
International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

DOI:10.5121/ijcsit.2014.6305 67

ENHANCING THE MATRIX TRANSPOSE OPERATION
USING INTEL AVX INSTRUCTION SET EXTENSION

Ahmed Sherif Zekri1,2

1Department of Mathematics & Computer Science, Alexandria University, Egypt

2Department of Mathematics & Computer Science, Beirut Arab University, Lebanon

ABSTRACT

General-purpose microprocessors are augmented with short-vector instruction extensions in order to
simultaneously process more than one data element using the same operation. This type of parallelism is
known as data-parallel processing. Many scientific, engineering, and signal processing applications can be
formulated as matrix operations. Therefore, accelerating these kernel operations on microprocessors,
which are the building blocks or large high-performance computing systems, will definitely boost the
performance of the aforementioned applications. In this paper, we consider the acceleration of the matrix
transpose operation using the 256-bit Intel advanced vector extension (AVX) instructions. We present a
novel vector-based matrix transpose algorithm and its optimized implementation using AVX instructions.
The experimental results on Intel Core i7 processor demonstrates a 2.83 speedup over the standard
sequential implementation, and a maximum of 1.53 speedup over the GCC library implementation. When
the transpose is combined with matrix addition to compute the matrix update, B + AT, where A and B are
squared matrices, the speedup of our implementation over the sequential algorithm increased to 3.19.

KEYWORDS

Matrix Transpose, vector instructions, streaming and advanced vector extensions, data-parallel
computations

1. INTRODUCTION

Matrix transpose is a main operation in many matrix- and vector-based computations of image,
video, and scientific and image/signal processing applications. For example, transforming an
image from the time domain to the frequency domain requires the image data first accessed along
the rows then along the columns.

Due to the high processing capabilities required for the previous applications, vendors of
general-purpose (GP) CPUs extended the scalar instruction sets of their CPUs with short-vector
registers and enough execution units in order to process more than one piece of data in parallel.
This parallel execution mode boosted the performance of many data-parallel applications which
are characterized by applying the same operation on multiple data. Intel MMX, SSE, AVX, AMD
3D!Now, Motorola’s AltiVec, and Sun's VIS, are examples of short-vector instruction set
extensions (ISAs) [11].

For solving large scale applications on parallel, distributed, and HPC machines, the data and

processes are distributed among the processors or the nodes of the system so that each part of the
whole application is performed on single node. Therefore, optimizing the kernel operations such
as matrix transpose on nodes or cores (for current multi-core CPUs) is of great importance and
leads to the overall performance enhancement of applications.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

68

Many accelerated algorithms for the matrix transpose operation on vector, parallel, SIMD,
distributed, etc., have been devised in literature. In these algorithms, the matrix transpose
operation have been studied as a communication problem, where different routing schemes are
employed [1],[6],[10],[13]. The transpose operation is also treated as a special case of matrix
permutations [7],[8],[12],[14]. Current one-dimensional implementations of matrix transpose on
CPUs with instruction set extensions use inter- and intra-register data shuffle instructions in a
way similar to Eklunde's original algorithm [2] for out-of-core matrix transpose. Few
implementations of the matrix transpose on modern CPUs with SSE/AVX extensions have been
devised [3],[5],[9].

In this paper, our first contribution is a new vector-based matrix transpose algorithm that is

amenable for direct implementations on contemporary CPU architectures with short-vector
instructions extensions. The algorithm enhances the performance of the kernel matrix transpose
operation where the matrix data can be placed into the vector registers of the underlying
processor. For larger matrix sizes, the blocking approach is applied so that optimized
implementations of the kernel operation is easily deployed to enhance the performance of
transposing a larger matrix.

The second contribution in this paper is a detailed implementation using the new Intel 256-bit

AVX vector instruction extension. We evaluated the performance of our AVX implementation
and compared its performance with: (1) a standard serial implementation, (2) a GCC library using
an SSE implementation of Eklunde's Algorithm, (3) another variant of Eklundh SSE
implementation, and (4) an SSE implementation of our proposed algorithm. The experimental
results on Intel Core i7 processor using the AVX instructions demonstrates a 2.83 speedup over
the standard sequential implementation, and a maximum of 1.53 speedup over the GCC SSE
library implementation. In addition, when the transpose operation is combined with matrix
addition to compute the matrix update B + AT, the speedup of our AVX implementation over the
sequential algorithm increased to 3.19.

The rest of the paper is organized as follows. Section 2 gives an overview of short-vector

instructions, especially Intel AVX instruction set extension. Section 3 presents an overview of the
standard matrix transpose algorithm and presents a new parallel algorithm suitable for CPUs with
short-vector extensions. Section 4 presents our detailed implementation of the proposed algorithm
using AVX instructions together with a comparison of our implementation with other SSE
implementations. Section 5 shows the experimental results and the performance evaluation of
running our implementations on an Intel Core i7 CPU. Section 6 concludes the paper and outlines
future works.

2. SHORT-VECTOR SIMD ISA EXTENSIONS

SIMD (Single Instruction Multiple Data) instructions are extensions to scalar instruction sets of
GP-CPUs. These instruction extensions allow the parallel processing of multiple pieces of data
which speeds up throughput for many tasks in video encoding and decoding, image processing,
data analysis, physics simulations, to name a few. The set of instructions added to the processor
micro-architecture supports the following operations: memory data movement, arithmetic and
logical, comparison, conversion, permutation, state management, and cacheability control.

2.1 AVX instructions

The AVX instructions are introduced in the Intel 64-bit Sandy Bridge processors to extend the
capabilities of the former 128-bit SSE instructions in previous processors to 256-bit allowing for
performance increase.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

69

The AVX instruction extension has sixteen 256-bit registers named YMM0 .. YMM15 which
can hold thirty two 8-bit integers, sixteen 16-bit integers, eight 32-bit integers, four 64-bit
integers, eight 32-bit floating-point numbers, or four 64-bit floating-point numbers. Each YMM
register is logically viewed as two lanes with 128-bit each. In order to use an AVX instruction,
data elements must be first loaded into appropriate AVX registers. Then, apply an AVX
instruction on the vector registers. Finally, the output in AVX registers are stored back to memory
if the data is no longer required.

To use the AVX instructions, one can directly work with assembly language programming or

use compiler intrinsics inside traditional programming languages such as C/C++. In our
implementations in Section 4, we used the latter approach due to its simplicity. Now, we present
some C language intrinsics that are used in our implementation. The reader is encouraged to
check [4] for more details on intrinsics programming using Intel AVX extension.

Figure 1. The eight-element single precision floating-point vectors x and y are loaded into two 256-bit
vector registers YMM0 and YMM1. One AVX assembly instruction "VADDPS YMM2, YMM0, YMM1"

is applied to add their corresponding elements in parallel to produce the result in register YMM2.

Arithmetic instructions. Figure 1 shows the addition of two 256-bit vector registers YMM0 and
YMM1 holding eight single precision floating-point numbers. Using one C intrinsic
_mm256_add_ps(), one AVX hardware instruction is applied to add the eight elements in parallel.
The result eight-element vector is held in register YMM2 as shown in the figure. The single
precision floating point multiplication intrinsic _mm256_mul_ps() multiplies the contents of two
vector registers and stores the result into a third one. The other arithmetic instructions such as
division, subtraction, ...etc, are treated similarly.

Figure 2. The eight-element single precision floating-point vectors x and y are loaded into two 256-bit
vector registers YMM0 and YMM1. One AVX assembly instruction "VPERM2F128 YMM2,

YMM0,YMM1,0X21" is applied to move the second 128-bit of YMM0 to the first 128-bit of YMM2, and
the first 128-bit of YMM1 to the second 128-bit of YMM2. This order is specified in the immediate

operand 0X21 where 1 is the second half index of YMM0 and 2 is the first half index of YMM1.

x0x1x2x3x4x5x6x7

y0y1y2y3y4y5y6y7

x0+y0x1+y1x2+y2x3+y3x4+y4x5+y5x6+y6x7+y7

XMM0

XMM1

XMM2

x0 YMM0

YMM2

x1

y0y1

x1y0

YMM1

01

23

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

70

Figure 3. The AVX assembly instruction "VSHUFPS YMM1, YMM0, YMM0, 0X4E" is applied to
shuffle, circular shift, both 128-bit lanes of register YMM0 by two elements to the right. The immediate

operand 0X4E specifies the order of the four elements in each lane. Register YMM1contains the result after
shuffling.

Data permutation instructions. There are a number of AVX instructions for rearranging data
inside the vector registers based on a control constant field used to select the parts of the registers
that will be collected in the destination register. We discuss here two types of permutations which
are used in our implementations.

The _mm256_permute2f128() intrinsic permutes 128-bit between two input registers using an
immediate control constant, and stores the result in an output register. Figure 2 shows an example
of permuting the two 128-bit lanes of registers YMM0 and YMM1 to produce YMM2. Any 128-
bit permutations can be obtained by adjusting the appropriate immediate filed in the
instruction/intrinsic.

The _mm256_shuffle_ps() intrinsic performs the same permutation to the floating-point

numbers in each YMM lane. Figure 3 shows how the elements in the two lanes of register YMM0
is circularly shifted to the right by one element. This type of data shuffling is used in our
proposed matrix transpose algorithm.

3. MATRIX TRANSPOSE ALGORITHM

In this section, we present a new vector-based matrix transpose algorithm which is suited for
direct implementation using short-vector extensions to contemporary CPU instruction sets.

In the matrix transpose operation, each row of an n x n matrix X is converted to a column so
that xij = xji. The standard sequential operation is performed as in the following algorithm.

SEQUENTIAL ALGORITHM:

01. for i = 0 to n-1
02. for j = i+1 to n-1
03. temp = xi j
04. xi j = xji
05. xji = temp
06. end for
07. end for

3.1 Vector-based Algorithm

Here, we present a new algorithm for the kernel n x n matrix transpose assuming that the size of
each vector register is n. For matrices with larger sizes, the blocking approach can be employed.
Let each row of matrix X is denoted by Xi where i = 0,1,...,n-1 is the row index. The unit vectors
ei are the rows of the Identity matrix where i = 0,1,...,n-1 is the row index. The rows of the output

x0 YMM0

YMM1

01
x1x2x3

23
x4x5x6x7

x0 YMM0
01

x1x2x3

23
x4x5x6x7

0123

0123

x2x3x0x1x6x7x4x5

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

71

matrix T = XT, Xi where i = 0,1,...,n-1. The following parallel algorithm describes how the
transpose of matrix X is performed.

PARALLEL ALGORITHM:

01. Load Xi, i = 0,1, ..., n-1 into vector registers
02. Set ei, i = 0,1, ..., n-1 into vector registers
03. for i = 0,1, ..., n-1
04. for j = 0,1, ..., n-1
05. Element-wise multiply vectors Xj , ej
06. Accumulate result into vector Tj
07. Shuffle vector Xj
08. end for
09. Set Tj = Tj1, j=0,1, ..., n-1
10. end for
11. Store Ti, i = 0,1, ..., n-1 into memory

Initially, the rows of the input matrix, Xi, i = 0, 1,..., n-1, are loaded into vector registers; each
row is loaded into a separate register. The unit vectors, ei, i = 0, 1,..., n-1, are pre-set into other
vector registers. Figure 4 is an n = 4 example showing the alignment of the matrix rows Xi and
the unit vectors ei inside the vector registers. The output rows Ti are zeroed inside other four
vector registers, which are not shown in the figure. Note that the order of the vector register
elements are from right to left, as the actual index of the elements of the vector registers.

In the inner-loop at Line 04, for each pair of vector registers Xi and ei: (1) perform element-

wise multiplication followed by (2) element-wise accumulation of the results into output vector
register Ti, then, (3) the vectors Xi are shuffled or circularly shifted one element to the right.
Before starting the next iteration of the outer-loop at Line 03, vectors Ti are renamed as shown in
Line 09 where the operator  is for addition modulo n. The outer-loop is repeated n iterations to
get the final transpose of X. At the end, the output vector registers are stored back into memory.

Figure 4. The four rows Xi, i = 0,1,2,3 of the 4x4 single precision floating-point matrix X, and the
corresponding unit vectors ei, i = 0, 1, 2, 3 preloaded into four vector registers.

x00x01x02x03

1000

X0

e0

x11x12x13x10

0100

X1

e1

x22x23x20x21

0010

X2

e2

x33x30x31x32

0001

X3

e3

Element 0Element 1Element 2Element 3

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

72

4. IMPLEMENTATION USING INTEL AVX INSTRUCTIONS

In this section, we present our implementation of the proposed parallel algorithm given in Section
3 using AVX instructions. We consider the kernel 4x4 matrix transpose of single precision
floating-point numbers that is pervasive in many graphics and multimedia applications. Larger
matrix sizes are treated by partitioning the matrix into 4x4 blocks and using our optimized
implementation on each individual block.

The code listing in Figure 5 shows our implementation of the proposed parallel matrix transpose
algorithm using C language compiler intrinsics. The transpose of the 4x4 matrix is done in four
iterations. The listing shows the first and second iterations only where the third and fourth
iterations are processed in the same way. Since the matrix row size is 128-bit, i.e., four float
numbers, and the AVX registers are 256-bit wide, then two 4x1 rows of the input matrix X are
accommodated in one 256-bit AVX register. Therefore, one 256-bit AVX instruction can be
applied to get the result of the element-wise multiply of two matrix rows Xi and Xj with the
corresponding two unit vectors ei and ej. The result matrix is then accumulated in two output
vectors Ti and Tj where each output vector in one AVX register. In addition, the shuffling of two
rows of matrix X two elements to the right is processed using one AVX instruction.

Figure 5. The first two iterations of our implementation of the proposed matrix transpose algorithm using
C language intrinsics of the AVX instructions, n =4.

The order of the elements after the shuffle operation is determined by the hexadecimal immediate
pattern 4E that is applied to both 128-bit lanes of the AVX register. The final result of the matrix
transpose is obtained after four iterations (n = 4) o f the algorithm. The last two lines in the code
listing represent an intermediate step required to permute result vectors before the third and fourth
iterations, this is the same permutation explained earlier in Figure 2. Note that the intrinsics are
applied using variables of type 256-bit introduced in AVX header files. The vector t4 contains the
first and second rows of matrix X. The first row is loaded in the first lane of a 256-bit register and
the second row in the second lane. The vector t5 contains the third and fourth rows. Vectors t8
and t9 contains the four output rows of matrix T = XT, which are permuted and moved to t10 and
t11 at the end of iteration two.

// Iteration 1
t12= _mm256_mul_ps(t4,t0);
t4=_mm256_shuffle_ps(t4,t4,0x4E);
t8=_mm256_add_ps(t8,t12);
t13=_mm256_mul_ps(t5,t1);
t5=_mm256_shuffle_ps(t5,t5,0x4E);
t9=_mm256_add_ps(t9,t13);
// Iteration 2
t12=_mm256_mul_ps(t4,t0);
t4=_mm256_shuffle_ps(t4,t4,0x93);
t9=_mm256_add_ps(t9,t12);
t13=_mm256_mul_ps(t5,t1);
t5=_mm256_shuffle_ps(t5,t5,0x93);
t8=_mm256_add_ps(t8,t13);
// Intermediate Permute
t10=_mm256_permute2f128_ps(t8,t9,0x21);
t11=_mm256_permute2f128_ps(t9,t8,0x21);

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

73

Figure 6 shows the layout of input matrix X and output matrix T inside the AVX registers at
iterations 1,2,3, and 4 of our parallel algorithm. The same sequence of instructions is applied to
the four iterations. Note that, the two output AVX registers, shaded in the figure, holding the rows
of the transposed matrix T are permuted at the end of iteration 2 so that data is properly aligned
for the rest of iterations. Note that, after the last iteration of the algorithm, a similar permutation
between the output registers needs to be applied if we demand the rows of the transposed matrix
T in the usual rows order. In other words, at the end of iteration four, the contents of the first
output register as shown in the figure is [T0, T3] and the second register is [T2, T1]. After the
permutation they should become [T1, T0] and [T3, T2], respectively.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed parallel transposed algorithm and its
implementation using the AVX instruction set extension. Also, we compare the performance of
the AVX implementation with the standard sequential algorithm and other SSE implementations.

Figure 6. The layout of rows Xi and the unit vectors ei, i = 0,1,2,3 inside 256-bit AVX registers before
starting each iteration. The shaded registers are the output vector Ti, i = 0,1,2,3 at the end of each iteration.
The numbers to the left of the figure indicate the iteration number. For each AVX register, bits 0-127 are in

Lane 0, and bits 128-255 are in Lane 1.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

74

5.1 Experimental Setup

In our implementation of the parallel matrix transpose algorithm, we used the AVX compiler
intrinsics for the GNU GCC 4.6.1 compiler. We tested our programs on a Dell notebook with
Intel Core i7 2670QM CPU at 2.20 GHz, and running the operating system Ubuntu Linux 12.04
64-bit. The code is tested using one core of the four available physical cores of the Core i7
processor since we are optimizing the 4x4 matrix transpose kernel which is a basic block in a
whole application. To hide the loop overhead, we unrolled the outer and inner loops in the
proposed parallel algorithm. In order to achieve the maximum parallelism during execution on the
Core i7, the AVX instructions from different iterations are interleaved in execution. We also
applied the -O2 optimization flag in all the tested codes in order to invoke other code
optimizations by the gcc compiler. We implemented the sequential matrix transpose algorithm
and used the same optimization options to get a fair comparison. We also implemented an SSE
version of our algorithm and a GCC SSE implementation used in the built-in intrinsic
_mm_transpose4_ps() in order to compare them with our AVX implementation.

The run times reported measures the execution times of all implemented algorithms without
counting the time of loading the input matrix into the vector registers and storing the result back
to memory. The execution time for each algorithm is an average of hundred runs.

Figure 7. The performance of our AVX parallel implementation of the 4x4 single-precision floating point

matrix transpose, AT, compared to the sequential implementation.

5.2 Results

For comparing the results, we calculated the speedup which is the ratio of the execution time of
the sequential or traditional algorithm to the execution time of the parallel or enhanced algorithm.
Figure 7 the performance comparison between our AVX implementation and the standard
sequential matrix transpose algorithm. Figure 8 compares the performance of our AVX
implementation with the SSE implementations of our algorithm and of the GCC built-in code.
The execution time is measured in seconds x 10-7.

0.036

0.102

0

0.02

0.04

0.06

0.08

0.1

0.12

Proposed AVX Serial

Exec.Time in Seconds x 10^-7

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

75

Figure 8. Comparing the performance of our AVX implementation of the 4x4 single-precision floating
point matrix transpose, AT, to the SSE implementations of our algorithm, GCC built-in library, and

Eklundh's algorithm.

Figure 9. The performance of our AVX parallel implementation of the 4x4 single-precision floating point

matrix transpose, B + AT, compared to the sequential implementation.

0.036 0.042
0.055 0.052

0

0.02

0.04

0.06

0.08

0.1

0.12

Proposed
AVX

Proposed
SSE

GCC
Builtin

SSE

Ekhlundh
SSE

Exec.Time in Seconds x 10^-7

0.036

0.115

0

0.02

0.04

0.06

0.08

0.1

0.12

Proposed AVX Serial

Exec.Time in Seconds x 10^-7

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

76

Figure 10. Comparing the performance of our AVX implementation of the 4x4 single-precision floating
point matrix transpose, B + AT, to the SSE implementations of our algorithm, GCC built-in library, and

Eklundh's algorithm.

Table 1. The speedup calculated for all four implementations in relation to the serial implementation of the
4x4 floating-point matrix transpose AT and the update B + AT.

Operation Proposed

AVX
Proposed
 SSE

GCC
Built-
in
SSE

Eklundh
SSE

AT 2.83 2.40 1.84 1.96
B + AT 3.19 2.74 2.09 2.21

The displayed results on Table 1 shows a 2.83 speedup over the standard sequential

implementation, and 1.54 speedup over the GCC built-in implementation. Our proposed
algorithm can perform a matrix addition to the transposed matrix without any additional
processing. That is, the matrix update B + AT does not require any modification to our proposed
algorithm. Only matrix B is loaded into the output registers which store the transpose of matrix A.
Table 1 also shows our timing results after updating the AVX and SSE implementations. We can
see that an enhanced speedup of 3.19 of the AVX implementation over the sequential algorithm is
obtained, see Figure 9. Meantime, all other SSE implementations behave the same as our AVX
implementation. This is because the AVX and SSE implementations exploited the underlying
architecture of the processor so that the additional floating-point add instructions are overlapped
in execution with the shuffle and permute instructions. This can be seen from comparing the
timing results of Figure 10 and the previous figure, Figure 9 where no reductions in the execution
time of the SSE implementations. However, the add instructions will increase the size of the SSE
implementations of Eklundh's variants.

7. CONCLUSIONS

The AVX short-vector instructions are 256-bit vector extensions to general-purpose instruction
sets to accelerate the execution of the data-parallel computations in scientific, engineering, and
signal processing applications. In this paper, we have presented a new vector-based matrix
transpose algorithm amenable to implementations on modern GP-CPUs that constitute the core
execution engine of high-performance distributed and parallel systems. We have concentrated on

0.036 0.042
0.055 0.052

0

0.02

0.04

0.06

0.08

0.1

0.12

Proposed
AVX

Proposed
SSE

GCC
Builtin

SSE

Ekhlundh
SSE

Exec.Time in Seconds x 10^-7

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

77

enhancing the performance of kernel operations that have direct impact on enhancing the overall
performance of whole applications that require the transpose of large size matrices.

We have presented a detailed implementation of the kernel 4x4 single precision floating-point
matrix transpose which is a pervasive kernel in graphics, multimedia, and image/signal
processing. To the best of our knowledge, we didn't see any implementation of the 4x4 matrix
transpose using AVX short vector instructions. Therefore, our implementation may fill a gap
when transforming old 128-bit SSE implementations of matrix and vector computations into
newer 256-bit AVX implementations and even future extensions to 512- and 1024-bit.

To transpose a larger size matrix, the blocking approach can be applied so that the input matrix

is partitioned into small kernel blocked that fit into the vector registers. Hence, optimized kernel
such as the one we presented in this paper can be employed.

Our algorithm is scalable and doesn't require any modification if implemented in future vector

extensions with vector register sizes more than 256-bit. This scalability is based on the
architectural support of a data shuffle instruction that cyclically shift the register elements.

We evaluated the performance of our AVX implementation on a Core i7 processor, and our

results showed a speedup of 2.83 over the standard sequential implementation. Also, our
implementation showed a maximum speedup of 1.53 over a GCC library implementation that use
SSE instructions. When the transpose operation is combined with the matrix addition, B + AT,
the speedup over the sequential algorithm increased to 3.19 without any modifications to the
original transpose algorithm. These results demonstrate the merit of using the 256-bit AVX
instruction extension over the 128-bit SSE extension for kernel matrix transpose, and other matrix
kernels as well.

 Our next ongoing research is focused on linear algebra and image processing applications

where we can apply our implementations of the kernel matrix transpose for enhancing these
applications on multi-core processors.

REFERENCES

[1] Choi J., Dongarra J. and Walker D.,"Parallel matrix transpose algorithms on distributed memory

concurrent computers." Parallel Computing, 21(9):1387-1405, 1995.
[2] Eklundh J., "A fast computer method for matrix transposing." IEEE Trans. Computing, 21(7):801-

803, July 1972.
[3] Free Software Foundation, Inc., "GCC implementation of the SSE header

file."http://opensource.apple.com/source/gcc/gcc-1762/gcc/config/i386/xmmintrin.h
[4] Intel Corporation. "Intel ® Advanced Vector Extensions Programming Reference." Number 319433-

010. Apr 2011.
[5] Intel Corporation."Intel ® 64 and IA-32 Architectures Optimization Reference Manual, Volume A."

Number 327268-026. April 2012.
[6] Kaufmann M., Meyer U. and Sibeyn J., "Matrix transpose on meshes: Theory and practice." In IPPS

'97: Proceedings of the 11th International Symposium on Parallel Processing, pages 315-319, 1997.
[7] Kaushik S. et. al.,"Efficient transposition algorithms for large matrices." In Supercomputing

'93:Proceedings of the 1993 ACM/IEEE conference on Supercomputing, pages 656-665, New York,
 NY, USA, 1993.

[8] Krishnamoorthy S. et al., "Efficient parallel out-of-core matrix transposition." International Journal of
High Performance Computing and Networking, 2(2/3/4), 2004.

[9] Nenakhov S., "AVX register transpose."http://www.kevinstock.org/2011/03/avx-register-
transpose.html, March 2011.

[10] Petkov N., Systolic Parallel Processing. Elsevier Science Inc., New York, NY, USA, 1992.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

78

[11] Slingerland N. and Smith A., "Multimedia extensions for general purpose microprocessors: a survey."
Microprocessors and Microsystems, 29(5):225-246, 2005.

[12] Suh J. and Prasanna V., "An efficient algorithm for out-of-core matrix transposition." IEEE Trans.
Computing, 51(4), 2002.

[13] Tsay J., Ding K. and WangW., "Optimal algorithm for matrix transpose on wormhole-switched
meshes." J. Inf. Sci. Eng., 19(1):167-177, 2003.

[14] Zekri A. and Sedukhin S., "Matrix transpose on 2D torus array processor." In The 6th IEEE
International Conference on Computer and Information Technology, page 45, Seoul, Korea,
September 2006.

Authors

Ahmed S. Zekri

Received both B.Sc. and M.Sc. in computer science from Department of Mathematics &
Computer Science, Faculty of Science, Alexandria University. He has a Ph.D. degree in
computer science from The University of Aizu, Japan 2008. Presently he is working as
Assistant Professor at Alexandria University and Beirut Arab University. His research
interests include parallel and distributed computing, image processing, and scientific
computing.

