications
Workshops (AINAW'07), Niagara Falls, Ont. , 21-23 May, Vol.1, pp. 396-403.

[16] S.Gueron, (2012) "Intel® Advanced Encryption Standard (AES) Instructions Set. Intel", White Paper,
"https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set"

[17] Brisk, A. Kaplan, and M. Sarrafzadeh (2003), "Parallel Analysis of the Rijndael Block Cipher", in
Proc. of the IASTED International Conference of Parallel and Distributed Computing and Systems,
Marina del Rey, USA, 3-5 Nov.

[18] Jung Ho Yoo, (2011) "Fast Software Implementation of AES-CCM on Multiprocessors", Algorithms
and Architectures for Parallel Processing, Lecture Notes in Computer Science, Vol. 7017, pp. 300-
311.

[19] M.S. Arun, and V. Saminathan, (2014) "Parallel AES Encryption with Modified Mix-columns For
Many Core Processor Arrays", International Journal of Engineering Science and Innovative
Technology (IJESIT), Vol. 3, Issue 3, pp. 184-190.

[20] J.Hennessy and D. Patterson, (2003), Computer Architecture: a Quantitative Approach, Morgan
Kaufmann Publishers.

AUTHORS

Ghada F. ElKabbany is an Assistant Professor at Electronics Research Institute, Cairo-Egypt. She received
her B. Sc. degree, M. Sc. degree and Ph. D. degree in Electronics and Communications Engineering from
Faculty of Engineering, Cairo University, Egypt in 1990, 1994 and 2007 respectively. Her research
interests include: High Performance Computing (HPC), computer network security, robotics, and image
processing.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

59

Heba K. Aslan is a Professor at Electronics Research Institute, Cairo-Egypt. She received her B.Sc. degree,
M.Sc. degree and Ph.D. degree in Electronics and Communications Engineering from the Faculty of
Engineering, Cairo University, Egypt in 1990, 1994 and 1998 respectively. Aslan has supervised several
masters and Ph.D. students in the field of computer networks security. Her research interests include: Key
Distribution Protocols, Authentication Protocols, Logical Analysis of Protocols and Intrusion Detection
Systems.

Mohamed N. Rasslan is an Assistant Professor at Electronics Research Institute, Cairo, Egypt. He received
the B.Sc., M.Sc., degrees from Cairo University and Ain Shams University, Cairo, Egypt, in 1999 and 2006
respectively, and his Ph.D. from Concordia University, Canada 2010. His research interests include:
Cryptology, Digital Forensics, and Networks Security.

