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ABSTRACT 
 
Many computational solutions can be expressed as workflows.  A Cluster of processors is a shared 
resource among several users and hence the need for a scheduler which deals with multi-user jobs 
presented as workflows. The scheduler must find the number of processors to be allotted for each workflow 
and schedule tasks on allotted processors. In this work, a new method to find optimal and maximum 
number of processors that can be allotted for a workflow is proposed. Regression analysis is used to find 
the best possible way to share available processors, among suitable number of submitted workflows.  An 
instance of a scheduler is created for each workflow, which schedules tasks on the allotted processors. 
Towards this end, a new framework to receive online submission of workflows, to allot processors to each 
workflow and schedule tasks, is proposed and experimented using a discrete-event based simulator. This 
space-sharing of processors among multiple workflows shows better performance than the other methods 
found in literature. Because of space-sharing, an instance of a scheduler must be used  for each workflow 
within the allotted processors. Since the number of processors for each workflow is known only during 
runtime, a static schedule can not be used. Hence a hybrid scheduler which tries to combine the advantages 
of static and dynamic scheduler is proposed. Thus the proposed framework is a promising solution to 
multiple workflows scheduling on cluster. 
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1. INTRODUCTION 
 
Many business, industrial and scientific areas, such as high-energy physics, bioinformatics, 
astronomy, epigenomics, stock market and others involve applications consisting of numerous 
components(tasks) that process data sets and perform scientific computations. These tasks 
communicate and interact with each other. The tasks are often precedence-related. The problem 
of scheduling jobs with precedence constraints is an important problem in scheduling theory and 
has been shown to be NP-hard [1]. Data files generated by one task are needed by other tasks. 
The requirement of large amount of computations and data storage of these applications can be 
provided by a cluster. Because of huge technological changes in the area of parallel and 
distributed computing, powerful machines are now available at low prices. This is visible in large 
spreading of cluster with hundreds of homogeneous/heterogeneous processors connected by high 
speed interconnection network [2]. This democratization of cluster calls for new practical 
administration tools.  
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The task scheduling problem is to allocate resources (processors) to the tasks and to establish an 
order for the tasks to be executed by resources.  There are two different types of task scheduling: 
static and dynamic. Static strategies define a schedule at compile time based on estimated time 
required to execute tasks and to communicate data. Static schedule can be generated only when 
the application behaviour is fully deterministic and this has the advantage of being more efficient 
and a small overhead during runtime. The full global knowledge of application in the form of 
DAG will help to generate a better schedule. Dynamic strategies, on the other hand are applied 
when tasks are generated during runtime. Tasks are assumed to be non-preemptive.  
 
Workflows have recently emerged as a paradigm for representing complex scientific 
computations [26]. Few widely used example workflows are   Montage (Fig. 2), cybershake, 
LIGO, SIPHT. Workflows represented by one of many workflow programming languages can be 
translated into DAG, in general. Thus workflow scheduling is essentially a problem of scheduling 
DAG. Although much work has been done in scheduling single workflow [3], multiple workflow 
scheduling is not receiving deserved attention. Few initial studies are found in the literature [4, 5]. 
Because of huge computing power of a cluster and the inability of a single DAG to utilize all 
processors on cluster, multiple DAG applications need to be executed concurrently. Thus a 
scheduler to deal with multi-user jobs with the objectives of maximizing resource utilization and 
minimizing overall DAG completion time is essential. The contributions of this paper are 1) a 
new method to find minimum, optimal and maximum number of processors that can be allotted 
for a DAG and this information is used to find one best way to share available processors among 
multiple DAGs 2) a framework to receive submission of DAGs, find the allotment for each 
submitted DAG and schedule tasks on allotted processors, with the objectives of maximizing 
resource utilization and minimizing overall completion time. 
 
1.1. Application Model 

 
The data flow model is gaining popularity as a programming paradigm for parallel processors. 
When the characteristics of an application is fully deterministic, including task's execution time, 
size of data communication between tasks, and task dependencies, the application can  be  
represented by directed acyclic graph (DAG) as shown in Fig.1. Each node in DAG represents a 
task to be performed and the edges indicate inter-task dependencies. Node weight stands for the 
computation cost of the corresponding task and the edge cost represents the volume of data to be 
communicated between the corresponding nodes.  The node and edge weights are usually 
obtained by estimation or profiling. Communication-to-Computation (CCR) is the ratio of 
average communication cost to the average computation cost of a DAG. This characterizes the 
nature of DAG. The objective of scheduling is to map tasks onto processors and order their 
execution so that task dependencies are satisfied and minimum overall completion time is 
achieved. Makespan is the total time required to complete a DAG. 
 
1.2. Platform 

 
A cluster with ‘P’ homogeneous processors, each of which is a schedulable resource is 
considered. Processors are interconnected by a high speed and low latency network. A processor 
can communicate with several other processors simultaneously with multi-port model. 
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Figure 1.  A Typical DAG    Figure 2. Montage – a Workflow   

 
2. RELATED WORK  

 
Extensive work has been done on scheduling a single DAG [6, 7, 8]. Zhao et al.[4] have proposed 
few methods to schedule multiple DAGs. One approach is to combine several DAGs into one by 
making the entry nodes of all DAGs, immediate successors of new entry node and then use 
standard methods to schedule the combined DAG. Another way is to consider tasks from each 
DAG in round robin manner for scheduling. They have proposed other policies to optimize both 
makespan and fairness. The key idea is to evaluate, after scheduling a task, the slowdown value of 
each DAG against other DAGs and make a decision on which DAG must be considered next for 
scheduling.  
 
A list scheduling method to schedule multi-user jobs is developed by Barbosa et al. [9] with an 
aim to maximize the resource usage by allowing a floating mapping of processors to a given job, 
instead of the common mapping approach that assigns a fixed set of processors to a user job for a 
period of time. A master DAG where each node is a user job and each edge representing a priority 
of one job over another is constructed using all submitted DAGs.  A list scheduling algorithm [6] 
is used to schedule all tasks of Master DAG. The master DAG is created based on job priorities 
and deadlines 
 
Bittencourt et al. [10] have used Path Clustering Heuristic (PCH) to cluster tasks and the entire 
cluster is assigned to a single machine. They have proposed four heuristics which differ in the 
order tasks of multiple DAGs are considered for scheduling. The methods are sequential, Gap 
search method, Interleave algorithm and Group DAGs method. A meta-scheduler for multiple 
DAGs [11] merges multiple DAGs into one to improve the overall parallelism and optimize idle 
time of resources. The efforts are limited to the static case and they do not deal with dynamic 
workloads.  
 
Duan et al. [12] have proposed a scheduling algorithm based on the adoption of game theory and 
idea of sequential cooperative game. They provide two novel algorithms to schedule multiple 
DAGs which work properly for applications that can be formulated as a typical solvable game. 
Zhifeng et al. [13] addresses the problem of dynamic scheduling multiple DAGs from different 
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users. They expose a similar approach from Zhao et al. [4] without merging DAGs. Their 
algorithm is similar to G-heft algorithm. 
 
An application which can exploit both task and data parallelism can be structured as Parallel Data 
Graph (PTG) in which task can be either sequential or data parallel. Data parallelism means 
parallel execution of the same code segment but on different sections of data, distributed over 
several processors in a network. A DAG is a special case of PTG where task can only be 
sequential task. Thus PTG scheduling is quite similar to DAG scheduling. Not much work is 
carried out in Multiple PTG scheduling. Tapke et al. [5] have proposed an approach where each 
PTG is given a maximum constraint on number of processors it can use and tasks are scheduled 
using a known PTG scheduling algorithm. The size of each processor subset is determined 
statically according to various criteria pertaining to the characteristics of PTG like maximum 
width, total absolute work to be done and proportional work to be carried out.  
 
Sueter et al. [14] have focused on developing strategies that provide a fair distribution of 
resources among Parallel Task Graphs (PTG), with the objectives of achieving fairness and 
makespan minimization. Constraints are defined according to four general resource sharing 
policies: unbounded Share(S), Equal Share (ES), Proportional Share (PS), and Weighted 
Proportional Share (WPS). S policy uses all available resources. ES policy uses equal resources 
for each PTG. PS and WPS use resources proportional to the work of each PTG, where the work 
is considered as critical path cost by width of PTG. 
 
A study of algorithms to schedule multiple PTGs on a single homogeneous cluster is carried out 
by Casanova et al. [15]. Therein it is shown that best algorithms in terms of performance and 
fairness all use the same principle of allocating a subset of processors to each PTG and that this 
subset remains fixed throughout the execution of the whole batch of PTGs. The basic idea in job 
schedulers [19] is to queue jobs and to schedule them one after the other using some simple rules 
like FCFS (First Come First Served) with priorities. Jackson et al. [20] extended this model with 
additional features like fairness and backfilling. 
 
Online scheduling of multiple DAGs is addressed in [16]. Authors have proposed two strategies 
based on aggregating DAGs into a single DAG. A modified FCFS and Service-On-Time (SOT) 
scheduling are applied. FCFS appends arriving DAGs to an exit node of the single DAG, while 
SOT appends arriving DAGs to a task whose predecessors have not completed execution. Once 
the single DAG has been built, scheduling is carried out by HEFT. 
 
An Online Workflow Management (OWM) strategy [18] for scheduling multiple mix-parallel 
workflows is proposed. DAG tasks are labelled, sorted, and stored into independent buffers. 
Labelling is based on the upward rank strategy. The sorting arranges tasks in descendent order of 
the task rank. Task scheduling referred to as a rank hybrid phase determines the task execution 
order. Tasks are sorted in descending order when all tasks in the queue belong to the same 
workflow. Otherwise, they are sorted in ascending order. Allocation assigns idle processors to 
tasks from the waiting queue.  
 
Raphael et al. [23] have addressed online scheduling of several applications modelled as work-
flows. They have extended a well-known list scheduling heuristic (HEFT) and adapted it to the 
multi-workflow context. Six different heuristics based on HEFT key ideas are proposed.  These 
heuristics have been designed to improve the slowdown of different applications sent from 
multiple users.  
 
Much work has not been done on scheduling multiple DAG applications. A common approach is 
to schedule a single DAG on fixed number of processors [6] but methods to find the number of 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 2, April 2014 
 

 
191 

processors to be used for a DAG, are not found in literature. Tapke et al. [5] have proposed 
methods to find maximum resource constraint for each PTG, while scheduling multiple PTGs. 
But they have not restricted scheduling of a PTG to the fixed set of processors. A method 
proposed by Barbosa et al. allows floating number of processors to a given job, instead of fixed 
number of processors. Many existing workflow scheduling methods do not use fixed set of 
processors for each DAG. Instead a task based on some heuristic is picked among tasks of all 
DAGs and is scheduled on a processor where it can start earliest based on some heuristic.  The 
work proposed in this paper is similar to Barbosa [9] method, in the sense that a fixed set of 
processor is allocated for each DAG which later can be varied during runtime with the objective 
of maximizing resource usage. Their work does not address several issues like - how initial 
processor allotment for each DAG is made, a method to decide number of DAGs to be scheduled 
concurrently among several submitted DAGs, to deal with online submission of DAGs. This work 
addresses all the above mentioned issues.  
 
3. PROCESSOR ALLOTMENT FOR A DAG  

 
A schedule for a DAG can be obtained with varied number of processors. By increasing the 
number of processors allotted for a DAG, its makespan decreases. The gain in terms of reduction 
in makespan, reduces as more number of processors are allotted to a DAG. This is due to 
communication overhead and limited parallelism present in DAG. The optimal and maximum 
number of processors for a DAG will help in finding processor allotment while scheduling 
multiple DAGs concurrently on a cluster. 
   
3.1. Maximum Number of Processor for a DAG 

 
The maximum number of processors a DAG can utilize depends on its nature and degree of 
parallelism present in it.  The number of allotted processors, beyond which DAG’s makespan 
does not decrease with any more additional processors, is the maximum number of processors 
that can be utilized by a DAG. A brute force method can be used to find this, by making several 
calls to scheduling method and recording the makespan for each case. But an efficient binary 
search based method [24] is used in this work and its time complexity is O(log n) against O(n) of 
the brute force method.  
 
3.2. Optimal Number of Processor for a DAG 

 
Optimal number of processors for a DAG is that number up to which every added processor is 
utilized well and beyond it, they are underutilized.  With increase in number of allotted 
processors, DAG’s makespan decreases and average processor utilization decreases due to 
communication overhead and limited parallelism. Average processor utilization can best be 
measured using computing area, which is the product of makespan and the number of processors 
used. In this work, computing area is used to find the optimal number of processors for a DAG. 
As processor allotment to a DAG is increased, makespan decreases and computing area increases. 
Initially decrease in makespan is more than increase in computing area, justifying the worthiness 
of increase in processor allotment. After the processor allotment reaches a certain value, the 
increase in computing area is more than the decrease in makespan for every added processor, 
indicating that any further increase in processors allotment is not of significant use.  
 
By successively increasing number of processors allotted for a DAG, makespan and computing 
area are recorded. The number of processors for which decrease in makespan becomes less than 
the increase in computing area, fixes the optimal number of processors for a DAG. 
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4. MULTIPLE DAGS SHARING CLUSTER 
 

It is advantageous to schedule multiple DAGs simultaneously on a cluster instead of dedicating 
the entire cluster to a single DAG, due to communication overhead. Furthermore, it is beneficial 
to schedule more number of DAGs each with relatively less number of processors than 
scheduling less number of DAGs each with large number of processors, because of 
communication overhead. The returns, in terms of decrease in makespan, for each additional 
processor differs for each DAG depending on its nature and number of processors already allotted 
to it. Hence additional processors must be allotted to those DAGs which will be benefitted most 
by means of reduction in makespan. To find the most benefitting DAGs, reduction in makespan 
for the next added processor must be known for each DAG. Reduction in makespan for every 
added processor can be best captured as an equation using regression analysis and are provided to 
scheduler along with DAG. During regression analysis of large number of DAGs, it is observed 
that for any DAG, makespan reduction follows either exponential or power curve. Thus for each 
DAG, makespan reduction for each added processor is recorded and curve fitting is done. The 
type of equation and its constants are stored along with each DAG, which then is used by the 
scheduler while finding processor allotment for each DAG, while scheduling multiple DAGs. The 
scheduler is invoked when a DAG arrives or a DAG completes execution. The minimum number 
of processors to be allotted for each DAG is assumed to be four, by conducting the experiments 
large number of times. The algorithm for the proposed scheduler is given below. 
 
Algorithm multi_dag_scheduler() 
// information submitted along each DAG – opt_proc, max_proc, eqn_type, eqn_const 
//avail_proc – currently available number of free processors 
// let min_core = 4 
Input : submitted DAGs 
Output : processor allotment and calling an instance of scheduler for each DAG 
 
Step 1:  if (arrival)  then     // DAG has arrived 
Step 2:         if (avail_proc < min_core ) then 
Step 3:            append to waiting queue 
Step 4:        else 
Step 5 :          allot (min_proc or max_proc or opt_proc) whichever best fits avail_proc 
Step 6 :          create an instance of scheduler for a DAG on allotted processors 
Step 7 :        endif 
Step 8:   else        //DAG has completed 
Step 9:         if ( waiting queue is not empty) then 
Step 10 :           do_allot() 
Step 11 :       endif 
Step 12 : end_algorithm 
 
 
Algorithm do_allot() 
Step 1:  remove those many number of DAGs from queue beginning, whose sum of their 

min_proc is less than avail_proc 
Step 2 : if (sum of opt_proc of all removed DAGs is less than available processors) then 
Step 3 :        allot opt_proc to each removed DAG 
Step 4 :  else 
Step 5 :      for each removed DAG allot their min_proc number of processors  
Step 6 : endif 
Step 7 :  if  (free processors are left)   then 
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Step 8 :      distribute those free processors among DAGs, in such a way that each processor is 
added to that DAG for which it  yields maximum reduction in makespan, using 
equations types and their constants 

Step 9 :   endif 
Step 10 : end_algorithm 
  
5. A HYBRID SCHEDULER 

 
Two important factors that affect task schedule are - balancing the load across all processors 

and minimizing communication time. Towards these end, novel hybrid scheduling methods are 
proposed to map a task to the right processors and to order their execution on the allotted 
processor, using the static information of DAG. A dynamic scheduler tries to balance the load on 
all processors and the only information that it can get is the number of tasks yet to be completed 
one ach processor. Since the scheduler does not know the execution time of tasks, it can not find 
the exact load on each processor, thus the schedule suffers. Static scheduler is generally preferred 
when the nature of application is deterministic because it generates schedule close to optimal and 
incurs low runtime overhead. Also, task execution and communication very often differs from the 
estimated values. In all such cases, use of static schedule to run the application suffers. Thus the 
static scheduler run into the problem of pre-committing the schedule to a processor, even when 
better scheduling is possible on another processor. Also, it is not possible to predict execution 
time of tasks, as it depends on several factors like actual input, memory and bandwidth available 
to it, other co-running processes. 

 
5.1. Motivational Example  
 
Static scheduler is generally preferred when the nature of application is deterministic because it 
generates schedule close to optimal and incurs low runtime overhead. An example is used to 
illustrate the motivation for this work. This shows the drawback/behavior of static schedule when 
execution time of tasks is different from their predicted values. A DAG of 10 tasks, along with 
execution time of each task is shown in Fig. ?? . In order to understand the real spirit behind this 
work, communication time is not considered. The static schedule for the DAG in Fig ?? using 
ETF method is given below. 
 
Processor PE1 – t0,  t1,  t3, t7,  t8,  t9 
Processor PE2 – t2,  t4,  t5, t6 
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The execution map of DAG is given in Fig. ??, using the above static schedule, when all tasks 
take exactly the predicted time for execution. The DAG completion time is 180 units. Due to 
runtime dynamics, if task t3 gets delayed, taking 70 units instead of 50 units, then the execution 
map is shown in Fig ??. It is evident from the figure Fig ??, that processor P2 is idle waiting for 
task t6 to become ready, which in turn is waiting for the completion of task t3. But a better 
schedule would have been to start executing the already task t8 on PE1 instead of waiting for task 
t6. With this delay in task t3 time, DAG completion time is increased from 180 to 200 units. The 
DAG execution by the proposed hybrid scheduler is given in Fig. ??. Here tasks are maps are 
mapped to the processors when they become ready for execution, with the objective of balancing 
the load across all processors. Thus when task t3 gets delayed, other ready tasks t7 and t8 are 
scheduled on PE2, thus eliminating idle time. The improved schedule completes DAG in 190 
units, an improvement over the use of static schedule. 
 
6. EXPERIMENTAL SETUP AND RESULTS 

 
5.1. Experiment Setup  
 
A discrete-event based simulator is developed to simulate the arrival, scheduling, execution and 
completion of DAGs. Simulation allows performing statistically significant number of 
experiments for a wide range of application configurations.  Poisson distribution is used to 
simulate the arrival time of DAGs. Several kinds of benchmark DAGs from several sources are 
used to experiment the proposed scheduler for different types of DAGs. Series-parallel DAGs  
from Task Graphs For Free [22], random DAGs from Standard Task Graph Set [21], DAGs of 
linear algebra applications like FFT, LU decomposition, Gauss-elimination, Laplace transform 
and workflows like LIGO, cybershake, Montage, SIPHT[25].  DAGs with CCR values of 0.1, 
0.4, 1 and 5 are used in experiments.  
 
5.2. Results and Analysis 
 
5.2.1. Optimal and Maximum Number of Processors for a DAG 
 
An efficient binary search based method [24] with time complexity of O(log(n)) is used to find 
the maximum number of processors a DAG can utilize. The decrease in makespan and increase in 
computing area (decrease in average processor utilization) for every added processor is used to 
fix the optimal number of processors for a DAG. The plot of decrease in makespan and increase 
in computing area for different number of processors, for a DAG is given in Fig.3. The crossover 
point gives the optimal number of processors for that DAG.  The method can be used for any kind 
of DAG. 
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Figure 3. To find Optimal Number of Processors for a DAG 
 
5.2.1. Multiple DAGs Scheduling  
 
Recent works on multiple DAG scheduling [4, 5, 9, 10, 11, 12, 14] have not considered allotment 
of fixed set of processors to a DAG. Instead, tasks from all DAGs are scheduled on any processor 
on which they can start earliest, using some heuristic. Hence initially, it is proved experimentally 
that space partitioning of processors among multiple DAGs, delivers improvement in 
performance compared to combined DAGs scheduling. To experiment this, a set of DAGs of all 
kinds, were scheduled on a cluster with 100 numbers of processors. The metric used is the sum of 
computing area of all scheduled DAGs. To study the effect on both computation intensive and 
communication intensive applications, DAGs with both low and high CCR are considered. Two 
sets of DAGs each with 8 and 16 number of DAGs, under each category are considered. Thus the 
four categories of DAGs are labelled as ccrl_8, ccrl_16, ccrh_8 and ccrh_16. Since the behaviour 
depends on the nature of DAG, 50 sets of DAGs are considered for each category. Care is taken 
to consider all different types of DAGs in the sets of DAGs. The results obtained from 50 sets are 
averaged and the same is shown in Fig. 4. The performance of the proposed method is better than 
combined DAGs scheduling for all four categories of DAGs. For the category ccrh_8, proposed 
method shows maximum improvement of 12%, since DAGs are communication intensive and 
thus scheduling tasks on fixed set of processors reduces time to complete the DAG. Performance 
improvement is only 9% for the category ccrh_18, as there is less scope for further improvement 
due to large number of DAGs being scheduled together.  

 
Figure 4. Combined DAGs scheduling vs Proposed Space-sharing Schedule 

 
The benefits of space partitioning processors which cannot be measured for DAGs with dummy 
tasks are 1) as tasks of a DAG are scheduled on the same set of processors, they will be benefitted 
from cache-warm and secondary memory warm. 2) an online scheduler can be used for each 
DAG, after allotting a set of processors to it. 3) processor allotment for a DAG can be varied 
depending on availability of processor, with the objectives of maximizing resource utilization. 
 
A highlight of this work is to find one best way to share available processors among multiple 
DAGs, using regression analysis. The proposed work is compared against policies proposed by 
Tapke et al. [14] - unbounded Share(S), Equal Share (ES), Proportional Share (PS), and Weighted 
Proportional Share (WPS). The strategy S which is a selfish allocations and tasks of different 
DAGs are not differentiated is used as a baseline performer for other strategies as it gives 
an indication of performance of heuristics originally designed for single DAG. Values 
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obtained are normalized with the value of S strategy, to help in comparison. Performance metric 
used is average makespan and resource utilization which is measured as the sum of computing 
area of all DAGs scheduled together. Five categories of DAGs each with 4, 8, 12, 16 and 20 
number of DAGs are considered. Random, series-parallel, linear algebra DAGs and various 
workflows like montage, SIPHT, epigenemics, LIGO are considered. 100 sets of DAGs are 
considered for each category and the results obtained are averaged. The result is shown in Fig. 5 
and Fig. 6. The proposed method is better than all policies found in literature.  
 
For less number of DAGs, performance of all methods is almost the same, as there will not be 
much conflict for resources. With more number of DAGs, resource conflicts increase and the 
proposed method shows considerable good performance over previous methods.  
 

 
 

Figure 5. Normalized Average Makespan of Set of DAGs 
 

 
 

Figure 6. Normalized Sum of Computing Area of Set of DAGs 
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7. CONCLUSIONS 
 

Multiple DAGs scheduling on a cluster is not receiving the deserved attention. Few methods 
found in literature performing combined DAGs scheduling. But in this work, it is proposed to 
allot a fixed number of processors to each DAG and an instance of local DAG scheduler to 
schedule DAG’s tasks only on the allotted fixed set of processors. A method to find the maximum 
and optimal number of processors that can be allotted to a DAG is given, which will be used to 
find the processor allotment for each DAG while scheduling multiple DAGs. A new framework 
to schedule multiple DAGs with the objectives of maximizing resource utilization and 
minimizing DAGs completion time is proposed. Regression analysis is used to find the number of 
processors to be allotted to each DAG while scheduling multiple DAGs. This method is proved to 
outperform other methods found in literature by around 10-15%.  
 
The other big advantage of the proposed approach is that instead of static schedule, an online 
scheduler for each DAG can be used to schedule tasks, as they are generated, onto the allotted 
processor. An Hybrid scheduler overcomes drawbacks of both static schedule and dynamic 
schedule. Also static DAG information is used to further improve performance. Because of space 
sharing of processors, the number of processors allotted to each DAG can be varied during 
runtime, depending on the availability of free processors.  
 
//This will improve resource utilization, hence performance of the scheduler.  In future work, the 
idea of online scheduler and varied processor allotment for each DAG will be experimented. 
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