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ABSTRACT

In this paper we describe an improved version of HF-hash [7] viz. R-hash: Hash Function Using Random
Quadratic Polynomials Over GF(2). The compression function of HF-hash consists of 32 polynomials with
64 variables over GF(2), which were taken from the first 32 polynomials of HFE challenge-1 by forcing
last 16 variables as 0. The mode operation used in computing HF-hash was Merkle-Damgard. We have
randomly selected 32 quadratic non-homogeneous polynomials having 64 variables over GF(2) in case of
R-hash to improve the security of the compression function used in HF-hash. In designing R-hash, we have
also changed the mode operation used in HF-hash, because of the theoretical weakness found in the
Merkle-Damgard construction.

In this paper we will prove that R-hash is more secure than HF-hash and SHA-256 as well as we will show
that it is also faster than HF-hash.
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1. INTRODUCTION

After recent cryptanalytic attack on MD5 [2][15] [28] [31] and SHA-1 [5] [6] [23] [24] [29], the
security of their successor, SHA-2 family [21], against all kinds of cryptanalytic attacks has
become an important issue. Although many theoretical attacks [10], [18], [19], [20], [12], [26] on
the reduced round of SHA-256 have been published during 2003 to 2008, but there is still no
threat to the security of SHA-256. In 2007 NIST announced the SHA-3 competition [22] for
selecting a new hash function, which would resist length extension attack and other theoretical
weakness of Merkle-Damgard construction. The design principles of all submitted hash functions
for SHA-3 competition are different from Merkle-Damgard construction. We can broadly
categorise all the submitted hash functions according to their design principle in the following
way: balanced Feistel network, unbalanced Feistel network, wide pipe design, key schedule,
MDS matrix, output transformation, S-box and feedback register. NIST has already declared the

mailto:indranath@gmail.com


International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 6, December 2012

160

SHA-3 hash function on 02 Oct 2012. NIST has selected Keccak [3] as the SHA-3 hash from the
five SHA-3 finalists, viz., Blake [1], Grøstl [9], JH [27], Keccak [3] and Skein [8].

The compression function of HF-hash [7] was designed in such a way that it consists of the first
32 polynomials with first 64 variables taken from the polynomials of HFE challenge-1 by forcing
last 16 variables of the 80 variables to 0. A new hash function R-hash has been designed by
modifying HF-hash by taking random quadratic polynomials to improve the security as well as
the efficiency of HF-hash. The compression function of R-hash depends on the following well-
known facts:

 It is easy to compute the values of a random set of m multivariate polynomials in n
variables over a finite field F viz., )),,(,),,,(( 111 nmn xxpxxp  for any fixed

.),,( 1
n

n Fxx ∈

 Solving random system of polynomial equations is an NP-hard problem* [11].

In designing R-hash, we have changed the padding procedure, from the one we have applied in
HF-hash, to increase the size of the input to the hash function. We have also changed the Merkle-
Damgard construction applied in HF-hash by applying double-pipe design to remove the
multicollisions attack [13], length extension attack, fixed-point attack [16] and herding attack
[14].

A complete description of R-hash and its analysis will be presented in the following subsequent
sections.

2. R-HASH FUNCTION

R-hash function can take arbitrary length ( 642< 512-bit block) of input and gives 256 bits

output, i.e. we can write 256
2

*512
2 )(: ZZhashR →− . We have designed R-hash by changing the

compression function as well as the mode operation. The compression function consists of 32
random polynomials with 64 variables of degree 2 over GF(2). Since the number of coefficients
of a polynomial of degree 2 with 64 variables over GF(2) is at most 2081, to generate 32 random
polynomials with 64 variables of degree 2 over GF(2) requires 66592 random bits. These bits
were generated in the following way:

(i) First we compute SHA-512 of a file containing
“968bb576eeb70c6def469a6b4824907c47390ac1880ef1f948d8a1539090b3af28deb91db
e00f37072e0366ba29f3e11a85bc41dc2492f7126d25a1489ae2c70”.

(ii) Then we apply SHA-512 to the output of the above file.

(iii) We repeat the above process 131 times.

* It is true even if we restrict the total degree of these polynomials to at least 2.
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The hash value of a message M of length rlL 8512 +×= bits can be computed in the
following manner:

Padding: First we append 1 to the end of the message M to indicate the termination of the
message. Let k be the number of zeros added for padding. First, 7-bit representation of r bytes is
appended to the end of k zeros and then 64-bit representation of l blocks is placed to the end of 7-
bit representation of r bytes. Now k will be the smallest non-negative integer satisfying the
following condition:

512mod4408.,.

512mod064718

≡+
≡++++

rkei

kr

The padding procedure is shown in Figure 1. According to this padding procedure, we can

compute the hash value of a message of length )12(2 649 −×≤ bits.

Figure 1: Padding Procedure

Parsing: Let 'l be the length of the padded message. Divide the padded message into
)512/'( ln = 512-bit block i.e. sixteen 32-bit words instead of 448-bit block, which is

applied in HF-hash to improve the efficiency. Let )(iM denote the ith block of the padded
message, where ni ≤≤1 and each word of ith block is denoted by )(i

jM for .150 ≤≤ j

Initial Value: Take the first 256 bits initial value i.e., eight 32-bit words from the
expansion of the fractional part of  and hexadecimal representation of these eight words
are given below:

.8964,98082,031299,4093822

,03707344,213198,330885,886243

7654

3210

CEECHEFAHDFHAH

HEAHDAHAFH

====
====

Thus .|||||| 710 HHHIV =

Hash Computation: For each 512-bit block ,,,, )()2()1( nMMM  the following four steps
are executed for all the values of i from 1 to n.

1. Initialization:
The first chaining variable 7100 |||||| HHHCV = is the 256-bit initial value IV.

2. Transformation:
Divide the input message block into two equal parts, i.e., .||)(

ii
i RLM = Transform

the message block in the following way:
),(' 1 iiii counterCVLL ⊕⊕← −

M 1 k-bit 7-bit 64-bit
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where .2mod 64icounteri = Xoring icounter removes the fixed point attack, because as

the number of blocks increases, icounter will be different for each block. Now,

.||')(
ii

i RLM =
We divide this )(iM into sixteen 32-bit words .,,, )(

15
)(

1
)(

0
iii MMM 

3. Iteration:

For j = 0 to 6
(a) For k = 0 to 7

)||( )(
12

)(
2

i
k

i
k

j
k MMpH +←

(b) ))||||||((' 710
jjj

ii HHHRR ⊕←
(c) For j = 0 to 15

)(
16mod2

)( i
j

i
j MM +←

where 3264 22
: ZZp → be a function defined by

),,(.1),,(.2),,(.2)( 641326412
30

6411
31 xxpxxpxxpxp  +++=

Since any element 642
Zx ∈ can be represented by ,6421 xxx  where 6421 xxx 

denotes the binary representation of x in decreasing order of their significance.

),,( 641 xxpi  denotes the thi polynomial with 64 variables.

For j = 7

(a) )||( )(
12

)(
2

i
k

i
k

j
k MMpH +←

(b) ))||||||(''(''' 710
jij

ii HHHRR ⊕←

ii RCV '''←

The final hash value of the message M will be ,nL to remove the length extension

attack, multicollision attack and herding attack. Since iCV is the initial value for

the block )1( +iM and nCV is not known; hence appending any extra block to

compute the R-hash would not be possible.

The complete algorithm is given in Algorithm 1 and block diagram of R-hash is shown in
Figure 2.

Process of Implementation: In order to compute R-hash(M), first the padding rule is
applied and then the padded message is divided into 512-bit blocks. Now each 512-bit
block is divided into sixteen 32-bit words and each 32-bit word is read in little endian
format. For example, suppose we have to read an ASCII file with data ‘abcd’, it will be
read as 0x64636261.
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Test Value of
HF-hash: Test
values of the
three inputs are
given below:

3. ANALYSIS OF R-HASH

In this section we will present the complete analysis of R-hash, which includes properties,
efficiency, as well as the security analysis of this function.

3.1. Efficiency of R-hash Function

The following table gives a comparative study in the efficiency of R-hash with HF-hash on
an Intel Core2Duo PC with P8400 chipset @ 2.26 Ghz processor with 2 GB RAM.

File Size
(in MB)

HF-hash
(in sec)

R-hash
(in Sec)

1.46 35.27 12.25
4.84 118.48 40.72
7.79 188.67 64.80

14.51 351.26 120.63

Table 1: Comparative in the Efficiency of R-hash

This shows that R-hash is almost three times faster than HF-hash.

3.2. Preimage Resistance

To find preimage of R-hash, one has to solve 32 random quadratic multivariate polynomial
equations with 64 variables over GF(2) which is an MQ-problem. If it is easy to find out
preimage of R-hash, then MQ-problem is no longer an NP-hard problem, which is a
contradiction. Thus R-hash is preimage resistant hash function.

3.3. Second Preimage Resistance

We know that collision resistance implies second preimage resistance. Therefore, the proof
of collision resistance of R-hash gives the second preimage resistance of R-hash.

3.4. Collision Resistance

Since we have totally changed the design principle of the compression function in R-hash,
therefore the differential attack applied for SHA-0 and SHA-1 by Chabaud and Joux in [4]
and by Wang et al. in [30], [29] to find the collision is not applicable to R-hash function.
All these attacks use the message expansion relation to find the collision,

08742140251509849

9828777211549227261771)(

885653317373754869

9768728052705728890869)(

38387387208926012

60488391955080171187)(

FAAAEDBBFBCEFAF

ABDCBCAEAEabchashR

EFADFCBBBEFABE

BAADDBCFECabhashR

AAEFEADBEEECCBE

CDFEBBEEDFAAahashR

=−

=−

=−
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Figure 2: Block Diagram of R-hash

Repeat for each block
Input

Li′ Ri

R
epeat 6 tim

es

CVi

CVi-1 Counteri

p

p

Li′′ Ri′′

Li′ Ri′

wo w15

Li Ri

<<<64

Li′′ Ri′′′
.
.
.

R hash

Ln′′ Rn′′′



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 6, December 2012

165

but in our design, we have not applied the message expansion algorithm. Hence, this hash
function is collision resistance against the above methods.

Since the design of the compression function of R-hash is different from SHA-2 family, the
cross dependence equation described by Sanadhya and Sarkar in [25] cannot be formed in
R-hash. Thus this procedure too cannot be applied to our hash function for finding
collisions.

Besides these, we have computed R-hash for a number of files by changing only one bit to
the input. In most of the cases, we found that 17 bits changed after one round computation
of R-hash and 51 bits changed after two rounds. So it would be difficult to control these
bits as the number of rounds increases. Thus, differential attack to find the collision for R-
hash would be difficult.

3.5. Avalanche Effect

We have taken an input file M consisting of 512 bits and computed R-hash(M). By

changing the thi bit of M, the files iM have been generated, for .5121 ≤≤ i Thus

Hamming distance of each iM from M is exactly 1 for .5121 ≤≤ i We then computed R-

hash( iM ) for 5121 ≤≤ i , computed the Hamming distances id between R-hash(M) and R-

hash( iM ), for 5121 ≤≤ i and finally computed the distances between corresponding eight

32-bit words of the hash values. The following table shows the maximum, the minimum,
the mode and the mean values of the above distances.

Changes
1W 2W 3W 4W 5W 6W 7W 8W HF-hash R-hash

Max 26 24 23 25 26 25 26 25 149 165
Min 9 6 6 8 7 8 8 7 103 104

Mode 15 16 15 16 15 15 17 16 132 131
Mean 16 16 16 16 16 16 16 16 128 128

Table 2: Hamming Distances

To satisfy strict avalanche criterion, each id should be 128 for .5121 ≤≤ i But we have

found that sd i ' were lying between 104 and 165 for the above files and in most of the

cases .131=id The observed deviation is acceptable so as to resist collision search using

differential attack. The following table and figure show the distribution of the 512 files
with respect to their differences (distance) in bits.

Range
of Distance

No. of
Files

%
HF-hash

%
R-hash

5128 ± 257 47.99 50.20
10128 ± 399 80.80 77.93
15128 ± 479 93.97 93.56
20128 ± 505 98.88 98.63

Table 3: Distribution of the Differences of R-hash by Changing a Single Bit
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Figure 3: Distribution of the Differences of R-hash by Changing a Single Bit

3.6. Randomness Test

To conduct randomness test, we have generated a file consisting of 131328 bits by
concatenating all the output of R-hash of the files .,,,, 51221 MMMM  After that, we

have divided 131328 bits into 64 blocks of length 2048 bits each, 32 blocks of length 4096
bits each, 16 blocks of length 8192 bits each, 8 blocks of length 16384 bits each, 4 blocks
of length 32768 bits each, 2 blocks of length 65536 bits each and 1 block of the complete
131328 bits. Thus we have generated 127 blocks in total and conducted five basic
randomness tests in these blocks. The concise result is shown in the following table.

Test No. of
Blocks

Passed Failed %

Frequency 127 127 0 100
Serial 127 127 0 100
Poker-4 127 127 0 100
Runs 127 124 3 98.11
Autocorrelation 127 125 2 98.74

Table 4: Result of Randomness Test

3.7. The Bit-Variance Test

The bit variance test consists of measuring the impact of change in input message bits on
the digest bits. More specifically, given an input message, all the small changes as well as
the large changes of this input message bits are taken and the bits in the corresponding
digest are evaluated for each such change. Afterwards, for each digest bit the probabilities
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of taking on the values of 1 and 0 are measured considering all the digests produced by
applying input message bit changes. If 2/1)0()1( == ii PP for all digest bits 256,,1 =i
then, the R-hash function has attained maximum performance in terms of the bit variance
test [17]. The bit variance test actually measures the uniformity of each bit of the digest.
Since it is computationally difficult to consider all input message bit changes, we have
evaluated the results for only up to 513 files, viz. ,,,,, 51221 MMMM  which we have

generated for conducting avalanche effect, and found the following results:

Number of digests = 513
Mean frequency of 1s (expected) = 256.50
Mean frequency of 1s (calculated) = 256.35

4. CONCLUSIONS

In this paper a dedicated hash function R-hash has been presented whose security is based
on the MQ-problem over finite field. This hash function has the following advantages over
HF-hash: it is much more efficient, it is secure against multicollision attack, fixed point
attack, length extension attack and herding attack. Moreover, analysis of this hash function
viz. avalanche effect, bit-variance test, randomness test as well as security proof are also
described here. From these experimental results, it is clear that this hash function can also
be used as a pseudo-random number generator because of the good randomness property of
its output besides the other applications of cryptographic hash functions.
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