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ABSTRACT 
 
There are subsets of genes that have similar behavior under subsets of conditions, so we say that they 
coexpress, but behave independently under other subsets of conditions. Discovering such coexpressions can 
be helpful to uncover genomic knowledge such as gene networks or gene interactions. That is why, it is of 
utmost importance to make a simultaneous clustering of genes and conditions to identify clusters of genes 
that are coexpressed under clusters of conditions. This type of clustering is called biclustering.  
 
Biclustering is an NP-hard problem. Consequently, heuristic algorithms are typically used to approximate 
this problem by finding suboptimal solutions. In this paper, we make a new survey on clustering and 
biclustering of gene expression data, also called microarray data. 
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1. INTRODUCTION 
 
A DNA Microarray is a glass slide covered with a chemical product and DNA samples containing 
thousands of genes. By placing this glass slide under a scanner, we obtain an image in which 
coloured dots represent the expression level of genes under experimental conditions [1]. As 
shown in Figure 1, the obtained coloured image can be coded by a matrix M, called gene 
expression data, or microarray data, where the ith row represents the ith gene, the jth column 
represents the jth  condition and the cell mij represents the expression level of the ith gene under the 
jth condition. Simultaneous clustering of rows (genes) and columns (conditions) of this matrix 
enables to identify subsets of genes that have similar behaviour under subsets of conditions, so we 
say that they co express, but behave independently under other subsets of conditions. This type of 
clustering is called biclustering. Biclustering of microarray data can be helpful to discover co 
expression of genes and, hence, uncover genomic knowledge such as gene networks or gene 
interactions. Biclustering is an NP-hard problem [3]. Consequently, heuristic algorithms are 
typically used to approximate this problem by finding suboptimal solutions. In this paper, we 
make a new survey on bi clustering of microarray data. 
 
In this paper, we make a brief survey on clustering algorithms of microarray data. There are three 
main types of clustering algorithms: Geometric, model-based and formal concepts based. So, the 
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rest of the chapter is organized as follows: In the first part, we briefly review geometric clustering 
algorithms. Then, we present model-based clustering algorithms. 
 
After that, we present formal concepts based clustering algorithms. Finally, we review some 
clustering web tools and microarrays datasets commonly used. In the second part, we make a 
survey on biclustering of gene expression data. First, we introduce some definitions related to 
biclustering of microarray data. Then, we present some evaluation functions and biclustering 
algorithms. Next, we show how to validate biclusters via biclustering tools on microarrays 
datasets. Finally, we present our conclusion. 
 

 

Figure 1. Coding of the generated colored image to a microarray data 
 

2.  CLUSTERING OF MICROARRAY DATA 
 
Let introduce some definitions related to a biclustering of microarray data [3]. 
 
2.1 Geometric Clustering Approaches  
 
In geometric clustering approaches, we distinguish hierarchical and partitioning clustering 
approaches. 
 
2.1.1 Hierarchical Clustering approaches 
 
The aim of hierarchical approaches is to create a hierarchical decomposition of a set of objects E. 
On E,   we have a dissimilarity measure such that the closest objects are grouped in the clusters 
with the smallest index. There exist two principal approaches: divisive and agglomerative that we 
describe hereafter; for details see for instance.  
 
• Divisive approach: this approach is also called top-down approach. We start with just one 
cluster containing all objects. In each successive iteration, we split up clusters into two or more 
clusters until generally each object is in one cluster. Note that other stop conditions can be used 
and the division into clusters are defined by the verification or not of a property.  
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• Agglomerative approach: opposed to the divisive approach, we start by assuming n clusters, 
each object forms a singleton cluster. In each successive iteration, we merge the closest clusters 
until obtaining one cluster which is the set E. In the following, we focus on this approach which is 
the most frequently used.  
The advantages of agglomerative hierarchical clustering algorithms are :  
• They can produce an ordering of the objects (genes/conditions), which may be informative for 
data display.  
• They generate smaller clusters which can be helpful for analysis. The drawbacks of 
agglomerative hierarchical clustering algorithms are:  
• They cannot relocate objects (genes/conditions) that may have been badly clustered at an early 
stage.  
• The use of different metrics for measuring distances between clusters may generate different 
results.  
 
2.1.2 Partitioning Clustering Approaches 
 
Partitioning clustering consists in splitting the objects (genes/conditions) into K homogeneous 
clusters. The most popular partitioning algorithms are K -means and Self-Organizing Map 
(SOM). 
 
• The K-means algorithm is one of the simplest clustering algorithm. Actually, the K -means 
version commonly used is due to Forgy [forgy65]. It follows a simple and easy way to cluster 
given objects (genes or conditions) in a number K  of clusters (K  is fixed a priori). 
• The SOM algorithm, introduced by Kohonen [7,15], can be viewed as a spatially smoothed 
version of K -means algorithm clustering. SOM operates as follows: First, it randomly choose 
nodes, i.e., centers of clusters of genes. Then, at each iteration, it chooses an object (gene) and 
finds a node that is the closest to the object, according to the Euclidean distance. If the object is 
not closest to the node of its own cluster then SOM moves it into the cluster of the closest node 
and defines the new nodes of both clusters. SOM repeats this process until no object moves from 
one cluster to another. By its simplicity SOM has much success for decades even if until now, 
there is not any criterion whose optimization implies the formula of the updates of the cluster 
means. Actually, it does not exist the proof of the convergence in the general context, the 
convergence has been proved only on special cases and in particular for the one dimensional data.  
 
2.2 Model-Based Clustering Approaches 
 
The model-based clustering approaches can be used for different type of data by using 
appropriated mixtures such as Gaussian, von Mises-Fisher, multinomial and Bernoulli mixtures. 
The model-based clustering considers two approaches: the Maximum Likelihood (ML) and the 
Classification Maximum Likelihood (CML) approaches. The former is based on the 
maximization of the observed likelihood of data, and the latter one is based on the maximization 
of the Classification (or complete data) likelihood. These maximizations can be performed 
respectively by the Expectation Maximization (EM) and the Classification EM (CEM) 
algorithms. Note that this approach offers considerable flexibility, and provides solutions to the 
problem of the number of clusters. Its associated estimators of posterior probabilities give rise to 
a fuzzy or hard clustering using the Maximum A Posteriori principle (MAP). Hereafter we review 
the definition of the mixture model and classical clustering algorithms used.  
 
2.2.1 Finite Mixture Model 
 
The finite mixture models underpin a variety of techniques in major areas of statistics including 
cluster analysis. With a mixture model-based approach clustering, it is assumed that the data to be 
clustered are generated by a mixture of underlying probability distributions in which each 
component represents a different cluster.  
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2.2.2 EM Algorithm 
 
The EM algorithm is a method for maximizing the log-likelihood iteratively, using the 
maximization of the conditional expectation of the complete-data log-likelihood given a previous 
current estimate and the observed data. In mixture modeling, we take the complete-data to be the 
vector (x,z).  
 
2.2.3 Classification EM Algorithm 
 
The Classification EM (CEM) algorithm is seen as a hard version of EM.   The main 
modifications imported to EM concern therefore the conditional maximization of complete data 
log-likelihoods with respect to z, a classification step is introduced between the two steps E and 
M. The classification step consists in assigning each point xi  to the component which maximizes 
the conditional probability sik.. Hence, the CEM estimators depends on the parameter of the 
chosen distribution. In particular, note that when we consider the Gaussian mixture model under 
certain constraints, CEM is an extension of the K -means algorithm. 
 
2.2.4 Stochastic EM Algorithm 
 
The Stochastic EM algorithm (SEM) is a stochastic version of EM, it incorporates between the E 
and the M steps a restoration of the unknown component labels by drawing them at random from 
their current conditional distribution, starting from an initial parameter, it is a stochastic step S, in 
which the algorithm assigns each point at random to one of the mixture components according to 
the multinomial distribution with parameters the values of the posterior probabilities. Note that 
this stochastic version does not converge point wise, SEM generates a Markov chain in which the 
distribution is more or less concentrated around the ML estimates. 
 
2.2.5 Formal Concepts Based Clustering Approaches 
 
The Analysis of Formal Concepts (AFC) [21] is a domain of applied mathematics which 
restructures the theory of the lattices to facilitate its use in applications of the real world and to as 
well allow the interpretation of its concepts from the theoretical framework by mathematicians as 
by not-mathematicians. Basic notions of lattices theory are binary relation, formal context and 
formal concept. 
 
The construction of the Galois lattice of a binary relation can be broken up into three steps, 
namely: the enumeration of the maximum rectangles (closed), the search of a partial order 
relation between these rectangles, and the construction of the lattice chart. We distinguish three 
types of formal concepts based clustering algorithms{} : batch, incremental and assembly 
algorithms, by considering the criterion of distribution of the algorithms, according to their 
strategies of data acquisition starting from a formal context. 
 
2.2.5.1 Batch Algorithms 
 
It is the first generation of the algorithms of extraction of the Galois lattices. By taking in entry 
the entire formal context, these algorithms calculate the formal concepts and the order between 
these concepts simultaneously or sequentially. Among most known of these algorithms, we quote 
the algorithm of Chein generating the concepts by levels: the algorithm is iterative  contain less 
than two elements. The elements not removed after the stop of the algorithm are the concepts of 
the formal context considered.  
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The incremental algorithms consider the formal context line by line (or column by column) and 
build the Galois lattice by successive additions of line or column while preserving its structure. 
  
2.2.5.3 Assembly algorithms 
 
These algorithms constitute an evolution of the incremental algorithms which generalize the 
incremental character to set (groups) objects/attributes [46]. They divide a formal context into 
two parts vertically or horizontally then calculate the lattice of concepts corresponding to each 
part and finally assemble the lattices obtained in only one; 
 
3. BICLUSTERING OF MICROARRAY DATA 
 
Let introduce some definitions related to a biclustering of microarray data. 
 
Biclusters :  Let I = {1,2,...,n} be a set of indices of n genes, I = {1,2,...,m} be a set of indices of 
m conditions and M(I,J) be a data matrix associated with I and J. A bicluster associated with the 
data matrix M(I,J) is a couple M(I’,J’) such that  II '  and JJ ' . 

Types of biclusters: A bicluster can be one of the following cases: 
 
• Bicluster with constant values on rows: 

 
where c is a constant and ai is the adjustment for the row i. 
 
• Bicluster with constant values on columns: 

 
where bj is the adjustment for the column j. 
 
• Bicluster with coherent values: There are two types of biclusters with coherent values. Those 
with additive model and those with multiplicative model defined respectively by: 
Those with additive model: 

 
And those with multiplicative model: 

 
• Bicluster with coherent evolution: It is a bicluster where all the rows (resp. columns) induce a 
linear order across a subset of columns (resp. rows). 
 
Groups of biclusters: A group of biclusters can be one of the following types [4]: 
 

1. Single bicluster (Figure 2. (a)),           
2.   Exclusive rows and columns group of biclusters (Figure 2. (b)),  
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Figure 2.Types of groups of biclusters 
 

3. Non-overlapping group of biclusters with checkerboard structure (Figure 3. (c)),    
4. Exclusive rows group of biclusters (Figure 2. (d)),   
5. Exclusive columns group of biclusters (Figure 2. (e)),  
6. Non-overlapping group of biclusters with tree structure (Figure 2. (f )),     
7. Non-overlapping non-exclusive group of biclusters (Figure 2. (g)), 
8. Overlapping group of biclusters with hierarchical structure (Figure 2. (h)),   
9. Or, arbitrarily positioned overlapping group of biclusters (Figure 2. (i)). 
 
We note also that a natural way to visualize a group of biclusters consists in assigning a different 
color to each bicluster and in reordering the rows and the columns of the data matrix so that we 
obtain a data matrix with colored blocks, where each block represents a bicluster.The biclustering 
problem can be formulated as follows: Given a data matrix M, construct a group of biclusters Bopt 
associated with M such that: 

 

where f  is an objective function measuring the quality, i.e., degree of coherence, of a group of 
biclusters and BC(M) is the set of all the possible groups of biclusters associated with M. This 
problem is NP-hard [4,5]. 
 
4. EVALUATION FUNCTIONS 
 
An evaluation function is an indicator of the performance of a biclustering algorithm. There are 
two main classes of evaluation functions: Intra-biclusters evaluation functions and inter-biclusters 
evaluation functions. 
 

4.1. Intra-biclusters evaluation functions 
 
An intra-biclusters evaluation function is a function that measures the quality of a bicluster, i.e., it 
quantifies the coherence degree of a bicluster. There are several intra-biclusters evaluation 
functions. 
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• The EAVSS(I’,J’) is defined as follows[6]: 
 

 

where (I’,J’)  is a bicluster, si j is a similarity measure among elements of the row i and the column 
j with others elements belonging to I’ and J’. It follows that a number of these functions are 
particular cases of the AVerage Similarity Score (AVSS). 
 
• The Average Row Variance (ARV) is defined as follows [7]: 
 

 

where miJ’ is the average over the row i. It follows that the biclusters that contain rows with large 
changes in their values for different columns are characterized by a large row variance. The ARV 
guarantees that a bicluster captures rows exhibiting coherent trends under some subset columns. 
 
• The Mean Squared Residue (MSR) is defined as follows [8]: 
 

 

where mI’J’ is the average over the whole bicluster, mI’ j is the average over the column j, miJ’ is the 
average over the row i. The EMSR represents the variation associated with the interaction between 
the rows and the columns in the bicluster. It follows that a low (resp. high) EMSR value, i.e., close 
to 0 (resp. higher than a fixed threshold d), indicates that the bicluster is strongly (resp. weakly) 
coherent. The EMSR function is inadequate to assess certain types of biclusters. For example, the 
EMSR function is good for biclusters of coherent values with additive model but not for coherent 
values with multiplicative model. 
 
• The Volume (V) is defined as follows [7]: 
 

 

This function enables to have the maximum-sized bicluster that does not exceed a certain 
coherence value expressed as a MSR score. EV(I’,J’) finds the maximum-sized bicluster that does 
not exceed a certain coherence value [9] expressed as a MSR score. Hence, discovered biclusters 
have a high EV(I’,J’) maximized and lower EMSR than a given threshold 0 . 
 
• The Mean Square Error (MSE) is defined as follows [10]: 
 

 

where mIJ is the average over the whole matrix, mI j is the average over the column j of the whole 
matrix and miJ’ is the average over the row i. This function identifies constant biclusters. 
 
• The Average Correlation Value (ACV) is defined as follows [5, 11]: 
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where rij )( ji   (resp. rkl )( lk  ) is the Pearson’s correlation coefficient associated with the row 
indices i and j (resp. k and l) in the bicluster (J’,J’) [8]. The values of EACV belong to [0;1], hence, 
a high (resp. low) EACV  value, i.e., close to 1 (resp. close to 0), indicates that the bicluster is 
strongly (resp. weakly) coherent. However, the performance of the EACV function decreases when 
noise exists in the data matrix [5, 11]. 
 
• The Average Spearman’s Rho (ASR) is defined as follows [2]: 
 

 

where  )( ji
ij

  (resp. )( lk
KL

  ) is the Spearman’s rank correlation associated with the row 

indices i and j in the bicluster (I’,J’) [12], The values of the EASR function belong also to [-1,1], 
hence, a high (resp. low) EASR value, i.e., close to 1 (resp. close to -1), indicates that the bicluster 
is strongly (resp. weakly) coherent. On the other hand, like Spearman’s rank correlation, the EASR 
is less sensitive to the presence of noise in data [2]. There are other intra-biclusters evaluation 
function like the Average Correspondance Similarity Index (ACSI) [2]. 
 
4.2. Inter-biclusters evaluation functions 
 
An inter-biclusters evaluation function is a function that measures the quality of a group of 
biclusters, i.e., it assesses the accuracy of an algorithm to recover true implanted biclusters in a 
data matrix. There are several inter-biclusters evaluation functions. In what follows, we present 
some of them: 
 
Let M1 and M2 be two groups of biclusters defined as follows: 
 

 

• The Prelic index is defined as follows: 
 

 

where SPrelic is based on the Jaccard index for two sets and defined as follows: 
 

 

This index compares two solutions based on categorization of genes. However, it compares only 
genes sets. 
 
• The Liu and Wang index is defined as follows: 
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Where 

 

It compares two solutions by considering both genes and conditions. 
 
• The wtjaccard index is defined as follows: 
 

 

Where 

 

• The Dice index is defined as follows: 
 

 

Where: 

 

Which is proposed in [13] and called F-measure in biclustering cases to computes the overall 
relevance of two bicluster solutions. 
 
• The Santamaría index is defined as follows: 
 

 
 
The Santamaría index is the most conservative index among above others indices and used for 
biclustering case [14, 13]. In fact, while the Prelic index compares only object sets and the LW 
index compares object sets and feature sets independently, the Santamaría index compares two 
solutions using pairs of genes and conditions.  
 
For gene expression case, the Gene Match Score (GMS) function doesn’t take into account 
column match. It is given by: 
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Where B1 and B2 are two groups of biclusters and the pair (I,J) represents the submatrix whose 
rows and columns are given by the set I and J, respectively. 
 
The Row and Column Match Scores (RCMS) assess the method’s accuracy to recover known 
biclusters and reveal true ones. Thereafter, more similar measures of match scores have been 
introduced [5, 15, 6]. For instance, the evaluation functions, herein called Row and Column 
Match Scores, ERCMS1 and ERCMS2, are proposed in [6] and [15], respectively and given by:  
 

 

All these measures of match score are used to assess the accuracy of an algorithm to recover 
known biclusters and reveal true ones. Both  ERCMS1 and ERCMS2 have the advantage of reflecting, 
simultaneously, the match of the row and column dimensions between biclusters as opposed to 
EGMS that doesn’t take into account column match. They vary between 0 and 1 (the higher the 
better the accuracy). Let Bopt denote the set of true implanted biclusters in the data matrix M and B 
the set of the output biclusters of a biclustering algorithm. Thus, EGMS(Bopt,B) and ERCMS1 (Bopt,B) 
express how well each of the true biclusters are detected by the algorithm under consideration.  
ERCMS2 (BX,BY), where BX (resp. BY) denotes the set of biclusters detected by the algorithm X (resp. 
Algorithm Y), has the particularity to allow the quantification of how well each bicluster 
identified by the algorithm X is contained into some bicluster detected by the algorithm Y. 
 
4.3 BICLUSTERING ALGORITHMS 
 
As we mentioned earlier, the biclustering problem is NP-hard [3, 10]. Consequently, heuristic 
algorithms are typically used to approximate the problem by finding suboptimal solutions. We 
distinguish different approaches adopted by biclustering approaches [3]. 
 
4.3.1 Iterative Row and Column Clustering Combination Approach 
 
By adopting the Iterative Row and Column Clustering Combination Approach (IRCCC) 
approach, we apply clustering algorithms on both rows and columns separately and then combine 
the results to obtain biclusters [56]. The conceptually simpler way to perform biclustering using 
existing algorithms without searching novels algorithms. But, this approach consider 
approximatively same advantages and drawbacks that clustering algorithms used. Among the 
algorithms adopting this approach we mention Croki2 [58], Crobin [58], DCC [59], ITWC [61], 
CTWC [54] and Bi-SOM [60]. 
 
4.3.2 Greedy Iterative Search Approach 
  
By adopting the Greedy Iterative Search (GIS), first, we construct sub matrices of the data matrix 
by adding/removing a row/column to/from the current sub matrix that optimizes a certain 
function. Then, we reiterate this process until no other row/column can be added/removed to/from 
any sub matrix. This approach presents the same advantage and drawback as DC. They may make 
wrong decisions and loose good biclusters, but they have the potential to be very fast. Among the 
algorithms adopting this approach we mention Spectral [16], Quest [17], 
RandomWalkBiclustering [18], BicFinder [19], MSB [6], ISA [17, 20], OPSM [21] and SAMBA 
[17, 22]. 
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4.3.3 Exhaustive Bicluster Enumeration Approach 
 
By adopting the Exhaustive Bicluster Enumeration (EBE), We identify all the possible groups of 
biclusters in order to keep the best one, i.e., the one that optimizes a certain evaluation function. 
The advantage of this approach is that it is able to obtain the best solutions. Its drawback is that it 
is costly in computing time and memory space Among the algorithms adopting this approach we 
mention BSGP[28, 29], OPC [30, 6], CPB [30], IT[31], e-Bmotif [29], BIMODULE [32], RAP 
[26], BBK [33] and MSB [6]. 
 
4.3.4 Distribution Parameter Identification Approach 
 
By adopting the Distribution Parameter Identification (DPI) approach use a statistical model to 
identify the distribution parameters and generate the data by minimizing a certain criterion 
iteratively. These algorithms certainly find the best biclusters, if they exist, but have a very 
serious drawback. Due to their high complexity, they can only be executed by assuming 
restrictions on the size of the biclusters. Among the algorithms adopting this approach we 
mention QUBIC [38], PRMs [39], FABIA [40], BEM [41] and BCEM [42]. 
 
4.3.5 Divide and Conquer Approach 
 
By adopting the Divide-and-Conquer (DC) approach, first, we start by a bicluster representing the 
whole data matrix then we partition this matrix in two submatrices to obtain two biclusters. Next, 
we reiterate recursively this process until we obtain a certain number of biclusters verifying a 
specific set of properties. The advantage of DC is that it is fast, its drawback is that it may ignore 
good biclusters by partitioning them before identifying them. DC algorithms have the significant 
advantage of being potentially very fast. However, they have the very significant drawback of 
being likely to miss good biclusters that may be split before they can be identified. Among the 
algorithms adopting this approach we mention OWS [48], TWS [49], BiBit [28] and BARTMAP 
[50] and GS [51]. 
 
5. BICLUSTERING VALIDATION 
 
There are two types of biclusters validation;  
 
(i) Statistical validation: It is used to validate synthetical data 
(ii) Biological validation: It is used to validate biological data 
 
5.1. Statistical validation 
 
Statistical validation can be made by adopting one or many of the following indices: 
 
• Separation: It reflects how well the biclusters are separated from each other. Separation 
between two biclusters 
 
A and B is defined as follows [62]: 
 

 
• Coverage: We distinguish three types of coverage, matrix coverage, genes coverage and 
conditions coverage: 
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• Compactness: It assesses cluster homogeneity, with intra-cluster variance [63]. 
• Connectedness: It assesses how well a given partitioning groups data items together with their 
nearest neighbours in the data space [63]. 
• Coherence: It expresses how well a bicluster is fitted to a specified model. The coherence is 
computed thanks to compactness and connectedness. 
• Significance: It is computed thanks to p-valueB. Let B be a bicluster, p�value is defined as 
follows [15]: 

 
where f is the standard normal distribution function, |1B| is the number of 1’s in the bicluster B 
and p= k/(|I|*|J|) of 1’s in M(I,J), k is the number of 1’s in the binary matrix Mb.  A bicluster B is 
considered as potentially significant at a level of significance   if p-valueB< . 
 

5.2. Biological validation 
 
Biological validation can qualitatively evaluate the capacity of an algorithm to extract meaningful 
biclusters from a biological point of view. To assess biologically biclusters, we can use Gene 
Ontology (GO) annotation [64]. In GO, genes are assigned to three structured, controlled 
vocabularies, called ontologies: biological process, cellular components and molecular functions. 
The GO Consortium (GOC)[64] [65] is involved in the development and application of the GO.  
In what follows, we briefly report some R tools relared to GOC [66, 67]: 
 
• AnnotationDbi: It provides user interface and database connection code for annotation data 
packages using SQLite data storage. 
• FunCluster: It is a functional profiling and analysis of microarray expression data based on GO 
& KEGG. 
• GExMap: It is an intuitive visual tool to perform a GO and to test to unveil genomic clusters, 
graphical interpretations and statistical results in pdf files. 
• GO.db annotation: It provides detailed information about the latest version of the GOs and it is 
updated biannually. 
• GOsummaries: It shows GO enrichment results in the context of experimental data. 
• GOstats: It determines which GOs found in gene lists are statistically over/under-represented. 
• goTools: It compares the GOs represented by the genes in the three gene lists (biological 
process, molecular function and cellular component). 
• topGO: It provides tools for testing GO terms while accounting for the topology of the GO 
graph. Different test statistics and different methods for eliminating local similarities and 
dependencies between GO terms can be implemented and applied. 
 
6. TOOLS 
 
For clustering, we introduce some clustering webtools. 
• WLPT@DNA-Array is a webtool of management and analysis of DNA microarrays by using 
weighted trees. It computes the appearance probability of a DNA microarray, to compare the 
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informational distances in the expression of genes between DNA microarrays, and determines the 
group of candidate genes related to a pathology. WLPT@DNA-Array is available at 
http://www.genopole-lille.fr/spip. 
 
• Lattice Miner (LM) is a formal concept analysis webtool for the construction, visualization and 
manipulation of concept lattices. It allows the generation of formal concepts and association rules 
as well as the transformation of formal contexts via apposition, subposition, reduction and 
object/attribute generalization, and the manipulation of concept lattices via approximation, 
projection and selection. LM allows also the drawing of nested line diagrams. LM is available at 
http://sourceforge.net/projects/lattice-miner/ 
 
• Formal concept analysis based Association rule Miner (FAM) was designed and implemented 
considering user's facility of information retrieval such as context editing, concept and lattice 
exploring, query submitting and showing the association rules in response to the query. FAM is 
available at http://bike.snu.ac.kr/ 
 
• SPECLUST is a webtool for hierarchical clustering of peptide mass spectra obtained from 
protease-digested proteins. Mass spectra are clustered according to the peptide masses they 
contain, such that mass spectra containing similar masses are clustered together. Hierarchical 
clustering of Mass Spectra (MS) with SPECLUST can in particular be useful for MS-screening of 
large proteomic data sets derived from 2D-gels. SPECLUST can also be used to identify masses 
shared by mass spectra. Masses present in the majority of the mass spectra in a data set are likely 
to be contaminant. With SPECLUST, MS/MS can be focused on non-contaminant shared masses 
in a cluster, facilitating investigations of protein isoforms. Within a cluster, shared and unique 
masses represent peptides from regions that are similar and different, respectively, between 
protein isoforms. Taken together, SPECLUST is a versatile tool for analysis of mass spectrometry 
data. SPECLUST is available at http://bioinfo.thep.lu.se/speclust.html. 
 
• Mixture Modelling (Mixmod) webtool fits mixture models to a given data set with a density 
estimation, a clustering or a discriminant analysis purpose. A large variety of algorithms to 
estimate the mixture parameters are proposed (EM, CEM, SEM) and it is possible to combine 
them to lead to different strategies in order to get a sensible maximum of the likelihood (or 
complete-data likelihood) function. Mixmod is currently focused on multivariate Gaussian 
mixtures and fourteen different Gaussian models. It can be considered according to different 
assumptions on the component presented by the variance matrix eigenvalue decomposition. 
Moreover, different information criteria for choosing a parsimonious model (the number of 
mixture components, for instance), some of them favoring either a cluster analysis or a 
discriminant analysis view point, are included. Written in C++, Mixmod is interfaced with Scilab 
and Matlab. Mixmod, the statistical documentation and also the user guide are available at 
http://www-math.univ-fco mte.fr/mixmod/index.php. 
 
There are also many R microarray biclustering tools. Table 1.  presents a few examples on tools 
and here are some examples [68]: 
 

Table 1. Tools used to evaluate and compare biclustering algorithms 
 

Tool Biclustering algorithms Reference 

Lattice Galois lattice  [17] 
arules  rules  [71] 
rootSolve, pracma  Newton Raphson  [71] 
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blockcluster  Coclustering [17] 
biclustGUI  CC, Plaid, BiMAX„ xMOTIFs, xQuest, Spectral, 

FABIA, ISA 
[20] 

biclust  Plaid, BiMAX, xMOTIFs, xQuest, Spectral [17] 
BcDiag  biclust, eisa, isa2 [17] 
FABIA, FABIAs, 
FABIAp,  

FABIA [40] 

NMF  NMF  [70] 

s4vd  s4vd  [26] 

qubic  Rqubic [38] 
eisa, isa2  ISA [17] 
BicARE  FLOC [72] 
ThreeWayPlaid Plaid for three-dimensional data  [46] 
IBBigs iBBiG  [44] 

Superbiclust Ensemble Biclustering  [73, 41] 

HSSVD HSSVD [46] 

FacPad Factor analysis for pathways  [45] 

FastICA Fast independent component analysis  [74] 

CMonkey cMonkey  [75] 

 
7. DATASETS 
 
Real data are also used because artificial data can only be used to test the effect of certain aspects 
such as noise level and overlap degree of the bicluster problems on different models/algorithms. 
We introduce AML/ALL, Central Nervous System (CNS), lung cancer and colon cancer datasets. 
All these datasets can be obtained directly from http://sdmc.lit.org.sg/GEDatasets/ 
 

Table 2. Microarray datasets used to evaluate biclustering algorithms 
 

Package List of datasets 
aroma. Copy-number 
(cn) and aroma. for 
affyrmetrix anpuce  

Spleen 

 Abd Analysis of Biological Data (abd) 

ICluster Breast cancer, DNA cn, breast.chr17 
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ORCME  Gene expression 

Adegenet Genetic and genomic 

SNPMClust Dose-response microarray 

DCGL Differential co-expression and regulation analysis 

Opmdata OmniLog(R) Phenotype Microarray data (opmdata) 

Knorm Across multiple biologically interrelated experiments 

Biclust  BicatYeast 

DDHFm Data-Driven Haar-Fisz for Microarrays (DDHFm) 

integrativeMEdata Categorical clinical factors, cancer microarray 

Madsim Flexible microarray data simulation model (madsim) 

EMA Easy Microarray data Analysis (EMA) 

FBN SNP microarray 

BioConductor Acute Lymphocytic Leukemia (ALL), arrayMissPattern. 

Bioconductor 
annotation 

Data 

GO.db, GO_dbconn, GOBPANCESTOR, GOBPCHILDREN, 
GOBPOFFSPRING, GOBPPARENTS, GOCCANCESTOR, 
GOCCCHILDREN, GOCCOFFSPRING, GOCCPARENTS, 
GOMAPCOUNTS, 

Lemma Laplace approximated EM Microarray Analysis (lemma) 

Maanova N-dye Micro 18-array affymetrix experiment 

GeneARMA Time-course microarray with periodic gene expression 

iGenomicViewer IGGVex 

CLAG Breast tumor cells 

 
• CNS dataset : This dataset consists of 34 samples: 10 classic medulloblastomas, 10 malignant, 
10 rhabdoids, and 4 normals. 
• Lung cancer dataset : This dataset is composed of 32 samples which are about Malignant Pleural 
Mesothelioma (MPM, 16 samples) and ADenoCArcinoma (ADCA, 16 samples) of the lung. 
• Colon cancer dataset : Murali and Kasif used a colon cancer dataset originated in to test 
XMOTIF. The matrix contains 40 colon tumor samples and 22 normal colon samples over about 
6500 genes. Colon cancer dataset is available at http:// www.weizmann.ac.il/physics. 
• FuncAssociate allow to evaluate the discovered biclusters. FuncAssociate first uses Fisher's 
exact test to compute the hypergeometric functional score of a gene set, then uses the Westfall 
and Young procedure to compute the adjusted significant score of the gene set. The analysis is 
performed on the gene expression data of S. cerevisiae. 
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For biclustering, there are many microarray datasets, related to R package, used to evaluate 
biclustering algorithms. Table 2. presents a few examples on these datasets. 
 
7. CONCLUSION 
 
We have briefly reviewed clustering algorithms of microarray data. We have reported advantages 
and drawbacks of certain algorithms. Although clustering of microarray data has been the subject 
of a large research, no one of the existing clustering algorithms is perfect and the construction of 
biologically significant groups of clusters for large microarray data is still a problem. Biological 
validation of clustering algorithms of microarray data is one of the most important open issues. 
The biclustering of microarray data has been the subject of a large research. No one of the 
existing biclustering algorithms is perfect. The construction of biologically significant groups of 
biclusters for large microarray data is still a problem that requires a continuous work. Biological 
validation of biclusters of microarray data is one of the most important open issues. So far, there 
are no general guidelines in the literature on how to validate biologically extracted biclusters. 
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