
International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 6, December 2013 

 

 

DOI : 10.5121/ijcsit.2013.5602                                                                                                                      21 

 
Molecular Solutions For The Set-Partition Problem 

On Dna-Based Computing 
 

Sientang Tsai and Wei-Yeh Chen
 

 
Department of Information Management, Southern Taiwan University of Science and 

Technology, Yuan Kung District, Tainan City, Taiwan, R.O.C. 

 
ABSTRACT 

 

Consider that the every element in a finite set S having q elements is a positive integer. The set-partition 

problem is to determine whether there is a subset T ⊆ S such that ,  
    

∑∑
∈∈

=
TxTx

xx  where  T = {x| x ∈ S and 

x ∉ T}. This research demonstrates that molecular operations can be applied to solve the set-partition 

problem. In order to perform this goal, we offer two DNA-based algorithms, an unsigned parallel adder 

and a parallel Exclusive-OR (XOR) operation, that formally demonstrate our designed molecular solutions 

for solving the set-partition problem. 
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1. Introduction 

 
Feynman first offered bio-molecular computation in 1961, but his idea was not implemented by 

experiments for a few decades [16]. After almost thirty years later, Adleman finally achieved his 

experiment of the Hamiltonian path problem by manipulating DNA strands in a test tube [1]. 

From [19], that an optimal solution of every NP-complete or NP-hard problem is determined from 

its characteristics is manifested. DNA-based algorithms had been proposed to solve many 

computational problems, and those consisted of the satisfiability problem [21], the maximal 

clique [23], three-vertex-coloring [5], the subset-sum problem [11], the maximum cut problem 

[29], and the binary integer programming problem [30]. One potentially significant area of 

application for DNA algorithms is the breaking of encryption schemes [9]. From [18], DNA-

based arithmetic algorithms are proposed, and from [25] DNA-based algorithms for constructing 

DNA databases are also offered. Here we use the molecular operations in the Adleman-Lipton 

filtering model to develop the DNA-based algorithms for solving the set-partition problem. We 

also construct an unsigned parallel adder and a parallel Exclusive-OR (XOR) operation in the 

procedure of demonstration. 

 

2. DNA Computation  

 
In this section we describe the available techniques for dealing with DNA strands that will be 

used to solve the set-partition problem. 
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2.1. Descriptions of Molecular Operations in DNA Manipulations 

 
There have been revolutionary advances in the field of biomedical engineering particularly in 

recombinant DNA and RNA manipulating in the last decade. Due to the industrialization of the 

biotechnology field, laboratory techniques for recombinant DNA and RNA manipulation are 

becoming highly standardized. Basic principles about recombinant DNA can be found in [6, 7, 15, 

28]. In this subsection we describe eight biological operations useful for solving the set-partition 

problem. The method of constructing DNA solution space for the set-partition problem is based 

on the proposed method in [3, 10]. 

 

The filtering model developed by Adleman is memory less in the sense that the strings do not 

change during a computation. A computation composes of a sequence of operations on finite 

multi-set of strings containing the alphabet {A, C, G, T}. A test tube is a finite multi-set of strings. 

This work is based on the following operations: 

 

1. Extract: Consider a test tube P and a short DNA substring x, create two new tubes + (P, x) and 

− (P, x), where + (P, x) consists of all strands in P containing x as a sequence, while − (P, x) 

produces all strands in P not containing x as a sequence. 

2. Merge: Take two test tubes P1 and P2, produce their union P1 ∪ P2, and place the result into the 

tube ∪(P1, P2), where ∪(P1, P2) = P1 ∪ P2.  

3. Detect: Pick a test tube P and output ‘yes’ if P contains at least one DNA molecule; otherwise 

output ‘no’. 

4.  Amplify: Start with a test tube P, this operation, Amplify (P, P1, P2), will duplicate two new     

copies P1 and P2 of P and P becomes an empty tube. 

5. Append: Take a test tube P and a short strand x, this operation will create a tube that contains 

all strands having string  x at the end of every strand in P. 

6. Append-head: Consider a test tube P and a short strand x, and generate a test tube that 

comprises all strands having string x at the beginning of every strand in P. 

7. Read: this operation describes each of the resulting solutions contained in tube P. If P is empty, 

then no answer is found. 

 

3. DNA Algorithms for Solving the Set-Partition Problem 

 
3.1. Definition of the Set-Partition Problem 

 

Assume that a finite set S is {s1, s2,…,sq}, where sm is the mth element for 1≤ m ≤ q. Also consider 

every element in S is a positive integer. The set-partition problem is to decide if there is a subset T 

⊆ S such that ,  
    

∑∑
∈∈

=
TxTx

xx  where  T = {x| x ∈ S and x ∉ T}. The set-partition problem has been 

verified to be the NP-complete problem [13, 17]. 

 

Consider that a finite set S = {1, 2, 3}. The complete subsets for S are ∅, {1}, {2}, {3}, {1, 2}, 

{2, 3}, {1, 3} and {1, 2, 3} respectively. According to the definition above of the set-partition 

problem, two subsets T and subset 
−

T  are disjoint, i.e. T ∩ 
−

T = ∅, and they form S, i.e. T ∪
−

T = S. 

Therefore, the set S has four partitions: (1) T ={1,3} and 
−

T ={2}; (2) T ={2,3} and 
−

T ={1}; (3) T 

={3} and 
−

T ={1, 2}; (4) T = {1, 2, 3} and 
−

T = ∅. Subsequently, the sum for each pair (T,
−

T ) is 
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(4, 2), (5, 1), (3, 3) and (6, 0). According to the definition of Set-Partition Problem, the solution 

for a finite set S is T = {3} and 
−

T = {1, 2}. 

3.2. Creating the Solution Space of DNA Strands 

 

Suppose that xq xq −1… x2 x1 is a q-bit binary number applied to represent q elements in a finite set 

S, where the value of each bit xm is either 1 or 0 for 1 ≤ m ≤ q. From [3, 10], for every bit xm 

representing the mth element in S for 1≤ m ≤ q, two distinct 15-base value sequences are designed. 

One represents the value “0” for xm and the other represents the value “1” for xm. For sake of 

convenience in our representation, assume that 
1

mx , which corresponding element sm belongs to 

the subset of S, denotes the value of xm to be 1 and 
0

mx , which corresponding element sm does not 

belong to the subset of S, denotes the value of xm to be 0. The following DNA-based algorithm is 

used to construct solution the space of DNA strands for solving the set-partition problem of a q-

element set S. 

 

Procedure Init (T0, q) 
 

(1) Append(T1, 
1

1−qx ) 

(2) Append(T2, 
0

1−qx ) 

(3)
 
T0 = ∪(T1, T2) 

(4) For m = q − 2 downto 1 

   (4a) Amplify(T0, T1, T2) 

   (4b) Append(T1, 
1

mx ) 

   (4c) Append(T2, 
0

mx ) 

   (4d)
 
T0 = ∪(T1, T2) 

EndFor 

(5) Append-head(T0, 
1

qx ) 

EndProcedure 

 
Consider that a finite set S is equal to {001, 010, 011}. The number of elements in the finite set S, 

q is three. When the algorithm, Init (T0, q), is called from step (1) of Algorithm 1 in Subsection 

3.8, it is applied to construct the solution space of DNA strands. Tube T0 is an empty tube. We 

think of it as an input tube for Init (T0, q) and the number of elements in the finite set S, q, as the 

second parameter for Init (T0, q). After the execution of Step(1) and step (2) are performed, tube 

T1= {
1

2x } and tube T2 = { 0

2x }. Then, the merge operation makes tube T0 = { 1

2x , 0

2x }, tube T1= ∅, 

and tube T2 = ∅ after step (3).  

 

Because the value of q is three, step (4a) through (4d) will be executed one time. We perform 

Amplify operation in step (4a), then tube T0 = ∅, tube T1= {
1

2x , 
0

2x }, and tube T2 = {
1

2x , 
0

2x }. 

Next, after the execution of step (4b) and the execution of step (4c) are performed, tube T1 = 

{
1

2x
1

1x ,
0

2x
1

1x } and tube T2 = {
1

2x
0

1x ,
0

2x
0

1x }. Then, after having finished step (4d), the merge 

operation makes tube T0 = { 1

2x ,1

1x  0

2x ,1

1x  1

2x ,0

1x  0

2x 0

1x }, tube T1= ∅ and tube T2 = ∅. Finally, 

after the execution of step (5) is done, tube T0 = {
1

3x 1

2x ,1

1x  
1

3x 0

2x ,1

1x  
1

3x 1

2x ,0

1x  
1

3x 0

2x 0

1x }. 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 6, December 2013 

 

24 

 

The result is shown in Table 1. Lemma 1 is used to demonstrate the correctness of the algorithm 

Init (T0, q). 
 

Table 1. Init(T0, q) procedure produces the following results. 

 

Tube  The result generated by Init(T0, q) 

T0 
{

1

3x 1

2x ,1

1x  
1

3x 0

2x ,1

1x  
1

3x 1

2x ,0

1x  
1

3x 0

2x 0

1x } 

T1 ∅ 

T2 ∅ 

 

Lemma 1: The Init (T0, q) procedure creates the solution space of DNA strands for a q-element 

set S. 

 

 Proof: The Init (T0, q) procedure is implemented by means of amplify, append, append-head and 

merge operations. Step (1) and (2) append the DNA sequences representing value “1” for xq − 1 and 

value “0” for xq − 1, respectively, onto the end of every strand in tube T1 and T2. Hence subsets 

including the (q − 1)th element appear in T1 and subsets not including the (q − 1)th element appear 

in T2. After step (3), tube T0  is merged by tube T1 and T2. This means that DNA strands in T0 

include sequences of xq − 1 = 1 and xq − 1 = 0. 

 

Then, each time step (4a) is performed, it uses the amplify operation to copy the content of tube T0 

into two new tubes, T1 and T2, which are copies of T0. Tube T0 becomes empty. Step(4b) and step 

(4c) are used to subsequently append DNA sequences, respectively, representing the value “1” or 

“0” for xm, onto the end of every strand in tube T1 and tube T2. This implies that subsets containing 

the mth element appear in tube T1 and subsets not containing the mth element appear in tube T2. 

Finally, tube T0  is merged by tube T1 and T2 in step (4d). This indicates that DNA strands in tube 

T0 include DNA sequences of xm = 1 and xm = 0. After For loop in step 4 is performed completely, 

T0 is comprised of 2q-1 DNA sequences. After step (5) is finished, a DNA sequence, representing 

the value “1” for xq, is appended onto the head of every strand in tube T0. We conclude that this 

procedure can create 2
q-1

 partitions of a q-element set S with DNA strands.  

 

3.3. Solution Space of the Value for Every Element of Each Subset for Solving the 

Set-Partition Problem of a Finite Set 

 
For the sake of designing a better and simpler DNA-based algorithm for solving the set-partition 

problem of a q-element finite set S, suppose that for an element, sm ∈ T, its value is represented as 

a binary number of n bits, sm,n,, sm,n-1, …, sm,2, sm,1 and for an element, rm ∈
−

T , its value is 

represented as a binary number of n bits, rm, n, rm, n-1, …, rm,2, rm,1. Also suppose that sm, n and rm, n 

are the most significant bit, and sm, 1 and rm, 1 are the least significant bit. For every bit sm, k and rm, 

k, 1≤ m ≤ q and 1 ≤ k ≤ n, from [3, 10] two distinct DNA sequences are designed. One 

corresponds to the value “0” for sm, k and rm, k and the other corresponds to the value “1” for sm, k 

and rm, k. For the sake of convenience in our representation, assume that 
1

,kms  and 
1

,kmr  denote the 

value of sm, k and rm, k to be 1 and 
0

,kms  and 
0

,kmr  define the value of sm, k and rm, k to be 0. The 

following algorithm is employed to construct the value of each corresponding element in 2q-1 

partitions of a q-element set S. 
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 Procedure Value(T0, q, n) 

(1) For m = 1 to q 

(1a) T1 = + (T0,
1

mx ) and T2= − (T0,
1

mx ) 

(1b) For k = n downto 1 

(1c) Append (T1, sm, k) 

(1d) Append (T2,
0

,kms ) 

End For 

(1e) T0 = ∪ (T1, T2) 

EndFor 

(2) For m = 1 to q 

(2a) T1= + (T0,
1

mx ) and T2= − (T0,
1

mx ) 

(2b) For k = n downto 1 

(2c) Append (T1,
0

,kmr ) 

(2d) Append (T2, rm k) 

End For 

(2e) T0 = ∪ (T1, T2) 

EndFor 

EndProcedure 

 
When the algorithm, Value(T0, q, n), is called from step (2) of Algorithm 1 in Subsection 3.8, it 

is used to encode the value of each element in 2q-1 partitions of a q-element set S. We think of 

tube T0 with the result shown in Table 1 as an input tube for the algorithm, Value(T0, q, n), the 

number of elements in S, q is regarded as the second parameter, and the number of bits for each 

element, n, is regarded as the third parameter. Step(1) is the first nested loop and is applied to 

construct the value of each element in T in each pair of (T,
−

T ). After we perform step (1a), then 

tube T1 = {x3
1
x2

1
x1

1
, x3

1
 x2

0
 x1

1
} and tube T2 = {x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

0
}. Then, after the first execution 

of step (1c) and (1d) is performed, tube T1 = {x3
1
x2

1
x1

1
s1, 3

0
, x3

1
x2

0
x1

1
s1, 3

0
} and tube T2 = {x3

1
x2

1
x1

0   

s1, 3
0, x3

1
x2

0
x1

0
s1, 3

0}. After every execution for step (1c) and (1d) is finished, tube T1 = 

{x3
1
x2

1
x1

1
s1,3

0
s1,2

0
s1,1

1
, x3

1
x2

0
x1

1
s1,3

0
s1,2

0
s1,1

1
} and tube T2 = {x3

1
x2

1
x1

0
s1,3

0
s1,2

0
s1,1

0
, 

x3
1
x2

0
x1

0
s1,3

0
s1,2

0
s1,1

0
}. Then, after the first execution of step (1e) is finished, tube T0 = 

{x3
1
x2

1
x1

1
s1,3

0
s1,2

0
s1,1

1
, x3

1
x2

0
x1

1
s1,3

0
s1,2

0
s1,1

1
, x3

1 
x2

1
 x1

0
s1,3

0
s1,2

0
s1,1

0
, x3

1
x2

0
x1

0
s1,3

0
s1,2

0
s1,1

0
}, tube T1 = ∅ 

and tube T2 = ∅. Next, after each execution of step (1a) through (1e) in the first nested loop is 

completed, tube T0 = {x3
1
 x2

1
 x1

1
 s1,3

0
 s1,2

0
 s1,1

1
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
,  x3

1
 x2

1
 x1

0
 s1,3

0
 s1,2

0
 s1,1

0
 

s2,3
0 s2,2

1 s2,1
0
 s3,3

0 s3,2
1 s3,1

1,  x3
1 x2

0 x1
1
 s1,3

0 s1,2
0 s1,1

1
 s2,3

0 s2,2
0 s2,1

0
 s3,3

0 s3,2
1 s3,1

1,  x3
1 x2

0 x1
0
s1,3

0 s1,2
0 

s1,1
0
 s2,3

0
 s2,2

0
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
}, tube T1 = ∅ and tube T2 = ∅. Step(2) is the second nested loop 

and is used to construct the value of each element in 
−

T  in each pair of (T,
−

T ). The contents of 

tube T0 are shown as above. When the first execution of step (2a) is performed, tube T1 = {x3
1 x2

1 

x1
1
 s1,3

0
s1,2

0
s1,1

1
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, x3

1
 x2

0
 x1

1
 s1,3

0
 s1,2

0
 s1,1

1
 s2,3

0
 s2,2

0
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
} and 

tube T2 = {x3
1 x2

1 x1
0
 s1,3

0 s1,2
0 s1,1

0
s2,3

0 s2,2
1 s2,1

0
 s3,3

0 s3,2
1 s3,1

1, x3
1 x2

0 x1
0
s1,3

0 s1,2
0 s1,1

0
 s2,3

0 s2,2
0 s2,1

0
 

s3,3
0 s3,2

1 s3,1
1
 }. Then, after the first execution, the second execution and the third execution for 

step (2c) and (2d) are finished, “r1,3
0
 r1,2

0
 r1,1

0
” is appended onto the tail of each bit pattern in tube 

T1, and “r1,3
0 r1,2

0 r1,1
1” is appended onto the tail of each bit pattern in tube T2. Next, after the first 

execution of step (2e) is performed, tube T0 = {x3
1 x2

1 x1
1
 s1,3

0 s1,2
0 s1,1

1
 s2,3

0 s2,2
1 s2,1

0
 s3,3

0 s3,2
1 s3,1

1
 

r1,3
0
 r1,2

0
 r1,1

0
, x3

1
 x2

1
 x1

0
 s1,3

0
 s1,2

0
 s1,1

0
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, r1,3

0
 r1,2

0
 r1,1

1
, x3

1
 x2

0
 x1

1
 s1,3

0
 s1,2

0
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s1,1
1
 s2,3

0 s2,2
0 s2,1

0
 s3,3

0 s3,2
1 s3,1

1, r1,3
0 r1,2

0 r1,1
0, x3

1 x2
0 x1

0
s1,3

0 s1,2
0 s1,1

0
 s2,3

0 s2,2
0 s2,1

0
 s3,3

0 s3,2
1 s3,1

1
 r1,3

0 

r1,2
0 r1,1

1}, tube T1 = ∅ and tube T2 = ∅. Then, after the second For loop is done, tube T1 = ∅, tube 

T2 = ∅ and the contents of tube T0 are shown in Table 2. Lemma 2 is applied to prove the 

correctness of the algorithm, Value (T0, q, n). 

 
Table 2. The result generated by Value (T0, q, n). 

 

Tube  The result generated by Value(T0, q, n) 

T0  {x3
1 x2

1 x1
1
 s1,3

0 s1,2
0 s1,1

1
 s2,3

0 s2,2
1 s2,1

0
 s3,3

0 s3,2
1 s3,1

1
 r1,3

0 r1,2
0 r1,1

0
 r2,3

0 r2,2
0 r2,1

0
 r3,3

0 

r3,2
0
 r3,1

0
,  

x3
1
 x2

1
 x1

0
 s1,3

0
 s1,2

0
 s1,1

0
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, r1,3

0
 r1,2

0
 r1,1

1
 r2,3

0
 r2,2

0
 r2,1

0
 r3,3

0
 

r3,2
0
 r3,1

0
, 

x3
1
 x2

0
 x1

1
 s1,3

0
 s1,2

0
 s1,1

1
 s2,3

0
 s2,2

0
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, r1,3

0
 r1,2

0
 r1,1

0
 r2,3

0
 r2,2

1
 r2,1

0
 r3,3

0
 

r3,2
0
 r3,1

0
, 

x3
1
 x2

0
 x1

0
s1,3

0
 s1,2

0
 s1,1

0
 s2,3

0
 s2,2

0
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
 r1,3

0
 r1,2

0
 r1,1

1
 r2,3

0
 r2,2

1
 r2,1

0
 r3,3

0
 

r3,2
0 r3,1

0} 

 

Lemma 2: The value of each element in each pair of (T,
−

T ) for a q-element finite set, S, can be 

constructed from the algorithm, Value (T0, q, n). 

Proof: Refer to Lemma 1. 

 

3.4. The Implementation of a Parallel One-bit Adder 

 
A one-bit adder has three inputs: the two data input and a carry input. It forms the arithmetic sum 

of these inputs. Two of the input bits represent two significant bits to be added. The third input 

represents the carry from the previous lower significant position. The least significant bit of the 

sum for augend, addend and previous carry comes from first output. The output carry transferred 

into the input carry of the next one-bit adder comes from second output. The truth table of a one-

bit adder is as follows: 
Table 3.  The truth table of a one-bit adder. 

 

Augend         Addend         Previous         Sum           Carry 

bit                  bit                 carry bit          bit              bit 

0                    0                       0                  0                 0 

0                    0                       1                  1                 0 

0                    1                       0                  1                 0 

0                    1                       1                  0                 1     

1                    0                       0                  1                 0 

1                    0                       1                  0                 1 

1                    1                       0                  0                 1 

1                    1                       1                  1                 1 

 

 Suppose that two one-bit binary numbers, αm-1, k and αm, k, represent the first input (augend) and 

the first output (sum) of a one-bit adder for 1≤ m ≤ q and 1≤ k ≤ n, respectively. A one-bit binary 

number, βm, k, is applied to represent the second input (addend) of a one-bit adder. γm, k-1 is used to 

represent the third input (previous carry) and γm, k represent the second output (current carry) of a 
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one-bit adder. From [3, 10], two distinct DNA sequences are designed to represent the value “0” 

and “1” for every corresponding bit. Also suppose that 1

, kmβ  contains the value of βm, k to be 1 and 

0

,kmβ  contains the value of βm, k to be 0. Also suppose that 1

,1 km −α  denotes the value of αm-1, k to be 

1 and 0

,1 km −α  defines the value of αm-1, k to be 0. Similarly, suppose that 1

,kmα  contains the value of 

αm, k to be 1 and 
0

,kmα  denotes the value of αm, k to be 0, 1

1, −kmγ
 
denotes the value of γm, k -1 to be 1 

and 
0

1, −kmγ  contains the value of γm, k-1 to be 0. γm, k
1
 defines the value of γm, k to be 1 and γm, k

0
 

contains the value of γm, k to be 0. The following algorithm is offered to perform the Boolean 

function of a parallel one-bit adder. 

 

Procedure ParallelOneBitAdder(T0, αm-1, k, βm, k, γm, k-1, m, k) 

(1) T1 = +(T0,
1

,1 km−α ) and T2 =－( T0,
1

,1 km−α ) 

(2) T3 = +(T1,
1

,kmβ ) and T4 = −(T1,
1

,kmβ ) 

(3) T5 = +(T2,
1

,kmβ ) and T6 = −(T2,
1

,kmβ ) 

(4) T7 = +(T3,
1

1, −kmγ ) and T8 = −(T3,
1

1, −kmγ ) 

(5) T9 = +(T4,
1

1, −kmγ ) and T10 = −(T4,
1

1, −kmγ ) 

(6) T11 = +(T5,
1

1, −kmγ ) and T12 = −(T5,
1

1, −kmγ ) 

(7) T13 = +(T6,
1

1, −kmγ ) and T14 = −(T6,
1

1, −kmγ ) 

(8) If (Detect (T7) = = ”yes”) then 

Append-head (T7,
1

,kmα ) and Append-head (T7,
1

,kmγ ) 

EndIf 

(9) If (Detect (T8) = = ”yes”) then 

Append-head (T8,
0

,kmα ) and Append-head (T8,
1

,kmγ ) 

EndIf 

(10) If (Detect (T9) = = ”yes”) then 

Append-head (T9,
0

,kmα ) and Append-head (T9,
1

,kmγ ) 

EndIf 

(11) If (Detect (T10) = = ”yes”) then 

Append-head (T10,
1

,kmα ) and Append-head (T10,
0

,kmγ ) 

EndIf 

(12) If (Detect (T11) = = ”yes”) then 

Append-head (T11,
0

,kmα ) and Append-head (T11,
1

,kmγ ) 

EndIf 

(13) If (Detect (T12) = =”yes”) then 

Append-head (T12,
1

,kmα ) and Append-head (T12,
0

,kmγ ) 

EndIf 
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(14) If (Detect (T13) = = ”yes”) then 

Append-head (T13,
1

,kmα ) and Append-head (T13,
0

,kmγ ) 

EndIf 

(15) If (Detect (T14) = = ”yes”) then 

Append-head (T14,
0

,kmα ) and Append-head (T14,
0

,kmγ ) 

EndIf 

(16) T0 = ∪(T7, T8, T9, T10, T11, T12, T13, T14) 

EndProcedure 

 

Lemma 3: The ParallelOneBitAdder(T0, αm-1, k, βm, k, γm, k-1, m, k) procedure can be applied to 

implement  a parallel one-bit adder. 

 

Proof: The algorithm ParallelOneBitAdder(T0, αm-1, k, βm, k, γm, k-1, m, k) is implemented via the 

extract, append-head and merge operations. Steps from (1) to (7) employ the extract operation to 

form some different test tubes including different strands (T1 to T14). That is T1 includes all of the 

strands that have αm-1, k = 1, T2 includes all of the strands that have αm-1, k = 0. T3 includes all of the 

strands that have αm-1, k = 1 and βm, k= 1. T4 includes those that have αm-1, k = 1 and βm, k= 0. T5 

includes those that have αm-1, k = 0 and βm, k= 1. T6 includes those that have αm-1,k =0 and βm,k=0. 

T7 includes those that have αm-1,k =1, βm,k=1, and γm,k-1=1. T8 includes those that have αm-1, k = 1, 

βm,k= 1, and γm, k-1= 0. T9 includes those that have αm-1, k = 1, βm, k= 0, and γm, k-1= 1. T10 includes 

those that have αm-1, k = 1, βm, k= 0, and γm, k-1= 0. T11 includes those that have αm-1, k = 0, βm, k= 1, 

and γm , k-1= 1. T12 includes those that have αm-1, k = 0, βm, k = 1, and γm, k-1 = 0. T13 includes those that 

have αm-1, k = 0, βm, k = 0, and γm, k-1 = 1. Finally T14 consists of those that have αm-1, k = 0, βm, k= 0, 

and γm, k-1 = 0. After step (1) through step (7) are performed, those eight corresponding results of a 

one-bit adder as shown in Table 3 are poured into tube T7 through T14 respectively. 

 

Next, we use step (8) through step (15) to check whether it contains any DNA strand for tubes T7, 
T8, T9, T10, T11, T12, T13, and T14 or not. If any a “yes” returned for those steps, then append-head 

operations will be performed correspondingly. The results are 1

,kmα  or 0

,kmα , and 1

, kmγ  or 0

, kmγ  are 

appended onto the head of every strand in the corresponding tubes. After performing step (8) 

through step (15), we find that one of eight different outputs of a one-bit adder in Table 3 is 

correspondingly appended into tubes T7 through T14.The last execution of step (16) applies the 

merge operation to pour tubes T7 through T14 into tube T0. T0 contains the strands performing the 

addition of three input bits.  

 

3.5. The Implementation of a Parallel N-bit Adder 

 
The parallel one-bit adder introduced in Section 3.4 figures out the arithmetic sum of two bits and 

a previous carry. A binary parallel n-bit adder also performs the arithmetic sum for the two input 

operands of n-bit and the input carry through performing this one-bit adder n times. The following 

algorithm is offered to perform the arithmetic sum for a parallel n-bit adder. 

 

Procedure ParallelAdder(T0, α, β, γ, q, n) 

(1) For k = n downto 1 

(1a) Append (T0,
0

,0 kα ) 

       EndFor 
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(2) For m = 1 to q 

             (2a) Append (T0,
0

0,mγ ) 

(2b) For k = 1 to n 

(2c) ParallelOneBitAdder(T0, αm-1, k, βm, k, γm, k-1, m, k) 

           EndFor 

EndFor 

EndProcedure  
 

When the first execution of ParallelAdder(T0, α, β, γ, q, n) is called from step (3) of Algorithm 1 

in Section 3.8, tube T0 with the result in Table 2 in Section 3.3 is regarded as the input tube. From 

the second parameter to the fourth parameter are replaced by the actual arguments A, s and z, 

respectively. The values for the fifth and sixth parameters, q and n, are both three. Because the 

value of n is equal to three, three bits ,0

3,0A
0

2,0A and 0

1,0A  are appended onto the tail of each bit 

pattern in tube T0 after the execution of step (1a). Since the values for n and q are both three, step 

(2a) will be executed three times and step (2c) will be executed nine times. The bit, ,0

0,1z  from the 

first execution of step (2a) is appended onto the tail of each bit pattern in tube T0. Next, after the 

first execution, the second execution and the third execution for step (2c), that call the algorithm, 

ParallelOneBitAdder(T0, αm-1, k, βm, k, γm, k-1, m, k), are performed, tube T0 = {z1,3
0
 A1,3

0
 z1,2

0
A1,2

0
 

z1,1
0 A1,1

1 x3
1 x2

1 x1
1
 s1,3

0 s1,2
0 s1,1

1
 s2,3

0 s2,2
1 s2,1

0
 s3,3

0 s3,2
1 s3,1

1
 r1,3

0 r1,2
0 r1,1

0
 r2,3

0 r2,2
0 r2,1

0
 r3,3

0 r3,2
0 r3,1

0 

A0,3
0
 A0,2

0
 A0,1

0
 z1,0

0
, z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 A1,1

0
 x3

1
 x2

1
 x1

0
 s1,3

0
 s1,2

0
 s1,1

0
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, 

r1,3
0
 r1,2

0
 r1,1

1
 r2,3

0
 r2,2

0
 r2,1

0
 r3,3

0
 r3,2

0
 r3,1

0
 A0,3

0
 A0,2

0
 A0,1

0
 z1,0

0
, z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 A1,1

1
 x3

1
 x2

0
 x1

1
 

s1,3
0 s1,2

0 s1,1
1
 s2,3

0 s2,2
0 s2,1

0
 s3,3

0 s3,2
1 s3,1

1, r1,3
0 r1,2

0 r1,1
0
 r2,3

0 r2,2
1 r2,1

0
 r3,3

0 r3,2
0 r3,1

0, A0,3
0 A0,2

0 A0,1
0
 

z1,0
0
, z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 A1,1

0
 x3

1
 x2

0
 x1

0
 s1,3

0
 s1,2

0
 s1,1

0
 s2,3

0
 s2,2

0
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
 r1,3

0
 r1,2

0
 r1,1

1
 

r2,3
0
 r2,2

1
 r2,1

0
 r3,3

0
 r3,2

0
 r3,1

0
 A0,3

0
 A0,2

0
 A0,1

0
 z1,0

0
}. Similarly, after each operation in step (2) is 

performed, the result for tube T0 is shown in Table 4.  
 

Table 4. The first execution result generated by ParallelAdder(T0, α, β, γ, q, n). 
 

Tube  The first execution result generated by ParallelAdder(T0, α, β, γ, q, n)  

T0  {z3,3
0 

A3,3
1 
z3,2

1
A3,2

1 z3,1
1 A3,1

0 z2,3
0 A2,3

0 z2,2
0
A2,2

1 z2,1
0 A2,1

1
 z1,3

0 A1,3
0 z1,2

0
A1,2

0 z1,1
0 A1,1

1 

x3
1
 x2

1
 x1

1
 s1,3

0
 s1,2

0
 s1,1

1
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
 r1,3

0
 r1,2

0
 r1,1

0
 r2,3

0
 r2,2

0
 r2,1

0
 r3,3

0
 r3,2

0
 

r3,1
0 A0,3

0 A0,2
0 A0,1

0
 z1,0

0 z2,0
0 z3,0

0
, 

z3,3
0
 A3,3

1
 z3,2

1
A3,2

0
 z3,1

1
 A3,1

1
 z2,3

0
 A2,3

0
 z2,2

0
A2,2

1
 z2,1

0
 A2,1

0
 z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 A1,1

0
 

x3
1 x2

1 x1
0
 s1,3

0 s1,2
0 s1,1

0
 s2,3

0 s2,2
1 s2,1

0
 s3,3

0 s3,2
1 s3,1

1, r1,3
0 r1,2

0 r1,1
1
 r2,3

0 r2,2
0 r2,1

0
 r3,3

0 r3,2
0 

r3,1
0
 A0,3

0
 A0,2

0
 A0,1

0
 z1,0

0
 z2,0

0
 z3,0

0
 , 

z3,3
0 A3,3

1 z3,2
1
A3,2

0 z3,1
1 A3,1

0 z2,3
0 A2,3

0 z2,2
0
A2,2

0 z2,1
0 A2,1

1
 z1,3

0 A1,3
0 z1,2

0
A1,2

0 z1,1
0 A1,1

1 

x3
1
 x2

0
 x1

1
 s1,3

0
 s1,2

0
 s1,1

1
 s2,3

0
 s2,2

0
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, r1,3

0
 r1,2

0
 r1,1

0
 r2,3

0
 r2,2

1
 r2,1

0
 r3,3

0
 r3,2

0
 

r3,1
0, A0,3

0 A0,2
0 A0,1

0
 z1,0

0 z2,0
0 z3,0

0 , 

z3,3
0
 A3,3

0
 z3,2

0
A3,2

1
 z3,1

0
 A3,1

1
 z2,3

0
 A2,3

0
 z2,2

0
A2,2

0
 z2,1

0
 A2,1

0
 z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 A1,1

0
 

x3
1 x2

0 x1
0
 s1,3

0 s1,2
0 s1,1

0
 s2,3

0 s2,2
0 s2,1

0
 s3,3

0 s3,2
1 s3,1

1
 r1,3

0 r1,2
0 r1,1

1
 r2,3

0 r2,2
1 r2,1

0
 r3,3

0 r3,2
0 

r3,1
0
 A0,3

0 A0,2
0 A0,1

0
 z1,0

0 z2,0
0 z3,0

0} 

 

When the second execution of ParallelAdder(T0, α, β, γ, q, n) is called from step (4) of 

Algorithm 1 in Section 3.8, tube T0 with the result in Table 4 is regarded as the input tube. From 

the second parameter to the fourth parameter are replaced by the actual arguments B, r and y 

respectively. The values for the fifth and sixth parameters, q and n, are both three. Because the 

value of n is equal to three, three bits ,0

3,0B 0

2,0B and 0

1,0B  are appended onto the tail of each bit 

pattern in tube T0 after the execution of step (1a). Since the values for n and q are both three, step 
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(2a) will be executed three times and step (2c) will be executed nine times. The bit, ,0

0,1y from the 

first execution of step (2a) is appended onto the tail of each bit pattern in tube T0. Next, after the 

first execution, the second execution and the third execution for step (2c), that call the algorithm, 

ParallelOneBitAdder(T0, αm-1, k, βm, k, γm, k-1, m, k), are performed, tube T0 = {y1,3
0
 B1,3

0
 y1,2

0
B1,2

0
 

y1,1
0
 B1,1

1 
z3,3

0
 A3,3

1
 z3,2

1
A3,2

1
 z3,1

1
 A3,1

0
 z2,3

0
 A2,3

0
 z2,2

0
A2,2

1
 z2,1

0
 A2,1

1
 z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 A1,1

1
 x3

1
 x2

1
 

x1
1
 s1,3

0 s1,2
0 s1,1

1
 s2,3

0 s2,2
1 s2,1

0
 s3,3

0 s3,2
1 s3,1

1
 r1,3

0 r1,2
0 r1,1

0
 r2,3

0 r2,2
0 r2,1

0
 r3,3

0 r3,2
0 r3,1

0 A0,3
0 A0,2

0 A0,1
0
 

z1,0
0
 z2,0

0
 z3,0

0
 B0,3

0
 B0,2

0
 B0,1

0
 y1,0

0
,  y1,3

0
 B1,3

0
 y1,2

0
B1,2

0
 y1,1

0
 B1,1

1
z3,3

0
 A3,3

1
 z3,2

1
A3,2

0
 z3,1

1
 A3,1

1
 z2,3

0
 A2,3

0
 

z2,2
0
A2,2

1
 z2,1

0
 A2,1

0
 z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 A1,1

0
 x3

1
 x2

1
 x1

0
 s1,3

0
 s1,2

0
 s1,1

0
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, 

r1,3
0 r1,2

0 r1,1
1
 r2,3

0 r2,2
0 r2,1

0
 r3,3

0 r3,2
0 r3,1

0
 A0,3

0 A0,2
0 A0,1

0
 z1,0

0 z2,0
0 z3,0

0
 B0,3

0 B0,2
0 B0,1

0
 y1,0

0,  y1,3
0 B1,3

0 

y1,2
0
B1,2

0
 y1,1

0
 B1,1

0
z3,3

0
 A3,3

1
 z3,2

1
A3,2

0
 z3,1

1
 A3,1

0
 z2,3

0
 A2,3

0
 z2,2

0
A2,2

0
 z2,1

0
 A2,1

1
 z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 

A1,1
1
 x3

1
 x2

0
 x1

1
 s1,3

0
 s1,2

0
 s1,1

1
 s2,3

0
 s2,2

0
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, r1,3

0
 r1,2

0
 r1,1

0
 r2,3

0
 r2,2

1
 r2,1

0
 r3,3

0
 r3,2

0
 r3,1

0
 

A0,3
0 A0,2

0 A0,1
0
 z1,0

0 z2,0
0 z3,0

0
 B0,3

0 B0,2
0
 B0,1

0
 y1,0

0,  y1,3
0 B1,3

0 y1,2
0
B1,2

0 y1,1
0 B1,1

1
z3,3

0 A3,3
0 z3,2

0
A3,2

1 z3,1
0 

A3,1
1 z2,3

0 A2,3
0 z2,2

0
A2,2

0 z2,1
0 A2,1

0
 z1,3

0 A1,3
0 z1,2

0
A1,2

0 z1,1
0 A1,1

0 x3
1 x2

0 x1
0
 s1,3

0 s1,2
0 s1,1

0
 s2,3

0 s2,2
0 s2,1

0
 

s3,3
0
 s3,2

1
 s3,1

1
 r1,3

0
 r1,2

0
 r1,1

1
 r2,3

0
 r2,2

1
 r2,1

0
 r3,3

0
 r3,2

0
 r3,1

0
 A0,3

0
 A0,2

0
 A0,1

0
 z1,0

0
 z2,0

0
 z3,0

0
 B0,3

0
 B0,2

0
 B0,1

0
 

y1,0
0}. Similarly, after each operation in step (2) is performed, the result for tube T0 is shown in 

Table 5. 

 

Lemma 4:  The ParallelAdder(T0 , α, β, γ, q, n) procedure can be applied to perform a binary 

parallel adder of n bits. 

 

Proof: Refer to Lemma 1.  

 
Table 5. The second execution result generated by ParallelAdder(T0, α, β, γ, q, n). 

 

Tube  The second execution result generated by ParallelAdder(T0, α, β, γ, q, n)  

T0  {y3,3
0 B3,3

0 y3,2
0
B3,2

0 y3,1
0 B3,1

0 y2,3
0 B2,3

0 y2,2
0
B2,2

0 y2,1
0 B2,1

0
 y1,3

0 B1,3
0 y1,2

0
B1,2

0 y1,1
0 B1,1

1 

z3,3
0 A3,3

1 z3,2
1
A3,2

1 z3,1
1 A3,1

0 z2,3
0 A2,3

0 z2,2
0
A2,2

1 z2,1
0 A2,1

1
 z1,3

0 A1,3
0 z1,2

0
A1,2

0 z1,1
0 A1,1

1 x3
1 

x2
1
 x1

1
 s1,3

0
 s1,2

0
 s1,1

1
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
 r1,3

0
 r1,2

0
 r1,1

0
 r2,3

0
 r2,2

0
 r2,1

0
 r3,3

0
 r3,2

0
 r3,1

0
 

A0,3
0 A0,2

0 A0,1
0
 z1,0

0 z2,0
0 z3,0

0
 B0,3

0 B0,2
0 B0,1

0
 y1,0

0 y2,0
0 y3,0

0, 

y3,3
0
 B3,3

0
 y3,2

0
B3,2

0
 y3,1

0
 B3,1

1
 y2,3

0
 B2,3

0
 y2,2

0
B2,2

0
 y2,1

0
 B2,1

1
 y1,3

0
 B1,3

0
 y1,2

0
B1,2

0
 y1,1

0
 B1,1

1
z3,3

0
 

A3,3
1 z3,2

1
A3,2

0 z3,1
1 A3,1

1 z2,3
0 A2,3

0 z2,2
0
A2,2

1 z2,1
0 A2,1

0
 z1,3

0 A1,3
0 z1,2

0
A1,2

0 z1,1
0 A1,1

0 x3
1 x2

1 

x1
0
 s1,3

0 s1,2
0 s1,1

0
 s2,3

0 s2,2
1 s2,1

0
 s3,3

0 s3,2
1 s3,1

1, r1,3
0 r1,2

0 r1,1
1
 r2,3

0 r2,2
0 r2,1

0
 r3,3

0 r3,2
0 r3,1

0
 

A0,3
0
 A0,2

0
 A0,1

0
 z1,0

0
 z2,0

0
 z3,0

0
 B0,3

0
 B0,2

0
 B0,1

0
 y1,0

0
 y2,0

0
 y3,0

0
,  

y3,3
0
 B3,3

0
 y3,2

0
B3,2

1
 y3,1

0
 B3,1

0
 y2,3

0
 B2,3

0
 y2,2

0
B2,2

1
 y2,1

0
 B2,1

0
 y1,3

0
 B1,3

0
 y1,2

0
B1,2

0
 y1,1

0
 B1,1

0
z3,3

0
 

A3,3
1
 z3,2

1
A3,2

0
 z3,1

1
 A3,1

0
 z2,3

0
 A2,3

0
 z2,2

0
A2,2

0
 z2,1

0
 A2,1

1
 z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 A1,1

1
 x3

1
 x2

0
 

x1
1
 s1,3

0 s1,2
0 s1,1

1
 s2,3

0 s2,2
0 s2,1

0
 s3,3

0 s3,2
1 s3,1

1, r1,3
0 r1,2

0 r1,1
0
 r2,3

0 r2,2
1 r2,1

0
 r3,3

0 r3,2
0 r3,1

0
 

A0,3
0
 A0,2

0
 A0,1

0
 z1,0

0
 z2,0

0
 z3,0

0
 B0,3

0
 B0,2

0
 B0,1

0
 y1,0

0
 y2,0

0
 y3,0

0
,  

y3,3
0 B3,3

0 y3,2
0
B3,2

1 y3,1
0 B3,1

1 y2,3
0 B2,3

0 y2,2
0
B2,2

1 y2,1
0 B2,1

1
 y1,3

0 B1,3
0 y1,2

0
B1,2

0 y1,1
0 B1,1

1
z3,3

0 

A3,3
0
 z3,2

0
A3,2

1
 z3,1

0
 A3,1

1
 z2,3

0
 A2,3

0
 z2,2

0
A2,2

0
 z2,1

0
 A2,1

0
 z1,3

0
 A1,3

0
 z1,2

0
A1,2

0
 z1,1

0
 A1,1

0
 x3

1
 x2

0
 

x1
0
 s1,3

0 s1,2
0 s1,1

0
 s2,3

0 s2,2
0 s2,1

0
 s3,3

0 s3,2
1 s3,1

1
 r1,3

0 r1,2
0 r1,1

1
 r2,3

0 r2,2
1 r2,1

0
 r3,3

0 r3,2
0 r3,1

0
 A0,3

0 

A0,2
0 A0,1

0
 z1,0

0 z2,0
0 z3,0

0
 B0,3

0 B0,2
0 B0,1

0
 y1,0

0 y2,0
0 y3,0

0} 

 

3.6. Constructing the Parallel One-bit XOR Operation on Bio-molecular Computing 

 
The Exclusive-OR (XOR) operation of a bit for Boolean variables A and B generates an output of 

1 if both A and B have different values and 0 if they are equal. The ⊕ symbol represents the XOR 

operation. The four possible combinations for the XOR operation are 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 

= 1, 1 ⊕ 1 = 0. A truth table is usually used with logic operation to represent all possible 
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combinations of inputs and the corresponding outputs. The truth table for the XOR operation is 

shown in Table 6. 
 

Table 6. Truth table for the XOR operation of a bit. 

Input                                     output 

A                B                           C = A ⊕ B 

0                 0                                   0 

0                 1                                   1 

1                 0                                   1 

1                 1                                   0 

             

Assume that two one-bit binary numbers, Aq, k and Bq, k for 1 ≤ k ≤ n, are used to respectively 

represent the first input and the second input for the XOR operation of a bit. Also assume that  Cq, 

k for 1 ≤ k ≤ n, is used to represent the output for the XOR operation of a bit. For the sake of 

convenience, assume that Aq, k
1 denotes that the value of Aq, k is 1 and Aq, k

0
 denotes that the value 

of Aq, k is 0. Similarly, suppose that Bq ,k
1 denotes that the value of Bq, k is 1 and Bq, k

0
 denotes that 

the value of Bq, k is 0. Assume that Cq, k
1
 denotes that the value of Cq, k is 1 and Cq, k

 0
 denotes that 

the value of Cq, k is 0. The following algorithm is used to perform the parallel one-bit XOR 

operation. 

 

Procedure ParalleOneBitXOR(T0, Aq, k, Bq, k, q, k) 

 

(1) T1 = +(T0, Aq, k
1) and T2 = −(T0, Aq, k 

1) 

(2) T3 = +(T1, Bq, k 
1
) and T4 = −(T1, Bq, k 

1
) 

(3) T5 = +(T2, Bq, k 
1
) and T6 = −(T2, Bq, k 

1
) 

(4) If (Detect(T3) = = “yes”) then 

(4a) Append-head(T3, Cq, k
0) 

EndIf 

(5) If (Detect(T4) = = “yes”) then 

(5a) Append-head (T4, Cq, k
1) 

EndIf 

(6) If (Detect(T5) = = “yes”) then 

(6a) Append-head(T5, Cq, k
1) 

EndIf 
(7) If (Detect(T6) = = “yes”) then 

(7a) Append-head(T6, Cq, k
 0) 

EndIf 

(8) T0 = ∪(T3, T4, T5, T6) 

EndProcedure 
 

Lemma 5: The ParallelOneBitXOR(T0, Aq, k, Bq, k, q, k) procedure can be used to implement the 

parallel XOR operation of one-bit. 

 

Proof: The algorithm, ParallelOneBitXOR(T0, Aq, k, Bq, k, q, k), is implemented by the extract, 

detect, merge and append-head operations. Steps from (1) to (3) employ the extract operations to 

yield different tubes consisting of different inputs (T1 to T6). This implies, T1 includes all of the 

inputs that have Aq, k = 1, T2 contains all of the inputs that have Aq, k = 0, T3 includes those inputs 

that have Aq, k = 1 and Bq, k = 1, T4 consists of those inputs that have Aq, k = 1 and Bq,k = 0, T5 

comprises of those inputs that have Aq, k = 0 and Bq, k = 1, and T6 includes those that have Aq,k = 0 

and Bq, k = 0. After having performed separation operation from step (1) to (3), the results of  

XOR operation shown in Table 6 are poured into tubes T3 through T6 respectively. 
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Step (4a) through (7a) are applied to check whether it contains any input for tubes T3, T4, T5, and 

T6 or not respectively. If any a “yes” returned for those steps, then append-head operations will be 

performed correspondingly. Because tubes T3, T4, T5 and T6, subsequently, contains the input for 

the fourth row, the third row, the second row and the first row in Table 6. Cq, k
0 is appended onto 

the head of every input in tubes T3 and T6 if the detection result from step (4) or step (7) is yes. Cq, 

k
1 is subsequently appended onto the head of every input in tubes T4 and T5 when the detection 

result from step (5) or step (6) is yes. After performing step (4) through (7), we discover that one 

of four different outputs for the XOR operation of a bit as shown in Table 6 is correspondingly 

appended into tubes T3 through T6. The last execution of step (8) uses the merge operation to pour 

tubes T3 through T6 into tube T0. Tube T0 contains the result finishing the XOR operation of a bit 

as shown in Table 6.  

 

3.7. Constructing the Parallel N-bit XOR Operation on Bio-molecular Computing 

 
Simultaneously, the parallel XOR operation of n bits generates the corresponding n-bit 

outputs for XOR operation with two n-bit Boolean variables A, represented by Aq,nAq,n-1…Aq,2Aq,1, 
and B, represented by Bq,nBq,n-1…Bq,2Bq,1. The following algorithm is proposed to perform the 

parallel n-bit XOR operation for 2q-1 partitions of a q-element set S. 

 
Procedure ParallelXOR(T0, A, B, q, n) 

(1) For k = 1 to n 

(1a) ParallelOneBitXOR(T0, Aq, k, Bq, k, q, k). 

   EndFor 

EndProcedure 
 

When the algorithm, ParallelXOR(T0, A, B, q, n), is invoked from step (5) in Algorithm 1, tube 

T0 with the result in Table 5 is regarded as the input tube. The second parameter is replaced by the 

total sum, A, for the value of each element in each T and the third parameter is replaced by the 

total sum, B, for the value of each element in each
−

T . The fourth parameter q and the fifth 

parameter n are both three. Because the value of n is equal to three, step (1a) will be executed 

three times. After the first execution of step (1a), that calls the algorithm, ParallelOneBitXOR(T0, 

Aq, k, Bq, k, q, k), is finished, tube T0 = {C3,1
0 
… B3,1

0 
… A3,1

0… x3
1
x2

1 x1
1
 …, C3,1

0
… B3,1

1 … A3,1
1 … 

x3
1
 x2

1
 x1

0
 …, C3,1

0
 … B3,1

0
… A3,1

0
 … x3

1
 x2

0
x1

1
 …, C3,1

0
 … B3,1

1
… A3,1

1
 … x3

1
 x2

0
 x1

0
 …}. Then, 

after performing each execution of step (1a), the result for tube T0 is shown in Table 7. Lemma 6 

is applied to prove the correctness of the algorithm, ParallelXOR(T0, A, B, q, n). 

 

Lemma 6: The procedure, ParallelXOR(T0, A, B, q, n), can be used to finish the parallel XOR 

operation of n bits. 

 

Proof: Tube T0 is generated from the algorithm, ParallelAdder(T0, α, β, γ, q, n) and  contains 

those DNA strands representing the individual sum of two disjoint subsets, T and 
−

T  in each pair 

of (T and 
−

T ) in 2
q-1

 partitions of a q-element set S. Step (1) is the single loop and is mainly 

applied to perform the function of parallel XOR operation of n bits for 2q-1 partitions of a q-

element set S. Each execution of step (1a) calls ParallelOneBitXOR(T0, Aq, k, Bq, k, q, k) to finish 

the XOR operation for the kth bit of two operands, A and B, in tube T0 . After repeating the 

execution of step (1a) until the most significant bit of each operand, A and B, is processed, tube T0 

includes the result of performing the parallel XOR operation of n bits. In other words, after 

finishing the execution of single loop, tube T0 contains the strands representing the results of 

parallel XOR operations for 2q-1 partitions of a q-element set S.  
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Table 7. The result generated by ParallelXOR(T0, A, B, q, n). 

 

Tube  The result generated by ParallelXOR(T0, A, B, q, n) 

T0  {C3,3
1 C3,2

1C3,1
0
 y3,3

0 B3,3
0 y3,2

0
B3,2

0 y3,1
0 B3,1

0 y2,3
0 B2,3

0 y2,2
0
B2,2

0 y2,1
0 B2,1

0
 y1,3

0 B1,3
0 

y1,2
0
B1,2

0
 y1,1

0
 B1,1

1 
z3,3

0
 A3,3

1
 z3,2

1
A3,2

1
 z3,1

1
 A3,1

0
 z2,3

0
 A2,3

0
 z2,2

0
A2,2

1
 z2,1

0
 A2,1

1
 z1,3

0
 A1,3

0
 

z1,2
0
A1,2

0
 z1,1

0
 A1,1

1
 x3

1
 x2

1
 x1

1
 s1,3

0
 s1,2

0
 s1,1

1
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
 r1,3

0
 r1,2

0
 r1,1

0
 

r2,3
0 r2,2

0 r2,1
0
 r3,3

0 r3,2
0 r3,1

0 A0,3
0 A0,2

0 A0,1
0
 z1,0

0 z2,0
0 z3,0

0
 B0,3

0 B0,2
0 B0,1

0
 y1,0

0 y2,0
0 y3,0

0,  

C3,3
1 C3,2

0C3,1
0 

y3,3
0 B3,3

0 y3,2
0
B3,2

0 y3,1
0 B3,1

1 y2,3
0 B2,3

0 y2,2
0
B2,2

0 y2,1
0 B2,1

1 y1,3
0 B1,3

0 

y1,2
0
B1,2

0 y1,1
0 B1,1

1
z3,3

0 A3,3
1 z3,2

1
A3,2

0 z3,1
1 A3,1

1 z2,3
0 A2,3

0 z2,2
0
A2,2

1 z2,1
0 A2,1

0
 z1,3

0 A1,3
0 

z1,2
0
A1,2

0
 z1,1

0
 A1,1

0
 x3

1
 x2

1
 x1

0
 s1,3

0
 s1,2

0
 s1,1

0
 s2,3

0
 s2,2

1
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, r1,3

0
 r1,2

0
 r1,1

1
 

r2,3
0
 r2,2

0
 r2,1

0
 r3,3

0
 r3,2

0
 r3,1

0
 A0,3

0
 A0,2

0
 A0,1

0
 z1,0

0
 z2,0

0
 z3,0

0
 B0,3

0
 B0,2

0
 B0,1

0
 y1,0

0
 y2,0

0
 

y3,0
0, 

C3,3
1 C3,2

1C3,1
0 

y3,3
0 B3,3

0 y3,2
0
B3,2

1 y3,1
0 B3,1

0 y2,3
0 B2,3

0 y2,2
0
B2,2

1 y2,1
0 B2,1

0
 y1,3

0 B1,3
0 

y1,2
0
B1,2

0 y1,1
0 B1,1

0
z3,3

0 A3,3
1 z3,2

1
A3,2

0 z3,1
1 A3,1

0 z2,3
0 A2,3

0 z2,2
0
A2,2

0 z2,1
0 A2,1

1
 z1,3

0 A1,3
0 

z1,2
0
A1,2

0
 z1,1

0
 A1,1

1
 x3

1
 x2

0
 x1

1
 s1,3

0
 s1,2

0
 s1,1

1
 s2,3

0
 s2,2

0
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
, r1,3

0
 r1,2

0
 r1,1

0
 

r2,3
0 r2,2

1 r2,1
0
 r3,3

0 r3,2
0 r3,1

0, A0,3
0 A0,2

0 A0,1
0
 z1,0

0 z2,0
0 z3,0

0
 B0,3

0 B0,2
0 B0,1

0
 y1,0

0 y2,0
0 

y3,0
0, 

C3,3
0 C3,2

0C3,1
0 

y3,3
0 B3,3

0 y3,2
0
B3,2

1 y3,1
0 B3,1

1 y2,3
0 B2,3

0 y2,2
0
B2,2

1 y2,1
0 B2,1

1
 y1,3

0 B1,3
0 

y1,2
0
B1,2

0
 y1,1

0
 B1,1

1
z3,3

0
 A3,3

0
 z3,2

0
A3,2

1
 z3,1

0
 A3,1

1
 z2,3

0
 A2,3

0
 z2,2

0
A2,2

0
 z2,1

0
 A2,1

0
 z1,3

0
 A1,3

0
 

z1,2
0
A1,2

0
 z1,1

0
 A1,1

0
 x3

1
 x2

0
 x1

0
 s1,3

0
 s1,2

0
 s1,1

0
 s2,3

0
 s2,2

0
 s2,1

0
 s3,3

0
 s3,2

1
 s3,1

1
 r1,3

0
 r1,2

0
 r1,1

1
 

r2,3
0 r2,2

1 r2,1
0
 r3,3

0 r3,2
0 r3,1

0
 A0,3

0 A0,2
0 A0,1

0
 z1,0

0 z2,0
0 z3,0

0
 B0,3

0 B0,2
0 B0,1

0
 y1,0

0 y2,0
0 

y3,0
0
 } 

 

3.8. A DNA Algorithm for Solving the Set Partition Problem 

 
The following algorithm is used to solve the set-partition problem of a q-element set S. Notations 

used in the following algorithm are denoted in the previous sections. 

 

Algorithm 1: Solving the set-partition problem. 

 

(1) Init (T0, q) 

(2) Value (T0, q, n) 

(3) ParallelAdder(T0, A, s, z, q, n) 

(4) ParallelAdder(T0, B, r, y, q, n) 

(5) ParallelXOR(T0, A, B, q, n) 

(6) For k = 1 to n 

(6a) T1 = + (T0, Cq, k
0
) and T2= −(T0, Cq, k

0
) 

(6b) T0 = ∪(T1, T0) 

(6c) Discard (T2) 

      EndFor 

(7) If (Dectect (T0) = = ”yes”) then 

(7a) Read(T0) 

EndIf 

EndAlgorithm 
 

Consider that Algorithm 1 is used to solve the set-partition problem of a set S with {001, 010, 

011}. When step (1) is performed, it calls the algorithm, Init (T0, q). The first actual argument, 

tube T0, is an empty tube and the second actual argument, q is equal to three. After all operations 

in Init (T0, q) is performed, the result for tube T0 is shown in Table 1. Then, step (2) calls the 
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algorithm, Value (T0, q, n). Tube T0 with the result in Table 1 is regarded as the first actual 

argument, and the second actual argument and the third actual argument are equal to three. After 

each operation in Value (T0, q, n) is performed, the result for tube T0 is shown in Table 2.  

 

Next, step (3) calls the algorithm, ParallelAdder (T0, A, s, z, q, n). Tube T0 with the result in 

Table 2 is regarded as the first actual argument. The second actual argument A is used to represent 

the total sum for the value of each element in T, which is in the four partitions of a three-element 

set S. The third actual argument s is used to represent the value of each element in T. The fourth 

actual argument z is used to represent the carry for performing addition of each element in T. The 

fifth actual argument q and the sixth actual argument n are equal to three. After each operation in 

ParallelAdder(T0, A, s, z, q, n) is performed, the result for tube T0 is shown in Table 4. 

 

Then, step (4) calls the algorithm, ParallelAdder(T0, B, r, y, q, n). Tube T0 with the result in 

Table 4 is regarded as the first actual argument. The second actual argument B is used to represent 

the total sum for the value of each element in
−

T , which is in the four partitions of a three-element 

set S. The third actual argument r is used to represent the value of each element in 
−

T  The fourth 

actual argument y is used to represent the carry for performing addition of each element in 
−

T  The 

fifth actual argument q and the sixth actual argument n are equal to three. After each operation in 

ParallelAdder (T0, B, r, y, q, n) is finished, the result for tube T0 is shown in Table 5. 

 

Then, step (5) calls the algorithm, ParallelXOR(T0, A, B, q, n). Tube T0 with the result in Table 5 

is regarded as the first actual argument. The second actual argument A is used to represent the 

total sum for the value of each element in T. The third actual argument B is used to represent the 

total sum for the value of each element in
−

T .The fourth actual argument q and the fifth actual 

argument n are equal to three. After each operation in ParallelXOR(T0, A, B, q, n) is finished, the 

result for tube T0 is shown in Table 7. 

 

step (6) is a single loop and is used to search the answer of the set-partition problem. Because 

C3,1
0 appears in each bit pattern in tube T0 in Table 7, after the first execution of step (6a) is 

performed, tube T1 obtains the same result in Table 7 and tube T0 = ∅, tube T2 = ∅. Then, after 

the first execution of step (6b) is finished, tube T1 = ∅, and tube T0 obtains the same result in 

Table 7. After the first execution of step (6c) is finished, tube T2 = ∅. Similarly, after each 

operation in step (6) is finished, the result for tube T0 is shown in Table 8. Finally, after the 

execution of step (7) is performed, the answer is that T = {3} and 
−

T = {1, 2}. Theorem 1 is used 

to prove the correctness of Algorithm 1.  

 
Table 8. The final result generated by Algorithm 1. 

 

Tube  The final result generated by Algorithm 1 

T0  {C3,3
0
 C3,2

0
C3,1

0 
y3,3

0
 B3,3

0
 y3,2

0
B3,2

1
 y3,1

0
 B3,1

1
 y2,3

0
 B2,3

0
 y2,2

0
B2,2

1
 y2,1

0
 B2,1

1
 y1,3

0
 B1,3

0
 

y1,2
0
B1,2

0 y1,1
0 B1,1

1
z3,3

0 A3,3
0 z3,2

0
A3,2

1 z3,1
0 A3,1

1 z2,3
0 A2,3

0 z2,2
0
A2,2

0 z2,1
0 A2,1

0
 z1,3

0 A1,3
0 

z1,2
0
A1,2

0 z1,1
0 A1,1

0 x3
1 x2

0 x1
0
 s1,3

0 s1,2
0 s1,1

0
 s2,3

0 s2,2
0 s2,1

0
 s3,3

0 s3,2
1 s3,1

1
 r1,3

0 r1,2
0 r1,1

1
 

r2,3
0
 r2,2

1
 r2,1

0
 r3,3

0
 r3,2

0
 r3,1

0
 A0,3

0
 A0,2

0
 A0,1

0
 z1,0

0
 z2,0

0
 z3,0

0
 B0,3

0
 B0,2

0
 B0,1

0
 y1,0

0
 y2,0

0
 

y3,0
0} 

 
Theorem 1: From those steps in Algorithm 1, the set partition problem for 2q-1

 partitions of a q-

element set S can be solved. 

 

Proof: On the execution of step (1), it calls Init (T0, q) to construct solution space for 2q-1 
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partitions of a q-element set S. This means that the tube T0 includes strands encoding 2q-1 

partitions. Next the execution of step (2) calls Value (T0, q, n) to encode the value of each 

element in 2q-1 partitions. On the execution of step (3), it calls ParallelAdder(T0, A, s, z, q, n) to 

perform the function of a parallel adder for computing the sum to the value of each element in T 

in each pair of (T and 
−

T ). Similarly, on the execution of step (4), it calls ParallelAdder(T0, B, r, 

y, q, n) to perform the function of a parallel adder for computing the sum to the value of each 

element in 
−

T  in each pair of (T , 
−

T ). Then, after step (5) is executed, it calls ParallelXOR(T0, A, 

B, q, n) to perform the function of parallel XOR operation of n bits for the total sum to each pair 

of (T ,
−

T ).  

 

Then, step (6) is a single loop and is employed individually to retrieve those DNA strands 

encoded zero value as the result of parallel XOR operation of n bits. Each time step (6a) uses the 

extract operation to form two test tubes: T1 and T2 .The first tube T1 includes all of the strands that 

have Cq,k=0. The second tube T2 contains all of the strands that have Cq,k=1. Then, on each 

execution of step (6b), it employs the merge operation to pour tube T1 into T0 and each execution 

of step (6c) uses the discard operation to discard tube T2 containing the result of parallel XOR 

operation is not equal to zero. After each step in the single loop is performed n times, tube T0 

includes DNA strands that encodes the sum of subset T to be equal to that of its exclusive 

subset
−

T , the answer for the set-partition is found from tube T0. Finally, the execution of step (7) 

uses the detect operation to check if there is any DNA strand in tube T0. If it returns a “yes”, then 

the execution of step (7a) applies the read operation to read the answer. Otherwise, no solution 

exists. Therefore, the set-partition problem for 2
q-1

 partitions of a q-element set S can be computed 

from those steps in Algorithm 1. 

 

3.9 The Complexity of Algorithm 1 

 

Theorem 2: Suppose that a finite set S is {s1, s2,…, sq}. The set partition problem for S can be 

solved with O (q × n) biological operations, O (2
n
) library strands, O (1) tubes and the longest 

library strands, O (q × n), where n is the number of bits for representing the value of each element 

in S. 

Proof: refer to Algorithm 1. 

 

4.  Conclusions 
 
In this paper, based on biological operations, we propose DNA-based algorithms for solving the 

set partition problem of a q-element set. The computational complexity is clearly reduced toO 

(q*n), where q is the numbers of element in set S we concerned, n is the number of bits for 

representing the value of each element in S. 

 

Although the future of molecular computers is vague at present, it is likely that in the future DNA 

computers will be the better choice for performing massively parallel computations. However, 

there are still severe challenges to face and many technical difficulties to overcome before this 

becomes a reality. We hope that this paper helps to manifest that molecular computing is a 

technology worth pursuing. 
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