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ABSTRACT

Consider that the every element in a finite set S having q elements is a positive integer. The set-partition

problem is to determine whether there is a subset T < S such that Zx = ZX’ where T = {xlx € S and
xeT xeT

x & T}. This research demonstrates that molecular operations can be applied to solve the set-partition

problem. In order to perform this goal, we offer two DNA-based algorithms, an unsigned parallel adder

and a parallel Exclusive-OR (XOR) operation, that formally demonstrate our designed molecular solutions

for solving the set-partition problem.
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1. Introduction

Feynman first offered bio-molecular computation in 1961, but his idea was not implemented by
experiments for a few decades [16]. After almost thirty years later, Adleman finally achieved his
experiment of the Hamiltonian path problem by manipulating DNA strands in a test tube [1].
From [19], that an optimal solution of every NP-complete or NP-hard problem is determined from
its characteristics is manifested. DNA-based algorithms had been proposed to solve many
computational problems, and those consisted of the satisfiability problem [21], the maximal
clique [23], three-vertex-coloring [5], the subset-sum problem [11], the maximum cut problem
[29], and the binary integer programming problem [30]. One potentially significant area of
application for DNA algorithms is the breaking of encryption schemes [9]. From [18], DNA-
based arithmetic algorithms are proposed, and from [25] DNA-based algorithms for constructing
DNA databases are also offered. Here we use the molecular operations in the Adleman-Lipton
filtering model to develop the DNA-based algorithms for solving the set-partition problem. We
also construct an unsigned parallel adder and a parallel Exclusive-OR (XOR) operation in the
procedure of demonstration.

2. DNA Computation

In this section we describe the available techniques for dealing with DNA strands that will be
used to solve the set-partition problem.
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2.1. Descriptions of Molecular Operations in DNA Manipulations

There have been revolutionary advances in the field of biomedical engineering particularly in
recombinant DNA and RNA manipulating in the last decade. Due to the industrialization of the
biotechnology field, laboratory techniques for recombinant DNA and RNA manipulation are
becoming highly standardized. Basic principles about recombinant DNA can be found in [6, 7, 15,
28]. In this subsection we describe eight biological operations useful for solving the set-partition
problem. The method of constructing DNA solution space for the set-partition problem is based
on the proposed method in [3, 10].

The filtering model developed by Adleman is memory less in the sense that the strings do not
change during a computation. A computation composes of a sequence of operations on finite
multi-set of strings containing the alphabet {A, C, G, T'}. A test tube is a finite multi-set of strings.
This work is based on the following operations:

1. Extract: Consider a test tube P and a short DNA substring x, create two new tubes + (P, x) and
— (P, x), where + (P, x) consists of all strands in P containing x as a sequence, while — (P, x)
produces all strands in P not containing x as a sequence.

2. Merge: Take two test tubes P, and P,, produce their union P, U P, and place the result into the
tube U(Pl, Pz), where U(Pl, Pz) =P,uUP,.

3. Detect: Pick a test tube P and output ‘yes’ if P contains at least one DNA molecule; otherwise
output ‘no’.

4. Amplify: Start with a test tube P, this operation, Amplify (P, P,, P,), will duplicate two new
copies P and P, of P and P becomes an empty tube.

5. Append: Take a test tube P and a short strand x, this operation will create a tube that contains
all strands having string x at the end of every strand in P.

6. Append-head: Consider a test tube P and a short strand x, and generate a test tube that
comprises all strands having string x at the beginning of every strand in P.

7. Read: this operation describes each of the resulting solutions contained in tube P. If P is empty,
then no answer is found.

3. DNA Algorithms for Solving the Set-Partition Problem

3.1. Definition of the Set-Partition Problem

Assume that a finite set S is {s, s,...,5¢}, where sy, is the mth element for 1< m < q. Also consider
every element in § is a positive integer. The set-partition problem is to decide if there is a subset T’

c S such that ZX = ZX, where T = {xl x € S and x ¢ T}. The set-partition problem has been

xeT xeT

verified to be the NP-complete problem [13, 17].

Consider that a finite set S = {1, 2, 3}. The complete subsets for S are &, {1}, {2}, {3}, {1, 2},
{2, 3}, {1, 3} and {1, 2, 3} respectively. According to the definition above of the set-partition

problem, two subsets T and subset f are disjoint, i.e. TN f =, and they form S, i.e. T uf =S.
Therefore, the set S has four partitions: (1) 7={1,3} and T ={2};(2) T={2,3} and T ={1}; 3T
={3} and T ={1,2}; 4 T=1{1,2,3} and T=0. Subsequently, the sum for each pair (Tj) is
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4, 2), (5, 1), (3, 3) and (6, 0). According to the definition of Set-Partition Problem, the solution
for a finite set Sis T = {3} and T = {1,2}.

3.2. Creating the Solution Space of DNA Strands

Suppose that x,x, ... X,x; is a g-bit binary number applied to represent ¢ elements in a finite set
S, where the value of each bit x,, is either 1 or O for 1 < m < ¢. From [3, 10], for every bit x,,
representing the mth element in S for 1< m < ¢, two distinct 15-base value sequences are designed.
One represents the value “0” for x,, and the other represents the value “1” for x,,. For sake of

. . . 1 . .
convenience in our representation, assume that x, , which corresponding element s,, belongs to

the subset of S, denotes the value of x,,to be 1 and x,?l, which corresponding element s,, does not

belong to the subset of S, denotes the value of x,, to be 0. The following DNA-based algorithm is
used to construct solution the space of DNA strands for solving the set-partition problem of a g-
element set S.

Procedure Init (7, g)

(1) Append(T, x! )

q-

(2) Append(Ts, x.,)

q

(3) To=(T, T»)

(4) For m = g — 2 downto 1
(4a) Amplify(Ty, Ty, T>)
(4b) Append(T}, x,,)
(4c) Append(Th, x.)
(4d) To = U(T), T»)

EndFor
(5) Append-head(Ty, x,)

EndProcedure

Consider that a finite set S is equal to {001, 010, 011}. The number of elements in the finite set S,
q is three. When the algorithm, Init (7y, g), is called from step (1) of Algorithm 1 in Subsection
3.8, it is applied to construct the solution space of DNA strands. Tube 7 is an empty tube. We
think of it as an input tube for Init (7, ¢) and the number of elements in the finite set S, g, as the
second parameter for Init (79, g). After the execution of Step(1) and step (2) are performed, tube

T={ x; } and tube T, = { x;’ }. Then, the merge operation makes tube 7Tj = { x; , x;) }, tube T)= O,
and tube T, = & after step (3).

Because the value of ¢ is three, step (4a) through (4d) will be executed one time. We perform
Amplify operation in step (4a), then tube Ty = &, tube Ti= {xé, xg }, and tube T, = {x;, x;) }.
Next, after the execution of step (4b) and the execution of step (4c) are performed, tube T =
{xé xl1 ,xg xll } and tube T, = {x; xl0 ,xg xlo }. Then, after having finished step (4d), the merge
operation makes tube Ty= { x} x,, X3 x;, xy x_, x5 x{'}, tube T;= & and tube T>= <. Finally,

. . Lor o1 10 1 11 0 1 0 0
after the execution of step (5) is done, tube To= { x5 X, x;, X3 X, X;, X3 X, X[, X3 X, X, }.
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The result is shown in Table 1. Lemma 1 is used to demonstrate the correctness of the algorithm
Init (75, g).

Table 1. Init(7y, g) procedure produces the following results.

Tube The result generated by Init(7;, g)
T, (x5 x x), x3x)x), xyxx), x)x)x}
T, %)
T, %)

Lemma 1: The Init (7}, g) procedure creates the solution space of DNA strands for a g-element
set S.

Proof: The Init (7}, g) procedure is implemented by means of amplify, append, append-head and
merge operations. Step (1) and (2) append the DNA sequences representing value “1” for x,_; and
value “0” for x, _, respectively onto the end of every strand in tube 7; and 7,. Hence subsets
including the (g — 1)th element appear in 7, and subsets not including the (¢ — 1)th element appear
in T, After step (3), tube T, is merged by tube T; and 7. This means that DNA strands in T
include sequences of x,_; =1 and x,_, = 0.

Then, each time step (4a) is performed, it uses the amplify operation to copy the content of tube T
into two new tubes, 7 and T, which are copies of T, Tube T, becomes empty. Step(4b) and step
(4c) are used to subsequently append DNA sequences, respectively, representing the value “1” or
“0” for x,, onto the end of every strand in tube 7; and tube 7, This implies that subsets containing
the mth element appear in tube 7, and subsets not containing the mth element appear in tube 7,
Finally, tube Ty is merged by tube 7 and 75 in step (4d). This indicates that DNA strands in tube
T, include DNA sequences of x,,= 1 and x,,= 0. After For loop in step 4 is performed completely,
T, is comprised of 27" DNA sequences. After step (5) is finished, a DNA sequence, representing
the value “1” for x,, is appended onto the head of every strand in tube 7, We conclude that this
procedure can create 27" partitions of a g-element set S with DNA strands.

3.3. Solution Space of the Value for Every Element of Each Subset for Solving the
Set-Partition Problem of a Finite Set

For the sake of designing a better and simpler DNA-based algorithm for solving the set-partition
problem of a g-element finite set S, suppose that for an element, s, € T, its value is represented as

a binary number of n bits, S, Sunts ---» Sm2, Sm1 and for an element, r, € T , its value is
represented as a binary number of n bits, ¥, ., Py sty -+ Fmos Fmi- Also suppose that s, , and r,, ,
are the most significant bit, and s, ; and r,,, ; are the least significant bit. For every bit s,,, ;and r,,
b 1Sm < gand 1 <k < n, from [3, 10] two distinct DNA sequences are designed. One
corresponds to the value “0” for s, ;and r,,, ; and the other corresponds to the value “1” for s, ;

. . . 1 1
and r,, . For the sake of convenience in our representation, assume that s, , and r, , denote the

value of s, r and r,,,  to be 1 and S,?Lk and r°, define the value of Sms x and 7, r to be 0. The

m,k
following algorithm is employed to construct the value of each corresponding element in 27"
partitions of a g-element set S.
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Procedure Value(7), g, n)
(1) Form=1tog

(la) Ty = + (T, x ) and Ty= —(Tp, %)

(1b) For k = n downto 1
(1c) Append (T, sy, 1)

(1d) Append (5, 5}, )

End For
(Te) To=u (Ty, T»)
EndFor
(2) Form=1togq

(2a) T\=+ (Ty, x\. ) and Tp= — (Ty, %)
(2b) For k = n downto 1
(2¢) Append (T3, 7,y ;)

(2d) Append (T2: Ym k)
End For
(2e) To=u (T, Ty)

EndFor
EndProcedure

When the algorithm, Value(7), g, n), is called from step (2) of Algorithm 1 in Subsection 3.8, it
is used to encode the value of each element in 2¢" partitions of a g-element set S. We think of
tube T, with the result shown in Table 1 as an input tube for the algorithm, Value(T,, ¢, n), the
number of elements in S, g is regarded as the second parameter, and the number of bits for each
element, n, is regarded as the third parameter. Step(1) is the first nested loop and is applied to

construct the value of each element in 7 in each pair of (7,7 ). After we perform step (1a), then
tube T, = {x31x21x11, X' x" xll} and tube T, = {)c31 '’ x' xlo}. Then, after the first execution
of step (1c) and (1d) is performed, tube 7} = {x31x21x11s1,30, x31x20x11s1,30} and tube 7, = {x31x21x10
S, 20 x31x20xlosl, 30}. After every execution for step (lc) and (1d) is finished, tube 7| =
{xla xozl)%llslba Slbz Slbll, X31x20)€1151,3051,2051,11} and tube T, = {X31X21X1051,3051,2051,1Oa
X3 X2 X1'S13 812 811 }. Then, after the first execution of step (le) is finished, tube 7, =
1100 1 _1_0_1. 0, 0. 1 _1_1_0_ 0. 0 100 0. 0. 0
{X3 X2 X1 813 812 81,1, X3 X2 X1 8§13 512 S1.1 > X3 Xo X1 813 S12 S1,1 > X3 X X1 8§13 S12 51,1 }, tube T} =&
and tube T, = . Next, after each execution of step (1a) through (le) in the first nested loop is
coronpletled, E)Ube oTO :1 {x311x21 )1611 §1,301S1,200S1,11082,3015"2,21082,1 0S3,3 os3’21083’111 x311 x' )1610 %1,30081,22 S1,1g
823 822 821 833 S32 8§31, X3 Xp Xy 813 S12 S0 823 S22 S20 833 S32 831, X3 X Xy 813 812
sl,lo 52,30 52,20 52,10 53,30 53,21 s3,11}, tube T = & and tube T, = . Step(2) is the second nested loop

and is used to construct the value of each element in 7 in each pair of (7,7 ). The contents of
tube Ty are shown as above. When the first execution of step (2a) is performed, tube 7' = {.Xgl X!
Xll 51,30S1,2051,11 32,30 52,21 52,10 33,30 53,2l S3,1la X3l Xzo Xll 31,30 51,20 51,11 32,30 32,20 S2,10 53,30 53,2l S3,1l} and
tube 7, = {Xal le xlo S1,30 S1,20 S1,10S2,30 Sz,zl S2,10 S3,30 S3,21 S3,11, X3l xzo X10S1,30 S1,20 S1,10 82,30 82,20 82,10
s3,30 s3,21 53,11 }. Then, after the first execution, the second execution and the third execution for
step (2¢) and (2d) are finished, “ri 3" r1,° r1;”” is appended onto the tail of each bit pattern in tube
T, and “r1,30 rl,zo rl,ll” is appended onto the tail of each bit pattern in tube 7. Next, after the first
execution of step (2e) is performed, tube Ty = {x31 x' X! s1,30 sl,zo sul sz,30 sz,zl sz,lo S3,30 S3,21 S3,1l
0. 0.0 _1_1.0_,0_,0.,0_0_ 1_0_ 0 1. 10 0. 1T _17_ 071 70 0
"3 na rgi,Xs X2 X1 8§13 S12 81,10 823 S22 S21 833 832 831,713 Fi2 T, X3 X2 X1 §13 812
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S1,11 82,30 82,20 52,10 S3,30 S3,21 S3,1l, V1,30 V1,20 7’1,10, 9631 Xzo X1OS1,3O S1,20 S1,10 82,30 82,20 S2,10 S3,30 S3,21 S3,1l V1,3O
rl,zo ri1'}, tube Ty = @ and tube T, = &. Then, after the second For loop is done, tube T; = &, tube
T, = @ and the contents of tube T, are shown in Table 2. Lemma 2 is applied to prove the
correctness of the algorithm, Value (7, ¢, n).

Table 2. The result generated by Value (7, g, n).

Tube The result generated by Value(7,, ¢, n)

111 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0
Ty |{xs Oxz ng $13 S12 S11 823 S22 82,1 833 832 831 i3 N2 Mg 23 o g 133
32 131,

1 1.0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
X3 Oxz )(C)l S13 812 S11 823 S22 S21 8§33 832 830,713 T2 P 123 N 120 133
32 131,

1.0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
X3 Oxz )(C)l S13 S12 S11 823 S22 S21 8§33 832 831,113 T2 P 123 o 1 133
32 131,

1_0_0. 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0
X3 Oxz %Cl S13 812 S1,1 $23 S22 S201 833 832 8301 i3 N2 g 3 o g 133
32 I3 }

Lemma 2: The value of each element in each pair of (T,f" ) for a g-element finite set, S, can be
constructed from the algorithm, Value (7, g, n).
Proof: Refer to Lemma 1.

3.4. The Implementation of a Parallel One-bit Adder

A one-bit adder has three inputs: the two data input and a carry input. It forms the arithmetic sum
of these inputs. Two of the input bits represent two significant bits to be added. The third input
represents the carry from the previous lower significant position. The least significant bit of the
sum for augend, addend and previous carry comes from first output. The output carry transferred
into the input carry of the next one-bit adder comes from second output. The truth table of a one-

bit adder is as follows:
Table 3. The truth table of a one-bit adder.

Augend Addend Previous Sum Carry
bit bit carry bit bit bit

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Suppose that two one-bit binary numbers, &,  and @, , represent the first input (augend) and
the first output (sum) of a one-bit adder for 1< m < g and 1< k < n, respectively. A one-bit binary
number, £, ;, is applied to represent the second input (addend) of a one-bit adder. ¥, . is used to
represent the third input (previous carry) and %, , represent the second output (current carry) of a
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one-bit adder. From [3, 10], two distinct DNA sequences are designed to represent the value “0”
and “1” for every corresponding bit. Also suppose that g! = contains the value of P i to be 1 and

By, contains the value of 3, ; to be 0. Also suppose that ¢} |, denotes the value of ¢, 4 to be

-1,k
1 and 0’2-1, , defines the value of &, , to be 0. Similarly, suppose that ¢ , contains the value of
@, to be 1 and a’;,k denotes the value of ¢, , to be 0, 7’,],,,/(71 denotes the value of y,, , . to be 1
and 723,{_1 contains the value of y,, 1 to be 0. %, kl defines the value of %,  to be 1 and %, ko

contains the value of %, , to be 0. The following algorithm is offered to perform the Boolean
function of a parallel one-bit adder.

Procedure ParallelOneBitAdder(7o, 0.1,k B, ks Yin, -1, 1, k)
() T\=+To,@,_,,)and To=—( Ty, ,,_, )
() Ts=+(T. B,,,) and T,=—(T\, B, )

(3) Ts=+(T», B,,,) and Ty=~(T>, B, )

@) Ty=+(Ts, ¥y ) and Ty=~(Ts, ¥y 1)
(5) To=+(T, ¥ 1) and Tio=—~(Ta, Vo1t
(6) Tiy=+(Ts, ¥p,y) and Tio=—(T5, Vo i)
(7) Tis=+(Te, V) and Tiy= ~(Te, Vs 1)
(8) If (Detect (T7) = = "yes”) then
Append-head (77, a,;, ) and Append-head (7, 7/,1,1, )

EndIf
(9) If (Detect (Ts) = = "yes”) then

Append-head (T3, &, 01 ) and Append-head (T, 7/,1,1’ )

EndIf
(10) If (Detect (Ty) = = "yes”) then

Append-head (75, Otglyk) and Append-head (75, }/,In, )

EndIf
(11) If (Detect (Typ) = ="yes”) then

Append-head (T, Otilyk) and Append-head (T, 7;(:1,/( )

EndIf
(12) If (Detect (T};) == "yes”) then

Append-head (77, (Z,(:Lk ) and Append-head (77, }/,1113,< )

EndIf
(13) If (Detect (Ty) = ="yes”) then

Append-head (75, (Z,In’k) and Append-head (T7,, 7/(1)1,k )
EndIf
27
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(14) If (Detect (T}3) = ="yes”) then
Append-head (713, Olil,k) and Append-head (73, 731,,( )

EndIf
(15) If (Detect (Ty4) = ="yes”) then

Append-head (74, 0{,?1,,() and Append-head (74, 7:1,k )

EndIf
(16) TO = U(T79 TSa T99 Tl()s Tlls TlZa Tl33 Tl4)
EndProcedure

Lemma 3: The ParallelOneBitAdder(7T,, &1 1, B & Ym r-1, M, k) procedure can be applied to
implement a parallel one-bit adder.

Proof: The algorithm ParallelOneBitAdder(Ty, &, «, B, &> Ym, 11, M, k) is implemented via the
extract, append-head and merge operations. Steps from (1) to (7) employ the extract operation to
form some different test tubes including different strands (7 to Ty4). That is T} includes all of the
strands that have @, ; =1, T, includes all of the strands that have @, , = 0. T3 includes all of the
strands that have &, , = 1 and B, = 1. Tyincludes those that have &, , = 1 and B, = 0. Ts
includes those that have &, = 0 and B, .= 1. Tsincludes those that have ¢, =0 and B, ,=0.
T; includes those that have .1, =1, f,.,=1, and y,,,.,=1. Tgincludes those that have ¢, ; , = 1,
L= 1, and y,, 1= 0. Tyincludes those that have @, = 1, B, = 0, and y,, 1= 1. Tjpincludes
those that have &, 1, = 1, S += 0, and y,, 1= 0. T}y includes those that have ¢,.1 ;= 0, B, = 1,
and y,, 1= 1. Tipincludes those that have ¢, 1 = 0, S r= 1, and y,, 1.1 = 0. Ti3includes those that
have ¢,.1.+ =0, B, «= 0, and y,, ,.1 = 1. Finally T4 consists of those that have &1, = 0, 8, = 0,
and y,, 1.1 = 0. After step (1) through step (7) are performed, those eight corresponding results of a
one-bit adder as shown in Table 3 are poured into tube T, through T4 respectively.

Next, we use step (8) through step (15) to check whether it contains any DNA strand for tubes 77,
Ts, Ty, Ty, Ty, T12, T3, and T4 or not. If any a “yes” returned for those steps, then append-head
operations will be performed correspondingly. The results are ¢, or ¢, ,and ,1 —or ,° are

appended onto the head of every strand in the corresponding tubes. After performing step (8)
through step (15), we find that one of eight different outputs of a one-bit adder in Table 3 is
correspondingly appended into tubes 75 through 7', The last execution of step (16) applies the
merge operation to pour tubes 7+ through T, into tube T,. Ty contains the strands performing the
addition of three input bits.

3.5. The Implementation of a Parallel N-bit Adder

The parallel one-bit adder introduced in Section 3.4 figures out the arithmetic sum of two bits and
a previous carry. A binary parallel n-bit adder also performs the arithmetic sum for the two input
operands of n-bit and the input carry through performing this one-bit adder n times. The following
algorithm is offered to perform the arithmetic sum for a parallel n-bit adder.

Procedure ParallelAdder(7,, «, B,v, g, n)
(1) For k = n downto 1

(1a) Append (To, &y ;)

EndFor
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2)Form=1togq
(2a) Append (Ty, 75 )

(2b)Fork=1ton
(2c) ParallelOneBitAdder(Ty, &1, ks B, k> Y, k-1, 71 k)

EndFor
EndFor
EndProcedure

When the first execution of ParallelAdder(7y, &, B, v, g, n) is called from step (3) of Algorithm 1
in Section 3.8, tube T, with the result in Table 2 in Section 3.3 is regarded as the input tube. From
the second parameter to the fourth parameter are replaced by the actual arguments A, s and z,
respectively. The values for the fifth and sixth parameters, ¢ and n, are both three. Because the
value of n is equal to three, three bits Aé’&, Aé’_z and A, are appended onto the tail of each bit

pattern in tube T after the execution of step (1a). Since the values for n and ¢ are both three, step
(2a) will be executed three times and step (2c) will be executed nine times. The bit, zﬂ o» from the

first execution of step (2a) is appended onto the tail of each bit pattern in tube 7y. Next, after the
first execution, the second execution and the third execution for step (2c), that call the algorithm
ParallelOneBltAdder(To, Cnt k> B, 1o ym 1, M, k), are performed, tube T, = {z13 A13 212 Alz
21,1 A1 1 X3 Xz X1 S13O S120 S1, 11 523 Szz $2.1 S33O S32 83, 1l 7130 7120 r, 10 1’230 1’220 r, 10 r330 r320 r3, 10
Ao% Ao,g A(i,l 210,00, 28,301%1,3 %1,2 AOI,Z Z01,1 A01,1 XS X2 Oxl %1,3 S(l),z Sl(,)l Sz(,)3 Sz(,)z SZ(,)I Sa,? 531,2 53,111,
rna3 rpa r1,11’”2,3 o Iy 133 I3p 1’”3,1 1A0,3 Aoa Ao 21,0,21,31 Az 212 A Zl,%) Al X3 X% xlo
S1,30 S1,2051,1 052,3 052,2 052,1 053,3 53,2 S3,(1), ’:)1,3 12)1,2 r(%,1 r02,3 ’”g,z ’”5,1 ’”3,3 rdaz r13,1 ,1140,3 A0,20A0,11
ZI,OOs Zl,31 Az Z1,20Al,20 Zl,loAl,l Oxa on X1 0S1,3 051,2 'Sl,l' 823 822 S21 8§33 832 'S3,1 .r1,3 I rl,}
N3 T Tl F3 Tap Fag Aos Ao Aor Zio ) Similarly, after each operation in step (2) is
performed, the result for tube Tj is shown in Table 4.

Table 4. The first execution result generated by ParallelAdder (7, «, B, Y, ¢, n).

Tube | The first execution result generated by ParallelAdder(7,, &, B, v, g, 1)

0 1 1 1 1 0 0 0 04 1 0 1 0 0 04 O 0 1
Ty {Z3,3 A3,3 232 A3,2 33,1 A3,1 23 A2,3 222 Az,z 221 A2,1 213 A1,3 212 A1,2 21,1 A1,1
1., 0o_ 1 _,0_. 0, 1T 1_ 0_.0.0_0_0_0_ 0.0
X3 Oxz X(l) S13 S12 S1,1 823 S22 821 833 832 831 3 P12 P 123 o g 133 3
r31 Aoz Aop Aoi 210 220 Z30
0 1 1 0 1 1 0 0 0 1 0 0 0 0 04 O 0 0
K3,3 A3,30Z3,2 A3,2OZ3,1 A3,(1) Zz,? A20,3 Z%,z Azl,z Z%,l Ag,l ZO1,3 1;11,3 0Zl,z A1,2 21,1 A1,1
X3 6’62 X}) 51,30 31,2051,10S2,3052,2 052,1 833 832 831,113 T2 T I3 o 121 133 13
r31 Aoz Aoz Aog Zio 220 230
0 1 1 0 1 0 0 0 04 O 0 1 0 0 04 O 0 1
Z3,13 1‘(\)32 ZazoAazoZHlAn Z23 A23 Z(z),z Azl,z Z%,l Ag,l 201,3 1(?1,3 021,2 1141,2 0Zl,l 01‘\1,10
X3 xz X1 813 S12 S1,1 823 S22 S21 833 832 S31,113 M2 T I3 o 121 133 132
"3.1 3A03 Agy Ao Z1o Zzo Z3o s
0 04 O 0 0 0 0 04 O 0 0
Z3,3 A3,3 32 A3,2 23,1 A3,1 Zz,3 A2,3 222 Az,z 22,1 A2,1 213 A1,3 212 A1,2 21,1 A1,1
1 0. 0_ 0. 0., 0. 0 1 1 0. 0 1 0 0
X3 Oxz X(l) S1,30 S1,2051,1052,3052,2052,1 $33 832 S31 M3 Fip iy N3 o g 33 13p
31 Aoz Aoz Aol Zio 220 230 )

When the second execution of ParallelAdder(7y, &, B, v, g, n) is called from step (4) of
Algorithm 1 in Section 3.8, tube T, with the result in Table 4 is regarded as the input tube. From
the second parameter to the fourth parameter are replaced by the actual arguments B, r and y
respectively. The values for the fifth and sixth parameters, ¢ and n, are both three. Because the
value of n is equal to three, three bits g, po and p? are appended onto the tail of each bit

pattern in tube 7 after the execution of step (1a). Since the values for n and ¢ are both three, step
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(2a) will be executed three times and step (2c¢) will be executed nine times. The bit, yﬁ o> from the

first execution of step (2a) is appended onto the tail of each bit pattern in tube 7y. Next, after the
first execution, the second execution and the third execution for step (2c), that call the algorithm,
. 0 0 0p 0
ParallelOneBitAdder(Ty, &%,.1. & Bu, &> Y 1, M, k), are performed, tube To = {y15 Bis Y12 Bia
O0p 1_ 04 1_ 1, 1_ 14 0_ 0y 0_ 04 1_"0,4 1_ 04 0_ 04 0_ 04 171
111 310,1 Z3(,)3 A%,a Zg,z A31,2 230,1 Adz,l 212,3 Alz,a %2,2 Aoz,z ZOZ,I 1;)\2,1 §1,3 641’3 021,2 1(;\1,2 021,1 1(‘)\1,1 Jga xzo
X1 031,3 031,2 051,1 52,3 502,2 S%,l 530,3 53,20 S3,10r1,30’”1,20’”1,10’”2,3 1’”2,20 2.1 lr3,3 lr3,2 0’”3,1 1A0,3 1A0’20 A0,10
210 220 230 Bosz Boa Boi Yio» Y13 Biz yi2Bia Yi1 Bii a3 Asz 232 Asp 231 Asy 223 Ass
0q, T 5 0 A0 0 4707 0, 0T 074 T 0 1T 00 T 0 0 0 T 00T
222A22 221 A1 413 A1z 212412 21 Al X3 X2 561 S01,3 S1.2 501,1 88,3 S262 52,01 S363 S3,20 S3.1
7’1,30 7’1,20 "1,10”2,3 0”2,20"2,1 1”3,3 {’3,2 5’3,1 1140,3 ?0,2 OAO,I gl,O %2,0 %3,0 1090,3 1?0,2 ?0,1 )(’)1,0 ,0y1,3031,3
YipBia yir Bii 233 Ass 23 A3,2 31 Azl 223 A2,3 22 Adp 22,1 Asy i3 Az Zin A1,2 211
A1,10 X3 ())Cz x%) 31,8 Sl,g S1,01 52% S2,20 S2,10 53,30 $32 053,1 sorl,3 0r1,2 Orl,l 0’”2,3 1r2’20 r2,10’”3,30’”3,21 131
A0,31 Ag> Ao,l0 210 220 239 Bos Bop BO,IO Yio > Y13 Biz Yi2 1?1,2 yii Biizas Asz 232 Asp 730
Azy 223 Azz 22 Azp 200 Ann iz Az ZigAin ig ALl X3 X2 Xp S13 S12 Si1 823 S22 S
0 T T 0, 0 T 00, 0, Oy 000, 0 0, O p 0 p 00
S3,3OS3,2 S31 N3 Mo g 13 Ip g 133 3o 13 Apz Aoz Ao 210 220 Z30 Doz Doz Do
Yio }- Similarly, after each operation in step (2) is performed, the result for tube T, is shown in
Table 5.

—_
S © o O

Lemma 4: The ParallelAdder(7,, & S, y, g, n) procedure can be applied to perform a binary
parallel adder of n bits.

Proof: Refer to Lemma 1.

Table 5. The second execution result generated by ParallelAdder(7,, « B, v, g, n).

Tube | The second execution result generated by ParallelAdder(Ty, &, B,7, g, 1)

Ty {y33 Baz yzszz y31 331 y23 Bzz yzszz y2l le y13 313 ylzBIZ y11 Bll
ZzaoAzz Z32Aoaz Zln 1(‘)\310223 642%0Z22f422112210A2102120A12)0212A12 le Alllx%
Xz Xl $13 S12 S1,1 823 S22 821 8§33 832 S31 M3 Fip T 23 p g r3,3 r3,2 r3,1
A030A02 Ay, 10 Z1o0 Zzoo Z300 Bo30 Boz0 30103’1()0)’200)’300,

Vi3’ Basy y3zB32 V31 B31 y23 323 yzszz 2 Bz1 y13 313 ylzBlz Ju 311233
A3031 Z302A32 Z31 A301 2213 A23 Zngz*l.z Z21 A201 Z103 A113 Z(1)2A102 2101 Adl X03 xzo
X1 813 Si12 S1,1 823 822 Sz,1 33 832 S3,1 >, N3 a2 g N3 Ty Ny 133 13y 13
Ao, 30 Ao A0’ 210 22, 00 230" Bo, 30 Bo2" Bo.’ yio’ yz o y30's

V33 B3’ y3zB32 Y31 B31 y23 323 yzszz 2 Bz1 y13 313 ylzBlz Ju 311233
A3l3 Z302A32 Z31 A301 Z23 A23 ZzzAz*l.z 221 A201 2103 Aé3 Z(1)2A112 Z101 Adl x03 ng
X1 813 Si12 S1,1 523 S2,2 Sz,1 33 832 S3,1 >, N3 2 Ny N3 Ty Ny 133 13y 13
A020A020A01021002200 Z%OOBOZOBOZOBOIOyIOOyZOOyZOO,

V33’ B y3zB32 Y31 B31 y23 323 yzszz 2 Bz1 y13 313 ylzBlz Ju 311233
AHOZzzAzz 231 AH 223 Azz Z22A22 22,1 A21 Z13 A13 ZIZAIZ le A11 X% xzo
xl 81,3 Sl,z 51,1 523 Sz,zo 52,10 S3,30 83,21 S3,11 7’1,30 7’1,20 "1,11 7’2,30 7’2,21 "2,10 73,30 7’3,20 I3 A0,3
Ao,zo Aot 210 Zz,oo Z3,00 30,30 30,20 Bo,lo yl,OO yz,oo )’3,00}

3.6. Constructing the Parallel One-bit XOR Operation on Bio-molecular Computing

The Exclusive-OR (XOR) operation of a bit for Boolean variables A and B generates an output of
1 if both A and B have different values and O if they are equal. The @ symbol represents the XOR
operation. The four possible combinations for the XOR operation are 0 @ 0=0,0@ 1=1,1®0
=1,1 ® 1 =0. A truth table is usually used with logic operation to represent all possible
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combinations of inputs and the corresponding outputs. The truth table for the XOR operation is
shown in Table 6.

Table 6. Truth table for the XOR operation of a bit.

Input output

B C=A®B
0 0
1
0
1

>—*»—OO>

1
1
0

Assume that two one-bit binary numbers, A,  and B, , for 1 < k < n, are used to respectively
represent the first input and the second input for the XOR operation of a bit. Also assume that C,
« for 1 < k < n, is used to represent the output for the XOR operation of a bit. For the sake of
convenience, assume that A, ;' denotes that the value of A, ; is 1 and A, ;" denotes that the value
of A, is 0. Similarly, suppose that B, « denotes that the value of B, is 1 and B, . denotes that
the value of B, ; is 0. Assume that C, ;' denotes that the value of C, ; is 1 and C, ;’denotes that
the value of C,  is 0. The following algorithm is used to perform the parallel one-bit XOR
operation.

Procedure ParalleOneBitXOR(7y, A, «, B, «, ¢, k)

(1) Ty =+(T, A, kl) and T, = —(Ty, Ay « l)
(2) Ts=+(T1, B, ) and Ty =—(Ty, B ;)
(3) Ts=+(To, B, ") and Ts = —(T», B, 1 )

(4) If (Detect(T3) = = “yes”) then
(4a) Append-head(T;, C,, D)
EndIf

(5) If (Detect(T,) = = “yes”) then
(5a) Append-head (T;, C, ")
EndIf

(6) If (Detect(Ts) = = “yes”) then
(6a) Append-head(Ts, C,, D)
EndIf

(7) If (Detect(Ts) = = “yes”) then
(7a) Append-head(T, C, ;)
EndIf

(8) To = U(T3, Ty, Ts, Te)

EndProcedure

Lemma 5: The ParallelOneBitXOR(7), A, « B, 1 g, k) procedure can be used to implement the
parallel XOR operation of one-bit.

Proof: The algorithm, ParallelOneBitXOR(7), A, «, B, « ¢, k), is implemented by the extract,
detect, merge and append-head operations. Steps from (1) to (3) employ the extract operations to
yield different tubes consisting of different inputs (7 to Ty). This implies, 7} includes all of the
inputs that have A, , = 1, 7> contains all of the inputs that have A, , = 0, 75 includes those inputs
that have A, « = 1 and B, ; = 1, T, consists of those inputs that have A, , = 1 and B,; = 0, T5
comprises of those inputs that have A, , = 0 and B, , = 1, and T includes those that have A, =0
and B, , = 0. After having performed separation operation from step (1) to (3), the results of
XOR operation shown in Table 6 are poured into tubes 75 through T respectively.
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Step (4a) through (7a) are applied to check whether it contains any input for tubes T3, Ty, T5, and
T, or not respectively. If any a “yes” returned for those steps, then append-head operations will be
performed correspondingly. Because tubes 73, Ty, T5 and Tg, subsequently, contains the input for
the fourth row, the third row, the second row and the first row in Table 6. C,  is appended onto
the head of every input in tubes 73 and Ty if the detection result from step (4) or step (7) is yes. C,,
¢ is subsequently appended onto the head of every input in tubes 7, and Ts when the detection
result from step (5) or step (6) is yes. After performing step (4) through (7), we discover that one
of four different outputs for the XOR operation of a bit as shown in Table 6 is correspondingly
appended into tubes T3 through T§. The last execution of step (8) uses the merge operation to pour
tubes T through T into tube T,. Tube T, contains the result finishing the XOR operation of a bit
as shown in Table 6.

3.7. Constructing the Parallel N-bit XOR Operation on Bio-molecular Computing

Simultaneously, the parallel XOR operation of n bits generates the corresponding n-bit
outputs for XOR operation with two n-bit Boolean variables A, represented by A,,A, 1. Ag2A41,
and B, represented by B,.B,,.1. BB, The following algorithm is proposed to perform the
parallel n-bit XOR operation for 2¢" partitions of a ¢-element set S.

Procedure ParallelXOR(7, A, B, g, n)
()Fork=1ton
(1a) ParallelOneBitXOR(Ty, A, «, By, & g, k).
EndFor
EndProcedure

When the algorithm, ParallelXOR(7y, A, B, g, n), is invoked from step (5) in Algorithm 1, tube
T, with the result in Table 5 is regarded as the input tube. The second parameter is replaced by the
total sum, A, for the value of each element in each T and the third parameter is replaced by the
total sum, B, for the value of each element in each7 . The fourth parameter ¢ and the fifth
parameter n are both three. Because the value of n is equal to three, step (1a) will be executed
three times. After the first execution of step (1a), that calls the algorithm, ParallelOneBitXOR(7),
Aq ks Bq k, q, k) is flnlShed tube T()— {C31 . Bg 10... A3q10... .X31.X21 )Cll ey C3q10... B3,11 A3q11
)C3 .X2 .X1 . C31 . 331 . A31 . .X3 xle ceey Cg,lo... ngll...Aill ....X31 )Czo xlo...}.Then,
after performlng each execution of step (1a), the result for tube Tj is shown in Table 7. Lemma 6
is applied to prove the correctness of the algorithm, ParallelXOR(7), A, B, g, n).

Lemma 6: The procedure, ParallelXOR(7y, A, B, g, n), can be used to finish the parallel XOR
operation of n bits.

Proof: Tube T is generated from the algorithm, ParallelAdder(7,, ¢, B, v, ¢, n) and contains
those DNA strands representing the individual sum of two disjoint subsets, 7" and T in each pair

of (T and T ) in 27" partitions of a g-element set S. Step (1) is the single loop and is mainly
applied to perform the function of parallel XOR operation of n bits for 2¢" partitions of a g-
element set S. Each execution of step (1a) calls ParallelOneBitXOR(7Ty, A, «, B, , g, k) to finish
the XOR operation for the kth bit of two operands, A and B, in tube 7, . After repeating the
execution of step (1a) until the most significant bit of each operand, A and B, is processed, tube T
includes the result of performing the parallel XOR operation of n bits. In other words, after
finishing the execution of single loop, tube T contains the strands representing the results of
parallel XOR operations for 2/ partitions of a g-element set S.
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Table 7. The result generated by ParallelXOR(7), A, B, g, n).

Tube The result generated by ParallelXOR(7y, A, B, ¢, n)

Ty {C33 C32 C31 )’33 333 )’32332 )’31 B31 )’23 323 yzszz )’21 321 )’13 313
)’12312 )’11 Bll 233 Azz 232A32 Z%l A31 Zzz A23 Z22A22 Z21 A21 le A13
2120A1202110A11 X3 xz Xl 813 S12 511 S23 Szz Szl S33 S32 S31 V13O 1’120 7110
3 ’”2,2 I, 133 r3,2 I3, A0,3 Ao,z AO,I ZI,O Zz,o Z3,0 30,3 Bo,z Bo,l )’1,0 )’2,0 Y3,0 >
Cs3 C32C31 )’33 333 )’32332 )’31 331 )’23 323 yzszz )’21 321 y13 313
ylzBlz y11 B11233 A33 Z32A32 bl A31 223 A23 22°A02" 21" A2’ 7150 AR
0 0 0.0 1 1 0.0 1
2120A1202110A11 X3 Xz X1 S13 S12 511 S23 Szz S21 S33 S32 S31,7’13 rp V110
’”2,30 o 1 r3,3 ’”3,2 ’”3,1 A0,3 Ao,z AO,l Z1,0 Zz,o Z3,0 Bo,a Bo,z Bo,l )’1,0 Y20
y30,
Cs3 C32C21 yaz Bza yaszz yn BH y23 323 yzszz yzl le y13 313
)’123120y11 BllZzaoAzz ZazAzz 23,1 AH 223 AzzOZzzAzz ZzloAzllzlzoAlao
Zl,zoAl,zo1 211 0A1,10x3 562 Xé S13 51,20051,1l 32,30 32,20 Soz,lo 33,30 Sa(,)zl 53,113 rl%o ’”1,20 rl,lz
’”2,30 Fap Tar T3z F3p I3n, Aoz Aoz Ao Zio 220 230 Bos Boz Boi Yo Y20
)’3,0,
Cs3 C32C21 )’32 Bza )’32322 )’31 BH )’23 323 yzszz )’21 321 y13 313
)’12312 y11 311223 Azz ZazAzz Z%l AH Zzz Azz ZzzAzz Zzl A21 21,3 A13
Z120A121Z110A112x3 ng X1 813 S12 S11 Sz3 S22 Sz1 S33 S32 S31 r13 rp V110
23 22 T2l 133 T3 r31° Aos” Ao’ Avt’ 210 220 230" Bos’ Bo2’ Box” yio” ¥a0
Yo }

3.8. A DNA Algorithm for Solving the Set Partition Problem

The following algorithm is used to solve the set-partition problem of a g-element set S. Notations
used in the following algorithm are denoted in the previous sections.

Algorithm 1: Solving the set-partition problem.

(1) Imit (75, q)
(2) Value (T, g, n)
(3) ParallelAdder(7, A, s, z, g, n)
(4) ParallelAdder(7y, B, r, y, g, n)
(5) ParallelXOR(Ty, A, B, g,n)
(6) Fork=1ton
(6a) T1 =+ (To, C, ) and To= ~(To, C,. )
(6b) Ty = (T, To)
(6¢) Discard (T3)
EndFor
(7) If (Dectect (Ty) == "yes”) then
(7a) Read(Ty)
EndIf
EndAlgorithm

Consider that Algorithm 1 is used to solve the set-partition problem of a set S with {001, 010,
011}. When step (1) is performed, it calls the algorithm, Init (7}, g). The first actual argument,
tube Ty, is an empty tube and the second actual argument, g is equal to three. After all operations
in Init (7, g) is performed, the result for tube Tj is shown in Table 1. Then, step (2) calls the
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algorithm, Value (7o, ¢, n). Tube T, with the result in Table 1 is regarded as the first actual
argument, and the second actual argument and the third actual argument are equal to three. After
each operation in Value (7, ¢, n) is performed, the result for tube 7 is shown in Table 2.

Next, step (3) calls the algorithm, ParallelAdder (7, A, s, z, g, n). Tube T with the result in
Table 2 is regarded as the first actual argument. The second actual argument A is used to represent
the total sum for the value of each element in 7, which is in the four partitions of a three-element
set S. The third actual argument s is used to represent the value of each element in 7. The fourth
actual argument z is used to represent the carry for performing addition of each element in 7. The
fifth actual argument ¢ and the sixth actual argument n are equal to three. After each operation in
ParallelAdder(7y, A, s, z, g, n) is performed, the result for tube 7j is shown in Table 4.

Then, step (4) calls the algorithm, ParallelAdder(7,, B, r, vy, g, n). Tube Ty with the result in
Table 4 is regarded as the first actual argument. The second actual argument B is used to represent

the total sum for the value of each element in7 , which is in the four partitions of a three-element
set S. The third actual argument r is used to represent the value of each element in 7 The fourth

actual argument y is used to represent the carry for performing addition of each element in 7 The
fifth actual argument ¢ and the sixth actual argument n are equal to three. After each operation in
ParallelAdder (7o, B, r, y, g, n) is finished, the result for tube Ty is shown in Table 5.

Then, step (5) calls the algorithm, ParallelXOR(T, A, B, g,n). Tube T, with the result in Table 5
is regarded as the first actual argument. The second actual argument A is used to represent the
total sum for the value of each element in 7. The third actual argument B is used to represent the

total sum for the value of each element in7 .The fourth actual argument g and the fifth actual
argument 7 are equal to three. After each operation in ParallelXOR(7y, A, B, g, n) is finished, the
result for tube T} is shown in Table 7.

step (6) is a single loop and is used to search the answer of the set-partition problem. Because
Cs.,° appears in each bit pattern in tube Tj in Table 7, after the first execution of step (6a) is
performed, tube T obtains the same result in Table 7 and tube T, = &, tube T, = &. Then, after
the first execution of step (6b) is finished, tube T} = &, and tube T, obtains the same result in
Table 7. After the first execution of step (6¢) is finished, tube 7, = . Similarly, after each
operation in step (6) is finished, the result for tube Tj is shown in Table 8. Finally, after the

execution of step (7) is performed, the answer is that 7= {3} and T= {1, 2}. Theorem 1 is used
to prove the correctness of Algorithm 1.

Table 8. The final result generated by Algorithm 1.

Tube | The final result generated by Algorithm 1

Ty {C33 C32 C31 y33 B33 y3zB32 y31 B31 y23 323 yzszz y21 Bz1 y13 313
yl2Bl2 y11 3112%3 Azz ZazAzz 23,1 AH Zzz Azz ZzzAzz 22,1 A21 213 A13
Z120A121Z110A112X21xzoxlosla S12 S11 Szz 522 S21 5320332 S31 ’”13 r'i2 r110
rz,ao}rz,z 1 13 3p I3 A0,3 Ao,z AO,I Zl,O Zz,o Zs,o 30,3 Bo,z Bo,l )’1,0 Y20
V3,0

Theorem 1: From those steps in Algorithm 1, the set partition problem for 2" partitions of a g-
element set S can be solved.

Proof: On the execution of step (1), it calls Init (7,, ¢g) to construct solution space for 24!
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partitions of a g-element set S. This means that the tube 7 includes strands encoding 27"
partitions. Next the execution of step (2) calls Value (T,, g, n) to encode the value of each
element in 27" partitions. On the execution of step (3), it calls ParallelAdder(7, A, s, z, g, n) to
perform the function of a parallel adder for computing the sum to the value of each element in T

in each pair of (7 and T ). Similarly, on the execution of step (4), it calls ParallelAdder(7), B, r,
v, g, n) to perform the function of a parallel adder for computing the sum to the value of each

element in f in each pair of (T, f ). Then, after step (5) is executed, it calls ParallelXOR(7, A,
B, g, n) to perform the function of parallel XOR operation of n bits for the total sum to each pair

of (T, T).

Then, step (6) is a single loop and is employed individually to retrieve those DNA strands
encoded zero value as the result of parallel XOR operation of n bits. Each time step (6a) uses the
extract operation to form two test tubes: 7} and 7, .The first tube 7T includes all of the strands that
have C,;=0. The second tube 7, contains all of the strands that have C,;=1. Then, on each
execution of step (6b), it employs the merge operation to pour tube 7 into 7; and each execution
of step (6¢) uses the discard operation to discard tube T, containing the result of parallel XOR
operation is not equal to zero. After each step in the single loop is performed n times, tube Ty
includes DNA strands that encodes the sum of subset 7 to be equal to that of its exclusive

subsett , the answer for the set-partition is found from tube Ty. Finally, the execution of step (7)
uses the detect operation to check if there is any DNA strand in tube Ty. If it returns a “yes”, then
the execution of step (7a) applies the read operation to read the answer. Otherwise, no solution
exists. Therefore, the set-partition problem for 29" partitions of a g-element set S can be computed
from those steps in Algorithm 1.

3.9 The Complexity of Algorithm 1

Theorem 2: Suppose that a finite set S is {s; 5,..., s,}. The set partition problem for S can be
solved with O (g x n) biological operations, O (2") library strands, O (1) tubes and the longest
library strands, O (g X n), where n is the number of bits for representing the value of each element
in S.

Proof: refer to Algorithm 1.

4. Conclusions

In this paper, based on biological operations, we propose DNA-based algorithms for solving the
set partition problem of a g-element set. The computational complexity is clearly reduced toO
(g*n), where g is the numbers of element in set S we concerned, n is the number of bits for
representing the value of each element in S.

Although the future of molecular computers is vague at present, it is likely that in the future DNA
computers will be the better choice for performing massively parallel computations. However,
there are still severe challenges to face and many technical difficulties to overcome before this
becomes a reality. We hope that this paper helps to manifest that molecular computing is a
technology worth pursuing.
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