
International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 5, December 2014

DOI:10.5121/ijcsit.2014.6605 73

REQUIREMENT ANALYSIS, ARCHITECTURAL DESIGN

AND FORMAL VERIFICATION OF A MULTI-AGENT
BASED UNIVERSITY INFORMATION MANAGEMENT

SYSTEM

Nadeem AKHTAR1 Aisha Shafique GHORI1 Nadeem SALAMAT2

1Department of Computer Science and Information Technology,

 The Islamia University of Bahawalpur, Pakistan
2Karakoram International University

15100-Gilgit-Biltastan, Pakistan

ABSTRACT

This paper presents an approach based on the analysis, design, and formal verification of a multi-agent
based university Information Management System (IMS). University IMS accesses information, creates
reports and facilitates teachers as well as students. An orchestrator agent manages the coordination
between all agents. It also manages the database connectivity for the whole system. The proposed IMS is
based on BDI agent architecture, which models the system based on belief, desire, and intentions. The
correctness properties of safety and liveness are specified by First-order predicate logic.

KEYWORDS

Information Management System (IMS), Multi-agent system, Architectural design, Formal verification, BDI
(Belief, Desire, Intention) agent model, First-order predicate logic.

1. INTRODUCTION

An approach has been proposed for the analysis, architectural design and formal verification of an
Information Management System (IMS). A multi-agent based architecture is suitable for such a
system. In a multi-agent system applications are designed in terms of autonomous software
entities called agents that flexibly achieve their objectives by interacting with one another in
terms of high level protocols and languages [Zambonelli, Jennings and Wooldridge, 2003]. An
Agent is a self-contained program capable of controlling its own decision-making, based on its
perception of environment, in pursuit of one or more objectives [Jennings and Wooldridge, 1996].
A method for the architecture and formal verification of university IMS has been proposed. The
Belief, Desire, Intention (BDI) agent model [Bratman, 1987] has been adopted. Each agent is
autonomous and can make decisions based on its knowledge-base. An agent based on BDI theory
can adapt to changing situations by focusing on the most appropriate goal at the time [Rens,
Ferrein and Van, 2009].

Our objectives are to propose an architectural design of the system; formally specify and verify
the correctness properties of the system; and then based on this formal foundation implement the
system using an agent-based programming framework. Major agent programming platforms are;
JACK [Howden et al., 2001] [Busetta et al., 1999], AgentSpeak (L) [Rao, 1996] and 3APL

International Journal of Computer Science & Information Technology (IJCSIT) Vol. 6, No. 5, December 2014

 74

[Hindriks et al., 1999]. Section-2 presents problem statement; section-3 presents objectives;
section-4 state of the art; section-5 multi-agent IMS; and section-6 conclusion and future work.

2. PROBLEM STATEMENT

The requirement analysis, architectural design, formal verification of a multi-agent based
university IMS. There is a need of a correct information management, processing, and report
generation system for the students and faculty of Department of Computer Science & IT, The
Islamia University of Bahawalpur. Multi-agent based system provides a distributed problem
solving system that has a sophisticated pattern of interactions; and using a formal base ensures
system correctness.

3. OBJECTIVE

The first and foremost objective is the formal verification of correctness properties of safety and
liveness. This formal verification provides a mathematically correct foundation for the
architectural design and implementation.

The second objective is to provide the users with a state of the art platform-independent agent
based IMS. An agent based system which works on computers as well as on mobile devices;
provides students with information regarding their class schedules, examination date sheets,
results, fee submission dates, university bus timings and routes.

The third objective is the automated creation of statistical graphical reports. These reports would
get a measurement of the quality of education, and therefore would greatly help to uplift the
quality of education.

The fourth objective is to propose a system that is exactly an image of human mental attitude. For
this purpose BDI agent architecture is used. In BDI the belief, desire, and intention are the
elements showing mental states.

4. STATE OF THE ART

Agent technology is one of the most promising technologies for distributed and complex systems.
Software agents are entities that can make autonomous decision. The analysis, design and
development of intelligent software agents touch both the artificial intelligence and software
engineering areas [Geylani, 2013]. Agent characteristics include reactivity, autonomy, co-
operation, and reasoning ability. A multi-agent system is a loosely coupled network of problem
solvers that work together to solve problems that are beyond the individual capabilities or
knowledge of each problem solver. [Demazeau, 2006] consider four essential building blocks of
agent system: agent (the processing entities), interactions (the elements for structuring internal
interaction between entities), organization (the elements for structuring sets of entities within the
multi-agent system), and finally the environment that is defined as the domain-dependent
elements for structuring external interactions between entities. Agents coordinate and cooperate
with each other to accomplish tasks.

4.1. BDI agent architecture

The BDI agent architecture is based on the philosophical work of [Bratman, 1987], the theoretical
and practical work of [Rao and Georgeff, 1995] [Jennings and Wooldridge, 1994] [Burkhard,
1996]. BDI agent architecture describes agent behaviors [Georgeff and Lanasky, 1987] based on

International Journal of Computer Science & Information Technology (IJCSIT) Vol. 6, No. 5, December 2014

 75

the theory of action in humans proposed by [Bratman, 1987]. BDI is adopted to model the system
and each agent works like mental attitude of human and agents can be reactive or pro-active
depending on their situation [Evertsz, 2008]. Goals are first decided and then work is done on
requirements to extract those goals. Belief represents the state of the real world, such as variables,
database or different symbols; intentions are committed plans and procedures. Computationally,
intentions may be a set of executing threads in a process that achieve the goals (desires) of the
system.

4.2. Correctness – Safety and Liveness

Correctness properties of liveness and safety complement each other. Safety property ensures
“something bad that does never happen” i.e. the program will never produce wrong result.
Liveness means “a good thing happens” during execution.

5. MULTI-AGENT IMS: A CASE STUDY

The IMS has multiple agents that interact with other agents within the system to accomplish their
tasks and achieve goals. This model allows the system extensibility. The system needs extension
in a case when the system has to create a new agent in the system. Extension means to enhance
some new features by making local changes in the code to maintain backward compatibility.
Updating beliefs and deliberation requires little changes in the model.

5.1. Architecture

The proposed IMS is distributed, composed of agents. Agents are the basic building blocks of the
system that receives process, manipulate and store information. The functional agents corporate
and coordinates with each other to accomplish system functionality.

Figure 1: University IMS based on Multi-Agent architecture.

They are autonomous and can collect information from the environment and can make decisions.
Each agent is named according to its functionality. Figure-1 shows the architecture of the system,
consisting of functional agents.

All agents are connected to JADE layer which provides services for interaction and coordination
between agents within the system and the user. Table-1 presents a short description of each agent.

International Journal of Computer Science & Information Technology (IJCSIT) Vol. 6, No. 5, December 2014

 76

Table 1: Agents present in University IMS Architecture

Agent Description

Graphical User Interface Agent
(GUIA)

It provides the graphical interface for direct interaction of user with
the system. It is a common way of retrieving, storing and sharing
information in the system. Users get access to the database to store
latest knowledge for the visitors.

Admission Schedule Agent (ASA)
It maintains information about admissions in all the academic
programs of the department of computer science. Admission
criteria, opening and closing dates, new offered programs etc.

Date Sheet Agent (DSA)
It manages date, time, venue, program, semester, department
details of each examination paper.

Fee Structure Agent (FSA)

It manages fee structure of each semester. There are multiple study
programs with each program consisting of multiple semesters, and
with each semester having different fee structure. It defines new
fee structure for the new offered courses.

Teacher Agent (TA)
Teacher creates an account by filling a simple registration form.
This registration information would be managed by TA agent.

Student Agent (SA)
Student creates an account by filling a simple registration form.
Information about students, their names, id, discipline all are
managed by this agent.

Report Agent (RPA)

It creates statistical reports comprising of the number of students
graduating each year, number of student admissions, student
attendances, teacher to student ratio, computer laboratory to
student ratio, reports consisting of graphs.

Result Agent (RA) The results of each class would be calculated and managed by the
Result agent.

Class Schedule Agent (CSA)
Class Schedule of each program is managed such that there is no
conflict in timings of different courses of the same class.

Orchestrator Agent (OA)

It communicates directly with the database. All the tasks of
information management (i.e. adding new information, updating
data, calculating results, and generating reports) are handled by
OA.

Table 2: University IMS in terms of belief, desire and intention

Agent Description

Belief Belief is an environmental knowledge. To get goals (desires) the system needs the
information of: Teachers (name, designation, contact no, email), Discipline (name,

International Journal of Computer Science & Information Technology (IJCSIT) Vol. 6, No. 5, December 2014

 77

duration, semester), Programs (evening, morning), Students (name, discipline,
program, roll no)

Desire

Desires are the way that we pass through belief to action. Our goal here is to provide
correct and updated information to the users according to their needs; to keep all
agents up-to-date; and generate reports when needed by acquiring information from
multiple different agents.
For the generation of reports (i.e. system intention), these desires are necessary:
Calculate results of students, Create class schedule for each discipline, Create
admission schedule for each program, Update fee structures of each discipline and
each program.

Intention

Achievement of goals directly affects our intentions. Every agent should keep data
updated and consistent. An agent place desires to achieve intentions. The intentions
are to generate reports from calculated results, managed schedules (e.g. admission
schedule, class schedule), and fee structures of each discipline.

The planning of all desires needs environmental knowledge that includes basic information of
students, teachers, disciplines, and programs. Each agent has to interact with orchestrator agent to
get access to the database for information access. For this purpose agent send a request to
orchestrator agent which sends query to the database.

Communication of the Report agent with
Orchestrator agent

Communication of Admission schedule agent
with the Orchestrator

Figure 2: Representing Belief, Desire and Intention in the system

5.2. Verification (First-order predicate logic)

A student has to get registered in order to access the system. Each student will be registered and
allotted a unique id. Duplicate registrations are avoided.

∃ Student: (Request_GetRegister)

⇒ (¬(Student.Has_id) ⇒ (New.Student_id := SA.GenerateNew_id))

International Journal of Computer Science & Information Technology (IJCSIT) Vol. 6, No. 5, December 2014

 78

Here SA is Student Agent that manages the student information. Teachers would be registered in
the same way as students.

After getting registered, a student will request to get admission in a program. Each program has
its unique program id. After getting request from the user, the system will check if student is
already admitted or not. After this check the student gets admission.

∃ Student: (Student.AdmissionRequest) ⇒(¬(Student.Has_id) ∧ (Program.Has_id == !))

⇒ (¬(Student.Has_id) ∧ (Student.program_id := ASA.Program_id))

Here ASA is the Admission Schedule Agent that manages admission for each class in a program.
Class Schedule Agent in our system will manage the classes of each program. Classes would be
managed in a way that the timings of two subjects of the same class would not conflict.

∀classes: (Add_Newclass)
⇒ (CSA.class_id := CSA.lastclass_id + 1) ∧ (¬(CSA.Subject1_timing == CSA.Subject2_Timing)
∀classes: (Assign_Teacher) ⇒ (¬(CSA.Subject1_Teacher == CSA.Subject2_Teacher)

Fee structure agent would manage the fee structure of each program. If during admission any new
program would be offered the fee structure agent will sense and update the fee structure. Here e is
the fee structure agent.

∃New_program: (Offer_New_Program)
⇒ (Program.new_id := FSA.new_id) ∧ ¬(Program.AlreadyAllotted_id) ∧ (FSA.update_fee)

⇒ (FSA.NewProgram_fee:= Program.NewProgram_fee)

Datesheet of each class would be managed by the datesheet agent. Midterm exams would be
allowed at least after minimum numbers of lectures that are sixteen lecture and final term after
minimum thirty two lectures.

∃class: (Manage_Datesheet)
⇒(¬(CSA.lectures_deliverd<minimum_lectures) ∧ (CSA.lectures_deliverd>maximum_lectures))
 ∧ (set_subject_timing) ⇒ (CSA.subject_timing := DSA.subject_timing)

∧¬(CSA.AlreadyAssigned_timing) ∧ (¬(CSA.Assigned_date
== DSA.AlreadyAssigned_date))

Student result is calculated by the result agent. System will restrict that student can neither get
more then maximum marks nor less then minimum marks and result can never be negative.

∃student: (Calculate_Result)

⇒ (¬(RA.calculated_result<minimum_marks) ∧ (RA.calculated_result>maximum_marks)
∧ (RA.calculated_result == negative))

Reports are generated by the system. This report can be of student results, teachers to student
ratio, number of students admitted in a year, number of teachers in a program.

∀users: (Generate_Report) ⇒ (RPA.GenerateReport)

5.3. Safety properties

Some properties of IMS are given below:

Student registration property

If any student got registered one time then he cannot be registered again
∃ student ((student_id == registerd_id) ⇒ display (“Student Already Registerd”))

International Journal of Computer Science & Information Technology (IJCSIT) Vol. 6, No. 5, December 2014

 79

student_id is the students’ Citizen National Identity Card no and registerd_id is the list of all ids
that are already registered

Scalability property
The scalability property of accessing data and generating reports. The system is restricted to 1000
users that can access the system at one time. If more students send request they will receive a
message “busy”.
∀ w ((userno>1000) ⇒ display(“busy”))
Here w denoted the user and userno denoted the number of user requests for system access. If
userno will be greater than 1000 then system will display a message of busy.

Access property
Consider the access property of the system.
∀ x ((¬ (dpt_id == get_csid) ⇒ display (“unauthorized access”))
This property said candidate who try to get access to the system and they do not belong to
Computer Science & IT department. The dpt_id will be provided by university to each student
according to their departments. get_csid is the list of cs department ids’. System will chek the
user against that id.

Admission property
Consider the property of duplicate admission request.
∀ S (request_admission (p_id) ∧ (st_id) == registered (p_id) ∧ (st_id)
⇒ display (“duplicate admission request”))

When a student request to get admission in the dpt he mentions p_id and st_id the system checks
the student against that id. If these ids’ already exist in the system it means student is already
admitted in any program so the request of the student would not be proceeded. Here p_id is the
program id and st_id is the student CNIC no.

Fee structure property
Consider the property of fee structure of newly added programs in admission schedule agent. It’s
a responsibility of Fee structure to keep sensing the changes in admission schedule agent and
keep up to date fee structures.
∀ P ((add_newprogram(p) ⇒ update_Fee (f))
This property said that If any new program will be added in admission schedule, fee structure
must be updated.

Time conflict property
Consider the property of timing of different classes. Class schedule agent performs the time
management of different classes.
∀ C (T(c1) == T(c2) ⇒ display (“same timing”))
T is the timing and c1, c2 are classes, timing of two classes of a program must be different.

Term property
Consider the property of mid term and final term exams
∀ C (¬(Lec_deliverd(L) < min) ∧ (¬Lec_deliverd(L) > max) ∧ (¬(Lec_deliverd(L) ==

International Journal of Computer Science & Information Technology (IJCSIT) Vol. 6, No. 5, December 2014

 80

Negative))
min = 16 max = 32
Datesheet of mid term and final term would be after minimum 16 lectures and final term would
be after 32 lectures after first day of starting class.

Date sheet conflict property
Consider the property of datesheet timing.
∀C (Ex_date (p1)(c1)(sub1) == Ex_date (p1)(c1)(sub2) ⇒ display (“same date conflict”))
p1 = program c1 = class sub1, sub2 = subject.
This property said while making the date sheets it must be concerned that two papers of the same
class cannot be conducted on the same day.

No Loss property
Consider the property of no loss of data. It ensures there is no data loss during uploading,
updating, and report generation.
∀x (update(x) ∧ ∀y(¬(y=!)))
This property said all required fields are updated and no field is empty in database. Here x
denoted the fields that are to be updated.

Calculation property
Consider Safety Property of result agent, which calculate the results that will be accurate. Result
marks of student cannot exceed from maximum marks and cannot decrease from minimum marks
and cannot be negative ever.
∀x (¬(calculated_result(r)>max) ∧ (¬(calculated_result(r)<min)) ∧
(¬(calculted_result(r)==negative)))
Here max denoted the maximum marks and min denoted minimum marks.

Report not null property
Report Agent is the most sensitive agentive .To ensures correctness of the report agent must keep
sensing the changing’s in the environment and other agents. When information is going to be
retrieved in the form of report it will never give null.
∀x (¬(getReport(x)==!))

Scalability property
Consider scalability property of accessing data or generating reports. The system is restricted to
1000 users that can access the system at a time. If more students send request they will receive a
message “busy”.
∀w ((userno> 1000) ⇒ display(“busy”))
Here w denotes the users and userno denotes the number of user who is requesting for accessing
the system. If userno will be greater than 1000 then system will display a message of busy.

6. CONCLUSION

This paper presents a BDI [Bratman, 1987] [Georgeff et al., 1994] based multi-agent IMS to
access, update and share information with the objectives to formally specify the safety and
liveness properties by using First-Order Predicate Logic. The system is composed of BDI agents
that are autonomous. The proposed BDI architecture is composed of multiple agents and the task

International Journal of Computer Science & Information Technology (IJCSIT) Vol. 6, No. 5, December 2014

 81

of each agent is defined. The safety properties are identified and specified by analyzing the
system requirements.

In future there would be two axis of work. One is to compile and model our system properties in
VDM [Jones, 1990]. Second is to propose a global as well as detailed architectural design of the
system.

REFERENCES

1. Bratman, Michael E. (1987). Intentions, Plans, and Practical Reason. Harvard University Press,

Cambridge.
2. Burkhard, H. D. (1996), Abstract Goals in Multi-Agent Systems. In Twelfth European Conference on

Artificial Intelligence (ECAI96), ed. W. Wahlster, New York: Wiley, pp. 524–528.
3. Busetta, P. Ronnquist, R. Hodgson, A. and Lucas. A.(1999) JACK Intelligent Agents: Components

for intelligent agents in Java. AgentLinkNewsLetter. AOS Pty. Ltd.
4. Demazeau, Y. (2006). Multi-Agent Systems Methodology. In Second Franco-Mexican School on

Cooperative and Distributed Systems (LAFMI 2003),
5. Evertsz, R., Ritter, F. F., Busseta, P. and Pedrotti, M. (2008). Realistic variation in a BDI based

cognitive architecture. In proceedings of SimTecT.
6. Georgeff, M. P. and Lanasky, A. L. (1987). Reactive reasoning and planning. In Proceedings of the

Sixth National Conference on Artificial Intelligence (AAAI-87), Seattle, WA, pp. 677-682.
7. Geylani, K. (2013) Model-driven development of multi-agent systems: a survey and evaluation. The

Knowledge Engineering Review. Cambridge University Press. pp.1.
8. Hindriks, K. V., De Boer, F. S., der Hoek, W. V., and Meyer J-J., Ch. (1999), Agent Programming in

3APL, Autonomous Agents and Multi-Agent Systems, (2)4 pp. 357-401.
9. Howden N, Ronnquist R, Hodgson A, Lucas A (2001) JACK intelligent agents — summary of an

agent infrastructure. In Proceedings of the 5th International Conference on Autonomous Agents,
Montreal.

10. Jennings, N. and Wooldridge, M. (1996) Software agents, IEEE Review, pp. 17-20.
11. Jennings, N. R., and Wooldridge, M. (1994). Proceedings of the ECAI-94 Workshop on Agent

Theories, Architectures, and Languages. Lecture Notes in Artificial Intelligence 890. New York:
Springer-Verlag,

12. Jones, C. B. (1990). Systematic Software Development Using VDM, 2nd ed. Prentice-Hall
International, Englewood Cliffs, NJ.

13. Rao, A. S., and Georgeff, M. P. (1995). BDI Agents: From Theory to Practice. Lesser, V. (Ed), In
Proceedings of the First International Conference on Multi-Agent Systems (ICMAS- 95). Mass.: MIT
Press, Cambridge, pp. 312–319.

14. Rao, A. S. (1996). AgentSpeak (L): BDI Agents Speak Out in a Logical Computable Language. In W.
V. de Velde and J. W. Perram, editors, MAAMAW, volume 1038 of Lecture Notes in Computer
Science, pages 42–55. Springer

15. Rens, G., Ferrein, A and Van der Poel, E. (1-3 June, 2009). BDI agent architecture for a POMDP
planner. 9th International Symposium on Logical Formalization of Commonsense Reasoning:
Commonsense, Toronto, Canada. pp. 6.

16. Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2003). Developing Multiagent Systems: The
Gaia Methodology. ACM Transactions on Software Engineering and Methodology, 12(3), pp. 317-
370.

