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ABSTRACT 
 
With the help of both an experiment and analytical techniques, Axelrod and Hamilton [1] showed that 
cooperation can evolve in a Prisoner’s Dilemma game when pairs of individuals interact repeatedly. They 
also demonstrated that, when pairing of individual is not completely random, cooperating behaviour can 
evolve in a world initially dominated by defectors. This result leads us to address the following question: 
Since non-random pairing is a powerful mechanism for the promotion of cooperation in a repeated 
Prisoner’s Dilemma game, can this mechanism also promote the evolution of cooperation in a non-
repeated version of the game? Computer simulations are used to study the relation between non-random 
pairing and the maintenance of cooperative behaviour under evolutionary dynamics. We conclude that 
non-random pairing can secure cooperation also when the possibility of repeated interaction among the 
same pairs of individuals is ruled out. 
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1. INTRODUCTION 
 
In their influential contributions to the evolution of cooperation Axelrod and Hamilton [1] 
showed that cooperation is the most likely evolutionary outcome of a Prisoner’s Dilemma game 
when pairs of individuals interact repeatedly. Their model goes roughly as follows: Suppose that 
pairs of individuals interact repeatedly over time and that each member of a pair has the 
opportunity to provide a benefit to the other at a cost to himself by cooperating. Now consider a 
population of Tit-for-Tatters who cooperate on the first interaction and keep on cooperating only 
as long as their partner cooperates. Axelrod and Hamilton showed that Tit-for-Tatters can resist 
invasion by defectors who never cooperate as long as the long-run benefit of mutual cooperation 
is greater than the shortrun benefit that a defector gets by exploiting a co-operator. This widely 
cited result has inspired much theoretical work on the problem of cooperation. 
 
As discussed by Axelrod and Hamilton [1], a population of Tit-for-Tatters is not, however, the 
only one that is evolutionary stable. In fact, a population where all are defectors is also 
evolutionary stable. If (almost) all players in a population are defectors, a co-operator will have 
no one to cooperate with. Therefore, a player cannot do any better than playing defect. The long-
run benefit associated with sustained cooperation becomes irrelevant. This raises the problem 
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concerning initiation of cooperation from a previous asocial state. How could an evolutionary 
trend towards cooperative behaviour have started in the first place? 
 
In order to study this question more closely Axelrod and Hamilton [1] introduced the concept of 
segregation (or clustering as they name  it). Segregated interaction means that the probability for 
a Tit-for-Tatter to meet another Tit-for-Tatter is higher than the proportion of Tit-for-Tatters in 
the population. They demonstrated that if there are few Tit-for-Tatters in the population, and if 
the long-run benefit of cooperation is big, only a small amount of segregation is needed in order 
to secure Tit-for-Tatters a higher expected payoff than defectors. An evolutionary trend towards 
universal cooperation can then start. 
 
The results established by Axelrod and Hamilton are generated within a setup where pairs of 
individuals interact repeatedly over time, and where everybody is able to remember the action 
taken by each member of the population in previous interactions. However, in many human social 
environments, Axelrod and Hamilton’s conditions favouring cooperation can be questioned. 
Individuals do not always interact repeatedly over long periods of time, and in large groups it can 
be difficult to remember the action taken by a potential exchange partner in previously 
interactions. This leads us to the main question of this paper: Since segregation is a powerful 
mechanism for the promotion of cooperation when pairs of individuals meet repeatedly, can 
segregation also promote the evolution of cooperation when individuals are matched to play a 
one-shot Prisoner’s Dilemma game? If so, how much segregation is needed, and how does 
cooperative behaviour evolve over time depending on the degree of segregation? 
 
The idea that cooperative behaviour can survive under evolutionary competition with defecting 
behaviour, when interaction is not random, goes back at least to Hamilton [2] and Eshel [3], and 
has received attention more recently by Wilson and Dugatkin [4], Bowles [5], Nowak [6] and 
Mengel [7] among others. Although these papers differ in how the problem of cooperation is 
formulated, they reach qualitatively the same result: Non-random pairing means that cooperating 
players are more likely to meet other cooperating players, while defectors are more likely to meet 
other defectors. This gives rise to cooperative and non-cooperative clusters, with individuals in 
cooperative clusters earning higher payoffs on average than individuals in non-cooperative 
clusters. 
 
The work most closely related to ours is Boyd and Richerson [8]. As the present paper, their 
model is designed to be as close as possible to Axelrod and Hamilton [1]. But while Axelrod and 
Hamilton’s paper deals with repeated interaction among pairs of individuals, Boyd and Richerson 
[8] extend the analysis to groups of people repeatedly interacting in an n person Prisoner’s 
Dilemma. They show that when group size rises, cooperation becomes a much less likely 
evolutionary outcome. However, when they allow for some segregated interaction, coupled with 
the possibility of repeated interaction, cooperation evolves in situations in which neither factor 
alone would cause cooperation. In this paper we model segregation in exactly the same way as 
Boyd and Richerson [8], but we but do not allow for repeated interaction among the same pairs of 
individuals. Instead we assume that players are repeatedly matched to play a one-shot interaction 
Prisoners Dilemma. 
 
After addressing the problem of cooperation within the framework of the Prisoner’s Dilemma in 
the next section, we briefly review the model by Axelrod and Hamilton [1] in Section 3. In 
Section 4 we use the same set-up as Axelrod and Hamilton to analyse the evolution of 
cooperation when the possibility of repeated interaction and reciprocity is ruled out. An index of 
segregation is defined that captures the idea that co-operators are more likely to meet co-operators 
than are defectors. Section 5 gives a description of the algorithm used in the simulation of the 
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non-repeated and non-random version of the Axelrod and Hamilton model. Section 6 presents the 
results from the simulation. Section 7 concludes the paper. 
 
2. THE PROBLEM OF COOPERATION 
 
Consider a large population of players who interact in pairs with available actions and payoffs 
describing a Prisoner’s Dilemma game. We have the following payoff matrix, where ܽ >  ܾ >
 ܿ >  ݀.If both players cooperate, they both receive a payoff of ܾ. If both defect, they both 
receive payoffs of ܿ. If one cooperates and the other defects, the co-operator receives a payoff of 
݀, while the defector does very well with a payoff of ܽ. 
 

 Cooperate Defect 
Cooperate b  ,  b d ,  a 

Defect a  ,  d c  ,  c 
 

Figure 1. The Prisoner’s Dilemma 
 

Assume further that individuals in the larger population are either (perhaps due to cultural 
experiences, perhaps due to genes) co-operators (ܥ) or defectors (ܦ) in a single period Prisoner’s 
Dilemma. Let  denote the proportion of the population that are co-operators and (1 −  the (
proportion of defectors. If the members of the population are randomly paired, the expected 
payoffs are given by 
 
 

(ܥ)ܸ                                 (1) = ܾ + (1−  ݀(
(ܦ)ܸ                                 (2) = ܽ + (1 −  ܿ(
 
where ܸ(ܥ) and ܸ(ܦ) are the expected payoff for a co-operator and a defector respectively. 
Equation (1) says that with probability  a co-operator is paired with another co-operator 
producing a payoff ܾ, and with probability (1 −  .݀ is paired with a defector producing a payoff (
Equation (2) has a similar interpretation:With probability  a defector is paired with a co-operator 
producing a payoff ܽ, and with probability (1 −  is paired with a another defector producing a (
payoff ܿ. 
 
Assume now the following simple evolutionary dynamics: At any time, the growth rate of the 
proportion of co-operators () is positive or negative, depending on whether the expected payoff 
for co-operators is higher or lower than the expected payoff for defectors. The population 
distribution  will be unchanging, producing an equilibrium, if 
 
(ܥ)ܸ                                     (3) =  (ܦ)ܸ
 
It is easy to see from (1) and (2) that the only evolutionary stable equilibrium is  = 0, where all 
members of the population defects. This result follows from the fact that ܽ > ܾ  and ܿ > ݀, which 
gives ܸ(ܥ) <  for all (ܦ)ܸ ∈ (0, 1). Co-operators cooperate irrespective of the type of player 
whom they meet. Defectors take advantage of such indiscriminate cooperative behaviour and get 
a higher expected payoff compared to co-operators. Defectors  increase in numbers and in the 
long run take over the whole population. This result motivated Axelrod and Hamilton to examine 
more closely conditions, not captured in the situation just studied, that can lead to the evolution of 
cooperation when co-operators and defectors meet to play the Prisoner’s Dilemma. 
 
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013 
 

112 

3. THE AXELROD AND HAMILTON MODEL 
 
The main idea in the work by Axelrod and Hamilton [1] can be formalized in the following way, 
where we build on Bowles [9]. Let us allow the Prisoner’s Dilemma game introduced above to be 
repeated with an unknown number of rounds. More precisely, after each round there is a 
probability ߚ that another round will be played. Hence, the expected number of rounds is 
1 (1− ⁄(ߚ . Assume also that the population consists of two types of players; unconditional 
defectors and conditional co-operators. The unconditional defectors always defect, while the 
conditional co-operators are endowed with the Tit-for-Tat strategy. The Tit-for-Tat strategy 
dictate co-operators to cooperate on the first round and on all subsequent rounds do what the 
partner did on the previous round. The fraction of the population adopting Tit-fot-Tat is , while 
the remaining is adopting unconditional Defect. The expected payoff for co-operators adopting 
Tit-for-Tat and defectors respectively are then 
 

(ܥ)ܸ                               (4) =  ൬
ܾ

1 − ߚ
൰ + (1 − ൬݀( +

ߚܿ
1 − ߚ

൰ 

(ܦ)ܸ                               (5) =  ൬ܽ +
ߚܿ

1− ߚ
൰ + (1 − ൬(

ܿ
1− ߚ

൰ 

 
Equation (4) says that when two Tit-for-Tatters meet, they will both cooperate on the first 
interaction and then continue to do so until the interaction is terminated, giving an expected 
payoff of ܾ (1− ⁄(ߚ . When a Tit-for-Tatter meets a defector, the former gets ݀ on the first 
interaction while the defector gets ܽ.Then both will defect until the game terminates, the expected 
number of iterations after the first round being (1 (1− ⁄(ߚ )− 1 = ߚ (1− ⁄(ߚ . Equation (5) has a 
similar interpretation.  
 
According to (3) the condition for equilibrium is ܸ(ܥ) =  giving ,(ܦ)ܸ
 

                                      (6) =
ܿ − ݀

ିఉ
ଵିఉ

− ܽ + ܿ − ݀
≡  ∗

 
Since ܿ > ∗ ,݀ ∈ (0, 1) if 
 

ߚ                                                (7) >
ܽ − ܾ
ܽ − ܿ

≡  ∗ߚ
 
Where ߚ∗ ∈ (0, 1) since ܾ > ܿ. If (7) holds, we have an interior unstable evolutionary 
equilibrium.  That is, ܸ(ܥ) = ∗ for (ܦ)ܸ ∈ (0, 1). This situation can be explained as follows: 
Suppose that the initial proportion of co-operators is lower than ∗. Rare co-operators are likely to 
be paired with defectors, producing a low payoff for co-operators (i.e. ܸ(ܥ) <  The .((ܦ)ܸ
proportion of co-operators then decreases until  = 0.  If, however, the initial proportion of co-
operators is higher than ∗, co-operators are likely to be paired with other co-operators, producing 
a high payoff for co-operators (i.e. ܸ(ܥ) >  The proportion of co-operators then increases .((ܦ)ܸ
until  = 1. Hence, we can draw the following conclusion: In a population where defecting 
behaviour is not too common ( >  the cooperating Tit-for-Tat strategy leads to universal ,(∗
cooperation if pairs of individual are likely to interact many times (ߚ >  .(∗ߚ
 
However, even if ߚ is high (higher than ߚ∗) we still need a certain proportion of Tit-for-Tatter in 
order to start a process where Tit-for-Tatters increase in numbers. This illustrates that the model 
fails to answer what many consider as the most fundamental problem related to the evolution of 
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cooperation: How could cooperation ever have started from a previous asocial state where 
(almost) all are defectors? To solve this puzzle Axelrod and Hamilton introduce the concept of 
segregation (or clustering as they name it). When there is some segregated interaction, Tit-for-
Tatters are more likely paired with each other than chance alone would dictate. If the long-run 
benefit of cooperation is big, even a small amount of segregation can cause the expected payoff of 
Tit-for-Tatters to exceed the expected payoff of defectors. An evolutionary trend towards 
universal cooperation can then get started. 
 
4. NON-RANDOM MATCHING 
 
As noted, a main result in the work by Axelrod and Hamilton is that segregation can be very 
effective for the evolution of cooperation in a repeated Prisoner’s Dilemma game. But what about 
the non-repeated version of the game? Can segregation also promote the evolution of cooperation 
when the players meet to play a series of one-shot Prisoner’s Dilemma games, that is when ߚ =
0? It is immediately clear that complete segregation of co-operators and defectors within a large 
population secure cooperation. Complete segregation means that co-operators always meet co-
operators, and defectors always meet defectors. Co-operators get a payoff of ܾ, while defectors 
get ܿ. Since ܾ > ܿ co-operating behaviour will spread, and in the long run take over the whole 
population. 
 
The case where co-operators and defectors are only partly segregated can be modelled by using 
the following formulation, adopted from Boyd and Richerson [8]. Let ݎ ∈ (0, 1) be a measure of 
the degree of segregation in the population. If  is the proportion of co-operators, the probability 
that a co-operator meets another co-operator is now ݎ + (1 −  while the probability that a ,(ݎ 
defector meets another defector is ݎ + (1− − 1)(ݎ ݎ When .(  ∈ (0, 1), this corresponds to a 
situation with non-random pairing. If ݎ = 1, we have complete segregation, implying that co-
operators never interact with defectors. If ݎ = 0, we are back to the situation with random 
matching, analysed in Section 2. 
 
In the simulation we are interested in analysing the situation where the segregation parameter (ݎ) 
lies between the two extreme cases, ݎ = 0 and ݎ = 1, giving rise to a situation with non-random 
pairing.  In particular we are interesting in finding out how small ݎ can be in order to support an 
evolutionary stable proportionof co-operators. In addition to ݎ, it is clear that the expected payoffs 
are influenced also by the proportion co-operators () and defectors (1 −  in the population. In ( 
the simulation we therefore have to vary both the segregation parameter and the initial proportion 
of co-operators and defectors in the population. This makes it possible to study how different 
combinations of ݎ and  affect the evolution of co-operators and defectors. 
 
5. THE SIMULATION 
 
As a simulation model, we use an agent-based simulation approach in which an agent represents a 
player with a predefined strategy. The basic activity of the agent is to play a series of one-shot 
Prisoner’s Dilemma (PD) games. Each agent is identified using a unique label. The label ܥ is 
used to identify the agents choosing the cooperative strategy, while the label ܦ is used for those 
choosing the defective strategy. Each agent’s label can be viewed as a mapping from one state of 
the game to a new state in the next round, and the simulation experiments searches for the ability 
of an agent to survive the evolution process. 
 
The simulation of the game is outlined in Algorithm 1, and its components are described as 
follows. Initially, a population of agents is generated. A user defined parameter will determine the 
percentage of agents playing the cooperative strategy against those playing the defective strategy. 
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The payoff of all agents is set to 0. The next step of the algorithm proceeds by pairing off agents 
to play one game of PD. This step can be viewed as a matching process. 
 
To begin with, a random number random is drawn uniformly on the interval (0,1). Thereafter, an 
 ,ܥ  is assigned the labelݐ݊݁݃ܽ  is drawn randomly from the set of unmatched agents. Ifݐ݊݁݃ܽ
then the matching scheme will select a randomly unmatched agent with the label ܥ provided the 
following inequality (݉݀݊ܽݎ < ݎ + (1−  ) holds, otherwise the matching mate of(ݎ
 The value of .ܦ  will be a randomly chosen unmatched agent with the labelݐ݊݁݃ܽ  represents 
the proportion of agents playing the cooperative strategy. On the other hand, if ܽ݃݁݊ݐ  is 
assigned the label ܦ, then its matching mate will be chosen with the label ܦprovided the 
inequality (݉݀݊ܽݎ < ݎ + (1 − − 1)(ݎ  ݐ݊݁݃ܽ )) holds, otherwise the matching mate of   
will be selected with the label ܥ. If, by chance, the matching scheme is unable to locate the 
matching mate with the required label, the ܽ݃݁݊ݐ will be left unmatched. At the endof each 
tournament, the agents of the current population ௧ܲ are transformed into a new population ௧ܲାଵ 
that engages in a new round of PD based on each agent’s payoff. In the simulation we use the 
same payoff parameters as Axelrod and Hamilton [1]. These are shown in the payoff matrix in 
Figure 2. 
 

 Cooperate Defect 
Cooperate 3  ,  3 0 ,  5 

Defect 5  ,  0 1  ,  1 
 

Figure 2 Numbers used in the simulation 
 

The payoff received will determine whether an agent is removed from the game or allowed to 
continue. It is assumed that the size of the entire population stays fixed during the whole 
simulation process. All the unmatched agents from ௧ܲ  will automatically be allowed to be part of 
the new population ௧ܲାଵ.The agents that were engaged in the one-shot PD game are ranked 
according to their payoff from best to worse (i.e. sorting agents to decreasing payoff values) and 
those with the highest payoff will be allowed to proceed to the next round and multiplies by 
cloning a duplicate agent with similar strategy. Each agent resets its payoff to 0 before starting a 
new round of the PD game. The simulation process is assumed to have reached a stabilization of 
its convergence when all the agents have similar strategy. 
 

Algorithm: 
ݐ ← 0; 
Initialize random population of agents in ܲ(ݐ); 
Set payoff to each agent in ܲ(ݐ) to 0; 
While (not stop) do 

Choose the mating pairs of Agents in ܲ(ݐ); 
Compute the payoff of each agent in ܲ(ݐ); 
Select the agents for inclusion in ܲ(ݐ + 1); 
← ݐ ݐ + 1; 
Cloning a duplicate agent for each selected agent in ܲ(ݐ) with a payoff  > 0; 
Set the payoff of each Agent in ܲ(ݐ) to 0; 

end 
 
 
 
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013 
 

115 

6. RESULTS 
 
The simulation model has a number of user-defined parameters such as the segregation 
parameter, and the starting initial conditions (i.e., percentages of co-operators and defectors). We 
perform several simulations using instances defined by the 4-duple݊,,,  where ݊ denotes ,ݎ
the number of agents,   denotes the percentage of co-operators,  denotes the percentage of 
defectors, and ݎ the segregation parameter. We set the number of agents to 1000. In order to 
obtain a more fair understanding of the simulation process, we vary the parameters ݎ from 0.1 to 
0.9 with a step size of 0.1, and   from 10% to 90% with a step size of 10. This strategy produces 
81 different pairs of ݎ and  . Because of the stochastic nature of the simulation process, we let 
each simulation do 100 independent runs, each run with a different random seed. In this way 
every result we present is averaged over 100 runs. The simulation process ends when the 
population of agents converges to either 100% co-operatorsor100% defectors, or a maximum of 
106 generations have been performed. 
 
As a benchmark we first conduct an experiment using  = ,90 = 10 and setting the 
segregation parameter ݎ to 0. Figure 3 shows one typical run of the simulation experiment. The 
course of the percentage function suggests an interesting feature which is the existence of two 
phases. The first phase starts with a steady decline of agents with the cooperative strategy over 
the first generations before it flattens off as we mount the plateau, marking the start of the second 
phase. The plateau spans a region where the percentage of C’s and D’s fluctuates around50%. 
The plateau is rather short and becomes less pronounced as the number of generation increases. 
Then the percentage of C’s start to decrease before finally it jumps to 0%. This example 
illustrates how agents tend to evolve strategies that increasingly defect in the absence of the 
segregation. This is not surprising. The agents evolve in a random environment, and therefore the 
agents that manage to survive the simulation process are those willing to always defect. 
 

 
 

Figure 3. The evolutionary process with ݎ = 0 
 

Table 1 gives the results of the simulations with different values of ݎ and  . A quick look at this 
table reveals the existence of three different regions. The first region, where the values of  and 
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 are low (upper left corner), shows that the result of the simulation converges globally to D’s ݎ
with a success ratio equal to 1. This region starts in the classes where  = 10 and  ݎ = 0.4, 
 = 20 and ݎ = 0.3, and finally  = 30 and ݎ = 0.2.The second region lies in the right corner 
where ݎ = 0.5. In this region, the simulation converges to C’s with a success ratio equals to 1 
regardless of the starting percentage of co-operators. Finally, a third region which lies between 
the two other regions where, for every pair of   and ݎ, the result of the simulation process 
includes a mixture of C’s and D’s. This region is marked with numbers in bold, where the 
numbers shows the final percentages of C’s and D’s. 
 

 ↓  Segregation: ݎ → 
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
10 C 

D 
0 
1 

0 
1 

0 
1 

0 
1 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

20 C 
D 

0 
1 

0 
1 

0 
1 

0.86 
0.14 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

30 C 
D 

0 
1 

0 
1 

0.70 
0.30 

0.85 
0.15 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

40 C 
D 

0 
1 

0.65 
0.35 

0.72 
0.28 

0.86 
0.14 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

50 C 
D 

0.53 
0.47 

0.62 
0.38 

0.70 
0.30 

0.85 
0.15 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

60 C 
D 

0.56 
0.44 

0.64 
0.36 

0.71 
0.29 

0.84 
0.16 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

70 C 
D  

0.55 
0.45 

0.61 
0.39 

0.72 
0.28 

0.84 
0.16 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

80 C 
D 

0.56 
0.44 

0.62 
0.38 

0.69 
0.31 

0.85 
0.15 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

90 C 
D 

0.53 
0.47 

0.63 
0.64 

0.67 
0.33 

0.82 
0.18 

1 
0 

1 
0 

1 
0 

1 
0 

1 
0 

 

 
Table 1. Convergence ratios for co-operators and defectors 

 
Figure 4-6 show the course of the simulation process regarding of the percentage of C’s and D’s 
in the three regions. Figure 4 shows a plot of the simulation process representing a case in the 
region where the convergence results always are in favour of the agents choosing the defect 
strategy. The result shows a rapid rise of D’s before it reaches 100% at about the sixteenth 
generation. Choosing the values of ݎ and   in this region prevent agents with the cooperative 
strategy to develop, leading to a random working environment where the agents with the defect 
strategy proliferate. 
 
Figure 5 shows a plot of the simulation process representing a case in the phase transition with 
ݎ = 0.3 and  = 50%, where the convergence results always in a mix population of C’s and 
D’s. Notice the rapid increase in the percentage of C’s and the rapid decline in the percentage of 
D’ during the first generations. Both strategies reach a peak value at about 400 generations and 
periodically fluctuate between a low and a high percentage range and remain there indefinitely. 
 
Finally, figure 6 shows a plot representing a case in the third region characterised by a 
convergence resulting always in favour of the agents choosing the cooperative strategy. The plot 
shows an upward trend in the percentage of C’s and the possibility of having the chance to 
develop due to the right choice of the segregation parameter. Accordingly, in subsequent 
generations, the population of agents become increasingly dominated by C’s. 
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Figure 4. The evolutionary process with ݎ = 0.3 and  = 80% 
 

 
 

Figure 5. The evolutionary process with ݎ = 0.3 and  = 50% 
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Figure 6. The evolutionary process with ݎ = 0.5 and  = 30% 
 

Figure 7shows the impact of the segregation parameter on the complexity of the simulation. By 
keeping the percentage of co-operators constant while varying the segregation parameter, there 
exists a crossover point at which the number of generations needed to attain convergence 
increases. This turning point occurs at ݎ = 0.5 and represents the problem instances that are 
harder to solve as the number of players increases. 
 

 

Figure 7. Scale-up test 
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7. CONCLUSION 
 
In their influential contribution to the evolution of cooperation Axelrod and Hamilton introduced 
the concept of segregation (or clustering) to show how cooperation can evolve in a world initially 
dominated by defectors. The idea that segregation allows cooperative strategies to increase when 
rare in a Prisoner’s Dilemma game is highly intuitive. Segregation means that co-operators clump 
together in a concentrated group which means that they are partly protected from defectors 
defecting behaviour. This leads to higher payoffs to co-operators compared to defectors, who tend 
to be surrounded by other defectors. The main part of Axelrod and Hamilton’s paper deals, 
however, with the case of random pairing. In fact, most game-theoretic treatments of the problem 
of cooperation adopt the assumption of random pairing. This is somewhat strange since social 
interaction is hardly ever random. As discussed by Sober and Wilson [10] and Bowles [5], among 
others, non-random interaction constitutes an important aspect of our social architecture. In most 
societies there is a strong tendency that the population is structured in more or less homogeneous 
groups. Members of these groups interact more frequent with each other than with members of 
the society at large. Hence, since non-random pairing plays an important role in most social 
interaction, it should be taken into consideration when the evolution of behaviour and norms are 
analysed. The aim of this paper has been to contribute to this. We have shown that segregated 
interaction is a powerful mechanism for the evolution of cooperation in a Prisoner’s Dilemma 
game, where co-operators interact with defectors. This conclusion holds even if we drop the 
possibility of  repeated interaction and reciprocity, which was essential for the results generated in 
Axelrod and Hamilton’s influential paper. 
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