
International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

DOI:10.5121/ijcsit.2014.6608 113

IMPLEMENTATION OF A STREAM CIPHER BASED

ON BERNOULLI’S MAP

Ricardo Francisco Martinez-Gonzalez1 and Jose Alejandro Diaz-Mendez2

1Electrics and Electronics Department, Veracruz Institute of Technology, Veracruz,

Mexico.
2Electronics Department, National Institute of Astrophysics Optics and Electronics,

Tonantzintla, Mexico.

ABSTRACT

A stream cipher was implemented on a FPGA. The keystream, for some authors the most important
element, was developed using an algorithm based on Bernoulli’s chaotic map. When dynamic systems are
digitally implemented, a normal degradation appears and disturbs their behavior; for such reason, a
mechanism was needed. The proposed mechanism gives a solution for degradation issue and its
implementation is not complicated. Finally, the implemented cipher includes 8 stages and 2 pseudo-random
number generators (PRNG), such cipher was tested using NIST testes. Once its designing stage, it was
implemented using a developing FPGA board.

KEYWORDS

Chaotic Stream Ciphers, Digitally implemented Bernoulli’s map, NIST testes, FPGA Implementation.

I. INTRODUCTION

Cryptography is the science of using mathematics for encrypt and decrypt data. The cryptography
allows storing or transmitting important information, as it cannot be read for aliened entities [1].
Some of the most important cryptographic tools are ciphers, coders and water makers; however,
among them, the ciphers are probably the most commonly used.

By the way the ciphers process data, they can be classified as: stream ciphers, this ciphers work
over individual characters from plaintext at once, and block ciphers that take block by block from
plaintext to cipher.

According to Kohel [2], the block ciphers are memoryless, due they use the very same function in
order to cipher successive blocks; meanwhile, the stream ciphers must have memory, mostly
because keystream is a function of initial value and system current state.

Strength in stream ciphers relies on keystream generating function that is the main reason to study
and develop so many and various ones. One of used methods are chaotic functions, their
functioning is based in certain behavior presents at some dynamic systems to naturally produce
random sequences [3].

In table 1 from [4] is presented a similarity relationship between wanted features in cryptographic
systems and natural features in chaotic ones. Among chaotic system features are its high
sensibility to initial conditions, they have a pseudo-random behavior, and they are able to disperse
data around their working space [5]. For such features, this class of function was chosen as
keystream generating functions for present work.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

114

II. MATHEMATICAL DESCRIPTION FOR USED BERNOULLI’S MAP

The used function for generating keystream is a chaotic one. In the chaotic functions, one-
dimensional maps are the simplest ones in order to generate chaotic sequences, and the selected
one for this cryptographic system was Bernoulli’s, mostly because this map has a simple digital
implementation [7].

Tsuneda et al [8] presented a modification for Bernoulli’s map; the modified map has next
mathematical expression:

 

   


















15.0
2

112

5.00
2

12
1

ii

ii

i

xx

xx
x 




 Eq.1

Eq. 1 was originally presented to satisfy analog implementation, ergo to implement this
expression using a binary-representation digital system is needed some manipulations of it.

After some mathematical manipulations, Eq. 2 is obtained; this expression is adequate for
digitally implementing.

 

   



















bits

i
bits

bits
bits

i

bits
i

bits

i

i

xx

xx
x

22
2
1222

20
2
122

1

1

1 

 Eq.2

Sequences obtained from mathematical expression defined in Eq. 2 exhibit some non-randomness
issues. The issues are a normal degradation caused by digital systems flooring [9]. Some authors
had proposed some partial solutions; one of them is implementing several stages [10] in order to
increase its randomness.

III. BIFURCATION DIAGRAMS

Baker and Gollup [11] define bifurcation as system behavior determination at control parameters
variations, its most useful representation takes place when in a system; its control parameters are
consequently varied, this representation is known as bifurcation diagram [12].

In a bifurcation diagram, horizontal axis represents μ parameter and vertical axis represents
higher iterations ఓ݂

௡(ݔ଴) for a specific initial point ݔ଴; in consequence, specified diagram depicts
 ଴ orbit behavior. Figure 1 depicts obtained bifurcation diagram following Elaydi’s procedureݔ
[13] for Bernoulli’s map.

The form of bifurcation diagram is representative of implemented function. As it was previously
discussed, discretely implemented dynamic systems have a degraded behavior; thus, a solution is
required. The solution jumped out after seeing bifurcation diagram for 4 symmetric portions of
obtained sequences from the original system.

In shown diagrams at Figure 2, first and most significant portion of bifurcation diagram, the most
significant, is quite similar as the presented one in Figure 1. In the other hand, the bifurcation
diagrams for other the three portions of the original sequence present very different diagrams.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

115

Figure 1. Bifurcation diagram for Bernoulli’s map.

The orbits in second, third and fourth portion of bifurcation diagrams are along entire space, with
such behavior the to-be-ciphered data might be equally dispersed along entire space as well.

Figure 2. Bifurcation diagrams for sections 2, 3 and 4 from Bernoulli’s map original sequence.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

116

Prior finding caused to design a structure that separates each original 32-bit sequence into four 8-
bit sequences. The keystream used by the cryptosystem is result of a XOR procedure with eight 8-
bit sequences, because the cryptosystem contents 2 PRNG.

IV. 8-BIT SEQUENCES GENERATING

In order to obtain 8-bit sequences, firstly is necessary to separate each original 32-bit sequence
into 16-bit sequences; the mathematical expressions that carry the task out, is defined in Eq. 3 and
Eq. 4.

௣௔௥௧	௙௜௥௦௧(ݔ)݂ = ݎ݋݋݈݂ ቀ ௙(௫)

ଶ್೔೟ೞ/ಿቁ		 Eq. 3

௣௔௥௧	௦௘௖௢௡ௗ(ݔ)݂ = ,(ݔ)݂)݀݋݉ 2
್೔೟ೞ
ಿ) Eq. 4

Using Eq. 3 is obtained the most significant half of f(x). The procedure is based in the fact that in
binary representation, right-shifting is done dividing by 2n, where n represents desired places to
shift. The second half is obtained by same prior principle; even though in this occasion, division
residue is the required part; mathematical description for such task appears in Eq. 4.

Once both 16-bit sequences were obtained, each sequence is separated using again Eq. 3 and Eq.
4 in order to obtain four 8-bit sequences. In addition, to increase cipher complexity, two 32-bit
sequence generators are used, generating eight 8-bit sequences in total, with them the
cryptosystem reaches an acceptable security level.

V. VHDL IMPLEMENTATION FOR PROPOSED CIPHER

For FPGA implementation, an Altera’s Cyclone IV EP4C22F17C6N was selected. The
cryptosystem was firstly simulated in ModelSIM, and matching results using Matlab. Because of
cipher features, its design is separated in two. The first part const of 2 PRNG and a XOR-gate
array is second part. Both PRNG need an initial value to start generating their sequences. After
initial value is introduced, the PRNG feedback loop needs to be closed; on account of it, a
mechanism was figured out.

The mechanism utilizes a D-type flip-flop, its Q-output is definitively set to logical-one after
PRNG’s first operation. The feedback loop is controlled by a MUX, whereas the MUX is
controlled by the Q-output. MUX afterward, its output is multiplied by two, with a throwing 33-
bit overflow condition, then the multiplier result is multiplied by feedback factor (μ), as well as
initial value, μ is a control parameter.

Output of feedback factor multiplier has 40 bits; the least significant 8 bits are eliminated and the
remained ones go to an adder that adds it with generalization factor defined in Eq. 5.

 
2
12 bits

 Eq. 5

Finally, the output adder is saved by a parallel input/parallel-output register; furthermore, the
register helps controlling out PRNG flow. Figure 3 depicts block diagram for the described
PRNG.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

117

The sequences obtained from the PRNG got separated in 4 equal-length sequences; using 2
PRNG, eight 8-bit sequences are obtained.

Next part to describe is a XOR-gate array, which is in charge to mix data up. The most significant
bit from each sequence passes through XOR gates in order to obtain keystream most significant
bit; the next significant bits pass through another XOR-gate group, and so on until the least
significant bits.

Figure 3. PRNG block diagram.

The whole array consists of 56 XOR-gates, 7 for each keystream bit, the array may be observed
on Figure 4. The XOR-gate array output is the keystream used by proposed stream cipher.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

118

Figure 4 Disposition of XOR-gates in-charge of obtaining keystream

VI. SIMULATION RESULTS

ModelSIM was used to realize simulations for the proposed stream cipher, and a Matlab script
was made to verify simulation result. Figure 5 shown results for PRNG ModelSIM simulation.

Figure 5. PRNG simulation using 2863311530 as initial value and 0.6640625 as μ factor

In figure 5, “32hAAAAAAAA” correspond to initial value, which starts PRNG up; the next value
“8hAA” is μ factor. Signal 4, from top to bottom, is clock system. Signal 3 is a pulse for the
closing feedback loop flip-flop. The last signal is output PRNG, only few data were chosen due
data presentation; nevertheless, data is exactly same as obtained one by Matlab; moreover, high
sensibility to initial conditions in chaotic systems [14] inspires reliability between obtained
Matlab data and FPGA one, even though only few data is presented.

Once PRNG function has been verified by simulation, next simulation is for separating sequences
mechanism, simulation result is shown at Figure 6. In Figure 6, the first two signals, from top to
bottom, are initial values; “32hAAAAAAAA” for first PRNG and “32hBBBBBBBB” for second
one.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

119

Figure 6. Simulation of keystream generating mechanism for proposed cipher.

The next pair of signals is μ factors, first PRNG receives “8hAA” and second one receives
“8hBB”. Signal 6 is system clock, and signal 5 is in charge of controlling feedback loop closure.
Finally, signal 7 is output stream cipher; in other words, the keystream for the proposed
cryptosystem.

Results obtained in FPGA were completely matched with simulation ones. Besides VHDL codes
just needed some minor modifications, FPGA implementation was successful and untroubled.

VII. NIST STS TESTING

The NIST Statistical Testing Suite (STS) is based on determining whether or not a specific
sequence of zeros and ones are random [15].

The NIST STS was developed to test the randomness of binary sequences produced either
hardware of software based cryptographic random or pseudorandom number generators [16]. In
NIST STS, testing results is P-value. It may have values between 0 and 1and the bigger P-value
is, the better pseudorandom property the tested sequence has [17]

The proposed implementation was tested in order to know how good it is. A random sequence
was elaborated using μ1=0.75 and μ2=0.8, and 1.2885x109 as initial value for first generator and
8.5899x108 for the second one. The random sequence had 4 million bits, and the obtained results
are presented in Table 1.

Table 1. NIST STS testing results.

Test Obtained P-
value

Status

Frequency test 0.988 OK

Block frequency test 0.986 OK

Run test 0.987 OK

Cumulative sum test
(forward)

0.988 OK

Cumulative sum test
(reverse)

0.988 OK

FFT test 0.998 OK

With Table 1 results, it is plausible to ensure that the proposed cipher works with a good chaotic
behavior, and in consequence, good cryptographic features.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

120

VIII. CONCLUSIONS

Current developing started trying to solve a chaotic function instauration in a stream cipher
design. The problem was solved adequately, but another problem showed up, a normal
degradation, it affects digitally-implemented dynamic systems. The new problem was solved
implementing a dividing sequence mechanism; and sequences were obtained by two PRNG. The
cryptosystem was verified using a NIST STS.

Using Matlab helps out to verify simulation results, the method makes easier to manage so many
and large data. In conclusion, cryptosystem implementation in a FPGA is easy once a
mathematical analysis and an adequate VHDL coding simulation were made.

REFERENCES

[1] Saranya K., Mohanapriya R. and Udhayan J., (2014) A Review on Symmetric Key Encryption

Techniques in Cryptography, International Journal of Science, Engineering and Technology
Research, Vol. 3, Issue 3 pp 539-544.

[2] David R. Kohel, (2008) Cryptography, Creative Commons Attribution-Noncommercial-Share Alike
3.0 Unported License. http://www.sagemath.org/files/kohel-book-2008.pdf

[3] Jyoti Chauhan and Anchal Jain , (2014) Survey on Encryption Algorithm Based On Chaos Theory
and DNA Cryptography, International Journal of Advanced Research in Computer and
Communication Engineering, Vol 3, Issue 8 pp 7801-7803.

[4] Gonzalo Alvarez & Shujun Li, (2006) Some Basic Cryptographic Requirements for Chaos-Based
Cryptosystems, International Journal of Bifurcation and Chaos.

[5] Mohammad Saleh Tavazoei & Mahammad Haeri, (2007) Comparison of different one-dimensional
maps as chaotic search pattern in chaos optimization algorithms, Applied Mathematics and
Computation.

[6] E. Ott, (2002) Chaos in Dinamical Systems, Cambridge University Press.
[7] Ricardo F. Martinez-Gonzalez, (2008) Design of Chaotic Noise Generators based on One-dimension

maps, M.Sc. Thesis, National Institute of Astrophysics, Optics and Electronics.
[8] A. Tsuneda, K. Eguchi & T. Inoue, (2005) Design of Chaotic Binary Sequences with Good Statistical

Properties based on Piecewise Linear into Maps, IEEE Transactions on Circuits and Systems 1:
Regular papers, Vol. 52, No 2 pp. 454-462.

[9] David Arroyo, Gonzalo Alvarez & Shujun Li, (2009) Some Hints for the Design of Digital Chaos-
Based Cryptosystems: Lessons Learned from Cryptoanalysis, Presented at CHAOS 09: Second IFAC
meeting on Analysis and Control of Chaos Systems.

[10] Shujun Li, Guanrong Chen & Xuanqin Mou, (2005) On the Dynamical Degradation of Digital
Piecewise Linear Chaotic Maps, International Journal of Bifurcation and Chaos in vol. 15, No. 10,
pp.3119-3151.

[11] Gregory L. Baker & Jerry P Gollub, (1990) Chaotic Dynamics an introduction, Cambridge University
Press.

[12] Hongli Xu, Xu Qian, Yong Liang and Qiulan Wu, (2014) The Study of a New Hyperchaotic and Its
Binarization Algorithm, Journal of Information & Computational Science Vol. 11, No 2 pp 473-480.

[13] Saber N. Elaydi, (2000) Discrete Chaos, Chapman & Hall/CRC.
[14] Narendra K. Pakeek, Vinod Patidar, & Krishan K. Sud, (2010) A Random Bit Generator Using

Chaotic Maps, International Journal of Network Security, Vol. 10, No 1, pp. 32.
[15] Muhammad Khurram Khan & Jiashu Zhang, (2006) Investigation on Pseudorandom Properties of

Chaotic Stream Ciphers” IEEE International Conference on Engineering of Intelligent Systems, vol.,
no., pp.1-5

[16] Andrew Rukhin, Juan Soto & James Nechvatal, (2010) A Statistical Test Suite for Random and
pseudorandom number generator for cryptographic applications, NIST Special Publication 800-22,
online http://csrc.nist.gov/rng/.

[17] Vinod Patidar ,K. K. Sud & N. K. Pareek (2009) A Pseudo Random Bit Generator Based on Chaotic
Logistic Map andits Statistical Testing, Informatica No 33 pp. 441–452.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 6, December 2014

121

Authors

Ricardo F. Martinez-Gonzalez, PhD.

He was born on Veracruz, Mexico. He received his Bachelor of sciences degree from
Veracruz Institute of Technology. Next on, He studied his M.Sc. degree at National
Institute for Astrophysics, Optics and Electronics, in this place He started to get
involved with Chaos issues. For obtaining his degree, He wrote how design pseudo
random number generators using one-dimensional chaotic maps. Once He obtained
the degree, He got into Veracruz University for a five month period; nevertheless, He
returned to continue his research in Chaos subject, and get it to the next level,
designing ciphers. He took several courses about digital communications and
communication protocols; such courses help him out to finish his research and finally
obtain his PhD degree. At this point, He took the choice of return to his basics; since then, He works at
Veracruz Institute of Technology, where he has been enrolled into a research crew.

J. Alejandro Diaz-Mendez, PhD.

Dr. J. Alejandro Díaz-Méndez is a Full Researcher in the Electronics Department at
INAOE. He received his BSc degree from Universidad Veracruzana, México;
followed by M.Sc and Ph.D. degrees from Instituto Nacional de Astrofísica, Óptica y
Electrónica (INAOE), México, in 1995 and 1999 respectively. In 1999 he was
appointed as professor-Researcher at Instituto Politécnico Nacional, México. He has
authored 30 Journal papers and around 80 conference papers. He has been a member
of technical committees in national and international conferences. He is an IEEE
Senior member and a member of national researcher´s system of México.

