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ABSTRACT

This paper establishes new results for the adaptive design of controller and synchronizer for the Lu-Xiao
chaotic system (2012) with unknown parameters. First part of this paper involves the design of adaptive
controller for the Lu-Xiao chaotic system to stabilize to its unstable equilibrium at the origin. The adaptive
controller design is carried out using Lyapunov stability theory and adaptive control theory. The second
part of this paper involves the design of adaptive synchronizer for identical Lu-Xiao chaotic systems with
unknown parameters. The adaptive synchronizer design is carried out using Lyapunov stability theory and
adaptive control theory. Numerical simulations using MATLAB have been shown to depict and validate the
adaptive design of controller and synchronizer for the Lu-Xiao chaotic system with unknown parameters.
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1. INTRODUCTION

Since the observation of chaos phenomenon in weather models by Lorenz ([1], 1963), chaos
theory has been received great attention in the nonlinear systems literature. Chaos theory finds
applications in many areas in science and engineering such as physical systems [2], chemical
systems [3], ecology [4], biology [5], secure communications [6-7], robotics [8], etc.

Control and synchronization of chaotic systems are important research problems with potential
applications in many fields. By the control of a chaotic system, we mean the problem of finding a
state feedback control law to stabilize a chaotic system around its unstable equilibrium [9-10].
By the synchronization of chaotic systems, we mean the problem of finding a control law
attached to the slave system so as to synchronize the state trajectories of a pair of chaotic systems
known as master and slave systems. In the last few decades, there has been a great interest for the
synchronization of chaotic and hyperchaotic systems due to their applications.

There are many methods studied in the literature for chaos synchronization such as PC method
[11], active control method [12-14], adaptive control method [15-16], time-delay feedback
method [17], sampled-data feedback method [18], backstepping method [19-21], sliding mode
control method [22-23], etc.
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In this paper, we derive new results for the adaptive design of stabilizing Lu-Xiao chaotic system
([24], 2012) to its unstable equilibrium at the origin. We also derive new results for the adaptive
design of synchronizing identical Lu-Xiao chaotic systems with unknown parameters. Numerical
simulations using MATLAB have been shown to illustrate our results for the Lu-Xiao chaotic
system with unknown parameters.

2. ANALYSIS OF LU-XIAO CHAOTIC SYSTEM

Lu-Xiao chaotic system ([24], 2012) is a novel chaotic system described by the dynamics

1 2 1 2 3

2 1 3 1

3 1 2 3

( )x a x x x x

x bx x cx

x dx x x

= − +
= − +
= −







(1)

where
3x∈R is the state and , , , ,a b c d  are constant, positive parameters of the system.

Lu and Xiao observed chaotic behaviour in the system (1) when the parameter values are

20,  5,  40,  4a b c d= = = = and 3 = (2)

The strange, double-scroll, chaotic attractor of the Lu-Xiao system is shown in Figure
1.

Figure 1. Strange Double-Scroll Attractor of the Lu-Xiao Chaotic System
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The linearization matrix of the Lu-Xiao system (1) at the equilibrium point 0 (0,0,0)E = is given

by

0

0 0

0 0

a a

A c



− 
 =  
 − 

which has the eigenvalues

1 , = − ( )2
2

1
4

2
a a ac = − − + and ( )2

3

1
4

2
a a ac = − + + .

Since 3 is a positive eigenvalues of ,A it follows from Lyapunov’s first stability theorem [25]

that the Lu-Xiao chaotic system (1) is unstable at the equilibrium point 0 (0,0,0).E =

3. ADAPTIVE CONTROL OF THE LU-XIAO CHAOTIC SYSTEM

This section describes an adaptive design of a globally stabilizing feedback controller for the Lu-
Xiao chaotic system with unknown parameters. The design is carried out using adaptive control
theory and Lyapunov stability theory.

We start the design procedure by considering a controlled Lu-Xiao chaotic system given by

1 2 1 2 3 1

2 1 3 1 2

3 1 2 3 3

( )x a x x x x u

x bx x cx u

x dx x x u

= − + +
= − + +
= − +







(3)

where 1 2 3, ,u u u are adaptive controllers to be found using the states 1 2 3, ,x x x and estimates

( ),t ( ),t ( ),t ( ),t ( )t of the unknown parameters , , , ,a b c d  of the system, respectively.
Our design goal is to ensure that the controlled system (3) globally converges to the origin

asymptotically for all values of the initial state 3(0)x ∈R and all initial values of the parameter

estimates (0), (0), (0), (0), (0) .     ∈R

For this purpose, we consider the adaptive controller given by

1 2 1 2 3 1 1

2 1 3 1 2 2

3 1 2 3 3 3

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

u t t x x x x k x

u t t x x t x k x

u t t x x t x k x


 
 

= − − − −
= − −
= − + −

(4)

where 1 2 3, ,k k k are positive gains.

Lu-Xiao dynamics (3), we get
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We define the parameter estimation errors as
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(6)

Using (6), the closed-loop dynamics (5) can be simplified to obtain the following:

1 2 1 1 1

2 1 3 1 2 2

3 1 2 3 3 3

( )a

b c

d

x e x x k x

x e x x e x k x

x e x x e x k x

= − −
= − + −
= − −







(7)

We adopt the Lyapunov approach for deriving an update law for the parameter estimates.

We consider the quadratic Lyapunov function given by

( )2 2 2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , , , ) ,

2a b c d a b c dV x x x e e e e e x x x e e e e e = + + + + + + + (8)

which is a positive definite function on 8.R
A simple calculation from the equations (6) yields
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By differentiating the Lyapunov function V along the trajectories of (7) and using (9), we get
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In view of the equation (10), the parameter estimates are updated by the following law:
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where 4 ,k 5 6 7, ,k k k and 8k are positive constants.

Next, we establish the following result for the adaptive control of Lu-Xiao chaotic system.

Theorem 1. The controlled Lu-Xiao chaotic system (3) having unknown system parameters

, , , ,a b c d  is globally and exponentially stabilized for all initial conditions 3(0)x R∈ and all

initial values of the parameter estimates ( ), ( ), ( ), ( ), ( )t t t t t     for the unknown parameters

, , , , ,a b c d  respectively, by the adaptive control law (4) and the parameter update law (11),

where the gains ,  ( 1, ,8)ik i =  are positive constants. Also, the parameter estimation errors

, , , ,a b c de e e e e converge to zero exponentially with time.

Proof. Substituting the parameter update law (11) into (10), we get

2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8a b c dV k x k x k x k x k e k e k e k e= − − − − − − − − (12)

which is a negative definite function on 8.R By the direct method of Lyapunov [25], it follows
that 1 2 3( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )a b c dx t x t x t e t e t e t e t e t are globally exponentially stable.

Numerical Results:

For numerical simulations, we use the classical fourth-order Runge-Kutta method (MATLAB)

with the step-size 810h −= to solve the Lu-Xiao system (3) with the adaptive control law (4) and
the parameter update law (11). The parameters of the Lu-Xiao system (3) are taken as

20,  5,  40,  4a b c d= = = = and 3 =

For the adaptive and update laws, we take 5,   ( 1, 2, ,8).ik i= = 

Suppose that the initial values of the parameter estimates are

(0) 9,   (0) 3,   (0) 4,   (0) 6,    (0) 8    = = = = =

The initial state of the controlled Lu-Xiao system (3) is taken as

1 2 3(0) 14,   (0) 26,   (0) 7x x x= = =

The numerical simulations for the adaptive control of the Lu-Xiao chaotic system are depicted in
Figures 2-5.
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Figure 2. Time Responses of the Controlled Lu-Xiao System

Figure 3. State Orbit of the Controlled Lu-Xiao System
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Figure 4. Time-History of the Parameter Estimates ( ), ( ), ( ), ( ), ( )t t t t t    

Figure 5.  Time-History of the Parameter Estimation Errors ( ), ( ), ( ), ( ), ( )a b c de t e t e t e t e t
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4. ADAPTIVE SYNCHRONIZATION OF IDENTICAL LU-XIAO SYSTEMS

This section describes an adaptive design of global chaos synchronization of identical Lu-Xiao
chaotic systems with unknown parameters. The design is carried out using adaptive control theory
and Lyapunov stability theory.

As the master system, we take the Lu-Xiao dynamics described by

1 2 1 2 3

2 1 3 1

3 1 2 3

( )x a x x x x

x bx x cx

x dx x x

= − +
= − +
= −







(13)

where 3x ∈R is the state and , , ,a b c d are unknown system parameters.
As the slave system, we take the controlled Lu-Xiao dynamics described by

1 2 1 2 3 1

2 1 3 1 2

3 1 2 3 3

( )y a y y y y u

y by y cy u

y dy y y u

= − + +
= − + +
= − +







(14)

where 3y ∈R is the state and 1 2 3, ,u u u are adaptive controllers to be found using the states

1 2 3, ,x x x and estimates ( ),t ( ),t ( ),t ( ),t ( )t of the unknown parameters , , , ,a b c d  of the

system, respectively.

The synchronization error is defined by

,   ( 1, 2,3)i i ie y x i= − = (15)

A simple calculation results in the error dynamics

1 2 1 2 3 2 3 1

2 1 1 3 1 3 2

3 3 1 2 1 2 3

( )

( )

( )

e a e e y y x x u

e ce b y y x x u

e e d y y x x u

= − + − +
= − − +
= − + − +







(16)

Our design goal is to synchronize the Lu-Xiao chaotic systems (13) and (14) for all values of the

initial state 3(0)x ∈R and all initial values of the parameter estimates. So, we take

1 2 1 2 3 2 3 1 1

2 1 1 3 1 3 2 2

3 3 1 2 1 2 3 3

( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

u t t e e y y x x k e

u t t e t y y x x k e

u t t e t y y x x k e


 
 

= − − − + −
= − + − −
= − − −

(17)

where , , , ,     are estimates of the parameters , , , ,a b c d  respectively, and 1 2 3, ,k k k are

positive constants.



International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 1, February 2013

205

By substituting the control law (17) into (16), we get the closed-loop error dynamics as

1 2 1 1 1

2 1 1 3 1 3 2 2

3 3 1 2 1 2 3 3

( )( )

( ) ( )( )

( ) ( )( )

e a e e k e

e c e b y y x x k e

e e d y y x x k e


 
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= − − −
= − − − − −
= − − + − − −







(18)

We define parameter estimation errors as

( ),  ( ),  ( ),  ( ),  ( )a b c de a t e b t e c t e d t e t     = − = − = − = − = − (19)

If we substitute (19) into (18), then the error dynamics simplifies to

1 2 1 1 1

2 1 1 3 1 3 2 2

3 3 1 2 1 2 3 3

( )

( )

( )

a

c b

d

e e e e k e

e e e e y y x x k e

e e e e y y x x k e

= − −
= − − −
= − + − −







(20)

We adopt the Lyapunov approach for finding the update law for the estimates of the parameters.

We consider the quadratic Lyapunov function defined by

( )2 2 2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , , , ) ,

2a b c d a b c dV e e e e e e e e e e e e e e e e = + + + + + + + (21)

which is a positive definite function on 8.R

A simple calculation from the equations (20) yields

,   ,   ,   ,a b c de e e e e    = − = − = − = − = −        (22)

By differentiating V along the trajectories of (22) and using (20), we get

[ ]
[ ]

2 2 2
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2
1 2 3 1 2 1 2 3

( ) ( )

      ( )

a b

c d

V k x k x k x e e e e e e y y x x

e e e e e y y x x e e

 

  
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 
(23)

In view of equation (23), the parameter estimates are updated by the following law:
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1 2 1 2
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e k e

e k e
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
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−

−
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


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



(24)

where 4 5 6 7 8, , , ,k k k k k are positive constants.
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Theorem 2. The identical Lu-Xiao systems (13) and (14) with unknown parameters , , , ,a b c d 
are globally and exponentially stabilized for all initial conditions 3(0), (0)x y R∈ and all initial

values of the parameter estimates ( ), ( ), ( ), ( ), ( )t t t t t     for the unknown parameters

, , , , ,a b c d  respectively, by the adaptive control law (17) and the parameter update law (24),

where the gains ,  ( 1, ,8)ik i =  are positive constants. Also, the parameter estimation errors

, , , ,a b c de e e e e converge to zero exponentially with time.

Proof. Substituting (24) into (23), we get

2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8a b c dV k e k e k e k e k e k e k e k e= − − − − − − − − (25)

From (25), we find that V is a negative definite function on 8.R

Thus, by Lyapunov stability theory [25], it is immediate that the synchronization error and the
parameter error decay to zero exponentially with time for all initial conditions.

Numerical Results:

For numerical simulations, we use the classical fourth-order Runge-Kutta method (MATLAB)

with the step-size 810h −= to solve the Lu-Xiao systems (13) and (14) with the adaptive control
law (17) and the parameter update law (24).

The parameters of the Lu-Xiao system are taken as

20,  5,  40,  4a b c d= = = = and 3 =

For the adaptive and update laws, we take 5,   ( 1, 2, ,8).ik i= = 

Suppose that the initial values of the parameter estimates are

(0) 12,   (0) 20,   (0) 4,   (0) 16,    (0) 5    = = = = =

Suppose that the initial values of the master system (13) are

1 2 3(0) 7,   (0) 5,   (0) 26x x x= = − =

Suppose that the initial values of the slave system (14) are

1 2 3(0) 24,   (0) 18,   (0) 5y y y= − = =

Figure 6 shows the adaptive chaos synchronization of the identical Lu-Xiao systems.

Figure 7 shows the time-history of the synchronization error 1 2 3, , .e e e

Figure 8 shows the time-history of the parameter estimates ( ), ( ), ( ), ( ), ( ).t t t t t    

Figure 9 shows the time-history of the parameter estimation errors , , , , .a b c de e e e e
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Figure 6. Adaptive Synchronization of the Lu-Xiao Systems

Figure 7. Time-History of the Synchronization Errors 1 2 3, ,e e e
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Figure 8. Time-History of the Parameter Estimates ( ), ( ), ( ), ( ), ( )t t t t t    

Figure 9.  Time-History of the Parameter Estimation Errors , , , ,a b c de e e e e
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5. CONCLUSIONS

In this paper, we found new results for the adaptive design of controller and synchronizer for the
Lu-Xiao chaotic system (2012) with unknown system parameters. The main theorems of this
paper have been proved via adaptive control theory and Lyapunov stability theory. Numerical
simulations using MATLAB were shown to depict and demonstrate the proposed adaptive control
and synchronization schemes for the Lu-Xiao chaotic system.
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