
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

DOI : 10.5121/ijcsit.2012.4512 145

COMPUTATIONAL ANALYSIS OF CODE
COLLABORATION PATTERN AND SEMANTIC ROLE

Lei Wu1, Sharon White1, Yi Feng 2, James Helm1, Nathanial Wiggins3

1Software Engineering, University of Houston-Clear Lake, Houston, USA
wul,whites,helm@uhcl.edu

2Computer Science, Algoma University, Sault Ste. Marie, Canada
feng@algomau.ca

3Mathematics and Engineering, San Jacinto College, Houston, USA
Nathanial.Wiggins@sjcd.edu

ABSTRACT

Software functionalities and behavior are accomplished by the cooperation of code artifacts. The
understanding of this type of source code collaboration provides an important aid to the maintenance and
evolution of legacy systems. However, the original collaboration design information is dispersed at the
implementation level. The extraction of code artifacts’ collaborations and the roles is therefore an
important support in legacy software comprehension and design recovery. In this paper, we present a novel
approach to efficiently recover and analyze code collaborations and semantic roles based on dynamic
program analysis technique. We also demonstrate the software tools that we have developed to support our
approach and illustrate the viability of our approach in a case study.

KEYWORDS

Data mining, code collaboration pattern, semantic role, design recovery, dynamic program analysis,
software visualization, reverse engineering

1. INTRODUCTION

During the last three decades, a considerable amount of software was developed using procedural
languages. For example, Coyle et. al. estimated the size of legacy systems written in procedure
and OO languages, such as Cobol, Fortran, ADA, etc., to be more than 100 billion LOC
[17][43][45]. These types of systems have undergone several code revisions without a real
concern of maintaining the documentation up-to-date [18][22][24][31]. As a consequence, the
higher level of entropy combined with imprecise documentation about the design and architecture
has made their maintenance more difficult, time consuming, and costly. On the other hand, these
systems have important economic value and many of them are crucial for their owners
[19][17][[18]. All these factors underline the importance of legacy system understanding.

Large legacy procedural systems are normally organized in a structured form [2][3][25]. Code is
divided into separated source files based on different design criteria [1][2]21]. For example, in
Cobol, Fortran, C and Ada, the functions that relate to the same topic (such as “error”) are usually
grouped together into a single program file. Source files are further structured into different
directories according to the functionalities they participate [2][26]29]. This kind of program code
organization reflects the original legacy design rational [2][4]30]. Each source file and directory
represents a certain design concept [2][18][37]. Each code cooperation instance contains a limited
number of such code units. We view these construction units as source code modules which
interact to realize the system functional behavior [2][41][34]. Meanwhile, each module plays

mailto:helm@uhcl.edu
mailto:feng@algomau.ca
mailto:Wiggins@sjcd.edu

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

146

specific conceptual semantic roles inside the cooperation[32][35][39]. Recovering collaborations
and semantic roles from source code artifacts is an important factor for better understanding and
evolving legacy code [16][33][18]. However, the large number of modules and the complexity of
their relationships make discovering and analyzing interactions a hard task [18][17]. It is
therefore very difficult to study system behavior by only using static information.

In this paper, we propose a novel program analysis approach for the efficient recovery of code
collaborations and conceptual semantic roles from source code artifacts. We apply dynamic
program analysis, software visualization and knowledge recovery techniques to facilitate legacy
code understanding. We have developed two types of analysis tools set, namely DynamicViewer
and Collaboration-Investigator, to validate the viability of our approach. Through examples, we
illustrate how these two tools are used to detect, recover and analyze collaborations and roles in
an automatic/semi-automatic way. The paper is structured as follows: in the next section, we
introduce our approach. In section 3, we discuss our approach in detail and present the tools we
have developed to support the recovery process. In section 4, we work through a case study of
program comprehension using our approach. In section 5, we further discuss the issues and
lessons learned from the experiment. In section 6, we review related work. In section 7, we give
the conclusion of our study and future work

2. DYNAMIC RECOVERY APPROACH

Collaboration and conceptual semantic role are two design concepts that have been scattered
throughout source code [10][42]. Inside of collaboration, participant modules interact with each
other to carry out detailed tasks. The cooperation is confined in an interaction structure form,
which describes a set of allowed collaboration behaviors for each module [36][40]. Such structure
is implemented and dispersed in code with two major design concepts: the repetitive interaction
pattern and role. Each participant plays a certain type of conceptual role in the collaborations
[44][17]. Meanwhile, conceptual semantic role also enforces the information processing in a
consistent and meaningful (understandable to maintainer) way [47][27]23]. Recovery such
information can largely facilitate the program comprehension process and promote program
analysis into a deeper level [28][46][38]. Since procedure computing languages do not provide
explicit means to capture such design information, maintainers have to heavily rely on human
efforts to investigate these design logics in legacy software.

Dynamic Information Capturing

Repository

Visualization
Expert

Semi-automatic Collaboration
Pattern Discovery

Automatic Collaboration
Pattern Detection

Semi-automatic
Role Discovery

+ +

+

Refined Collaboration Pattern &
Conceptual Role Recovery

Figure 1. Schema of the dynamic analysis approach

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

147

To recover collaborations and roles from legacy source code, we propose an approach that can
significantly increase maintainers’ work efficiency in discovery such information. Our approach
uses dynamic analysis, software visualization, automatic and semi-automatic detection techniques
to fulfill the goal, see figure 1. We first capture dynamic interaction information among modules
during the target system execution period. Then we analyze the features with dynamic
visualization, such as the interaction composition, transaction sequence and recurrence frequency
etc. Later, automatic pattern detection process will be performed to recover all the significant
repetitive transaction serials. Meanwhile, with the intervention of maintainers, our tool may also
be able to semi-automatically detect the collaboration pattern and participants’ roles, and
investigate their features. In addition, the crosscheck and refinement process will be conducted to
combine the two results, and distill the final refined results. The following are the key issues that
addressed in our approach.

Dynamic information capturing. We use dynamic analysis technique to capture module
interaction message, data transformation route and control flow information during program
execution period.

Visualization. We use computer graphic simulation to represent the captured information into a
more understandable visual form. Meanwhile, we symbolize all those analysis results into
graphical views. There are two kind of information we will visualize: one is the pure interaction
information that represents what is going on inside the code; the other one is the statistical
analysis results based on data mining. For the first one, we use both static visualization and
animation to simulate the dynamic nature of message transactions. For the latter one, we use
graphical diagrams and graphs to visualize the statistical analysis results.

Automatic and semi-automatic collaboration pattern and role detection. With the results
from former two processes, we will be able to study the features of dynamic transactions, such as
interaction composition, direction, sequence and frequency etc. To discover the collaborations
and conceptual roles that dispersed over the huge amount of transactions, we apply automatic and
semi-automatic approaches to accomplish our recovery goals. The difficulty lies in how to
efficiently identify those significant repetitive interactions, which together form a meaningful
collaboration pattern in the large transaction space. We apply our automatic detection technique
to directly use dynamic visualization result to produce fine-grained collaboration pattern
outcomes. The recovery does not need expert’s intervention. The advantage is that it is capable to
detect a wide range of collaboration patterns, while the disadvantage is maintainer may lost the
control of expressing her focus in discovering patterns. To overcome this shortage, we also adopt
a guided semi-automated recovery of collaborations and roles with the interventions of
maintainers. According to maintainer’s different emphasis, she may interactively give the
recovery criteria. The collaboration pattern discovery results will reflect the focused interests of
maintainer, thus they only provide the most interested features of various collaborations and roles.
Finally, these two types of results will be combined and refined to produce the final recovery
result.

3. CODE COLLABORATION PATTERNS AND SEMANTIC ROLES RECOVERY

In this section, we present our approach in detail, and introduce the tools which were developed
to automate the recovery process. We first explain the underlying terminology and concepts; then,
we present our automatic and semi-automatic mechanisms which are supported by these tools.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

148

3.1. Terminology and analysis formalism

We first introduce the dynamic trace record - the program trace information that we captured
during the execution of target legacy system. A sample segment of the trace is given below.

Sid, Level, Module, Routine, Direction
3, 5, indateentry.c, in_dateentry_set_text, In
3, 6, intransinp.c, on_input_data_changed, In
3, 7, transaction.c, *trans_get_typelist, In
3, 7, transaction.c, *trans_get_typelist, Out
3, 6, intransinp.c, on_input_data_changed, Out
3, 5, indateentry.c, in_dateentry_set_text, Out

Sid stands in the above segment for scenario identification number, which correspondent to the
specific system functionality that is performed at that moment. The level represents the
invocation depth. Direction is the orientation of message flow. This trace segment sample
includes three routine invocation events. Each event record has five elements. We use the second
record to illustrate them: the scenario id (3), invocation level (5); sender module (indateentry.c);
receiver module (inransinp.c); receiver invocated routine (on_input_data_changed) and direction
(in).

Source module: The source code of a system is normally organized in a structured form [2,3].
Code unit related to same concept or topic are usually grouped in a single source file and further
stored into different directories, which reflect the original design rational [2]. We view source file
or directory as source module, or simply say module.

Interaction instance: An interaction instance is a dynamic information transaction between two
modules. It triggers an event and further causes a message flow from sender module to receiver
module.

Collaboration instance: A collaboration instance is the sequence of successive interaction
instances, which together form a chain of continuous events that generate a message propagation
tree.

Collaboration pattern: A collaboration pattern is a frequently repeated serial of several
collaboration instances. During the whole process of interactions, modules show strong
cooperative forms: certain modules always appear and cooperate together to implement a certain
type of task. We view this kind of phenomenon as a repetitive collaboration pattern.

Conceptual semantic role: A conceptual semantic role is the characteristic and predictable
behavioral stereotype of an individual module based on its computational feature. It represents the
general conclusions of the module’s utility in program. From the construction point of view, the
role can be semantically transformed into director-manager-worker relationships. Module with
high level role dispatches tasks to modules with lower level roles. From information process point
of view, consumer and supplier are the most common roles.

3.2. Pattern discovery criteria

To efficiently recover collaboration patterns from execution trace information, we have to give
our tools a certain type of criteria to emphasize what aspect is more important in deciding which
sequences of collaboration instances are related, and may thus be further grouped together to form
a concrete pattern. The criteria can be chosen among the following three categories:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

149

Interaction instance component. An interaction instance includes six major components,
namely scenario id, invocation level, sender module, receiver module, invocated routine and
direction. Based on different bias, maintainer may use any combination of these components to
define the recovery criteria.

Collaboration instance selection. The main purpose of finding collaboration instance is to
recover the message propagation tree. For this reason, we may select to view only the interaction
instances involving different modules. Meanwhile, to limit the observation scope, we may also
define the consideration boundary that confines the recovery process within a certain depth range.

Pattern matching. When several frequently repeated collaboration instances form one
collaboration pattern, the shape of that pattern may not be unique. Different interaction sequence
may lead to various visual outlines, while the semantics of these patterns are identical. Therefore,
we may let our tool omit some considerations of the ordering sequence when comparing two
collaboration patterns.

3.3. Automatic discovery with DynamicViewer

As we discussed in the introduction, static analysis does not present sufficient information to
study the interactions of source modules. Recording dynamic information of program can provide
us with sufficient knowledge about message exchanges during program execution period.
However, this technique faces to two major issues: the overwhelming volume of tracing data and
incomplete coverage of the code. In our approach, since the focus is on a limited set of system
exercising functionalities and behaviors, the dynamic coverage only contains the relevant code
artifacts that concerned with specific system functionality. In fact, this turns to benefit the
resolution of the first issue of dynamic analysis technique [5]. Meanwhile, to significantly reduce
the large volume of tracing data, we use automatic pattern discovery technique implemented in
our toolkit to accelerate the recovery process. We have developed a tool, the DynamicViewer, to
automate the dynamic capturing and visualization of message process flows among source
modules, see following figure 2.

Figure 2. Workflow of DynamicViewer

First, legacy source code is instrumented to record execution information. Then, the interested
system functionalities are executed to observe system behaviors; meanwhile, program dynamic
information is retrieved and processed into repository. Later, the visualization and animation
program will present the information through visual effects to provide a meaningful way to
investigate the interactions. Finally, the automatic collaboration pattern detection process will be
performed to distil all the patterns. Currently, DynamicViewer can automatically discover all the
fine-grained collaboration patterns. We’ve also developed another tool to incorporate human

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

150

intervention in the discovery process, and combine the outcomes from DynamicViewer to
generate the best result. That semi-automation approach will be detailed in section 3.4.

One desired feature of DynamicViewer is both legacy system and analysis tool will run in
parallel. Maintainers now are able to observe system behavior and the visualization of source
module interactions/patterns at the same time. In this way, they can directly relate any specific
system behavior with the visual effects of module actions in real-time, thus largely reduce the
memory work to match these two concepts.

(i)

(ii)

Figure 3. Footprint (i) and pattern detection (ii) views from DynamicViewer

DynamicViewer provides maintainers with an efficient way to automatically discover the
collaboration patterns, and look inside of the program execution space. It defines different types
of views to cover information at different granularity levels. Furthermore, it also facilitates the
smooth navigation among various granularity levels. It visualizes two types of information: the
pure interactions, and the knowledge mining result. For the first one, it supports static and
animate visual effects. The above figure 3 illustrates the fine-grained footprint and animated
pattern detection views produced by DynamicViewer. The left-most vertical part shows the name
of modules; the horizontal direction represents the time sequence; the red box indicates an

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

151

invocation interaction instance from the send module; the green box shows the return of
interaction instance from the receiver module; the red line with direction point shows an outgoing
message from sender module towards receiver module; and green line with direction point
represents the returning of the interaction message from receiver module back to sender module.
DynamicViewer can automatically detect all the repetitive serial of collaboration instances, and
distil them as candidate collaboration patterns.

Figure 4. Module dispersal & scale diagram from DynamicViewer

For the second type of information, DynamicViewer represents the knowledge mining results with
graphical diagrams. The conclusive visual report of statistic data gives maintainers an efficient
way to analyze the source code interaction behaviors. The dynamic module dispersal and scale
graph shows the overall performance of each module in different transaction levels (see figure 4).
The statistical data is rendered in the forms of size and color. The row represents the invocation
depth and the column indicates each module. When sender module invokes a message to a
receiver module, the receiver will lie on one depth below the sender. The rectangle color box
represents the quantity of interaction instances at different depths. Its color shows the overall
invocation scale of the whole interaction space, and the box’s size exhibits the scale compared
with all of its own interactions. The line displays the invocation direction from higher depth to
lower depth, and its color shows the intensity. DynamicViewer also provides a scenario recording
function to capture the system functionality and behavior, see following figure 5. The recorded
scenario screen snapshots will be labeled and stored into repository database for analysis usage.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

152

Figure 5. Scenario recorder

Later, when maintainer wishes to explore the dynamic interaction space, she may also be able to
retrieve the scenario pictures to link the system behavior and the visualization results. In this way,
she may not need to execute the target system every time when she wants to investigate.

3.4. Semi-automatic recovery with Collaboration-Investigator

The main functionality of Collaboration-Investigator is to help maintainers efficiently discover
the featured/screened collaboration patterns and involved participation roles, as well as assisting
them thoroughly to investigate the details. It provides five major operations for the study of
collaborations and conceptual roles, namely pattern criteria setting, collaboration recovery, role
recovery and their investigations. It also retrieves other useful information related to module
collaboration and roles. Maintainers may retrieve, abstract and compare different system
behavior, collaboration patterns and roles in an operational manner.

The snapshot (see figure 6) of the demonstration sample is from the analysis of “Interest” legacy
system, which will be presented in detail as case study in the following section. Here, we will
introduce the functionalities of Collaboration-Investigator.

Collaboration pattern criteria establishment. The “Pattern Setting” function will prompt the
criteria building form for maintainer. She has to check three groups of pattern recovery criteria,
namely interaction component, collaboration instance selection and pattern reshaping. These three
categories are detailed in previous section. The choice of optional items in each category reflects
maintainer’s observation emphasis of pattern selection aspects.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

153

Figure 6. Collaboration-Investigator: the semi-automatic pattern and role recovery toolset

Collaboration and role recovery: This function will recover the most significant collaboration
patterns based on previously set criteria. The result will be shown in the “collaboration pattern”
frame. The naming convention of distilled collaboration is the unique sequential id number plus
the first sender module’s name and the first invocation routine name. “Role Recovery” function is
used to generate the participant role table. Currently, it provides “director-manager-worker” role
stereotype and simplified “supper-consumer” role stereotype.

Interaction investigation: The “Trace Investigation” function is used to explore all the
components of an interaction instance. In figure 6, the pattern name
“67#_inglossarydlg.c:select_event”, the sender module “imimportdlg.c” and receiver module
“rode.c” are selected. After push “Trace Investigation” button, all the routines (functions and
procedures) that were invoked from sender module to receiver module within the selected
collaboration pattern will be listed in the Routine Module panel. If we select routine “color_set”,
then the full detail interaction information will be presented in the Interaction Table.

Collaboration investigation: This function is to generate the query results for related
collaboration patterns. For example, in figure 6, when maintainer selects a set of routines and
presses “Collaboration-Investigation” button, all the patterns that involve any one of these
routines will be listed in “Collaboration Pattern” panel. The selecting of a sender module or
receiver module in order to find the other related parts has similar effects. We also can use any
combination of these four elements, (pattern, sender module, receive module and routine), to
generate the list of the remaining elements.

Role investigation: This function will help maintainer to explore the role of each module in a
selected collaboration pattern. We assign to the sender module a “consumer” conceptual role, and
to the receiver module a “supplier” one. If three modules have sequential consumer-supplier role
relationships, we consider that they realize a “director-manager-worker” role stereotype. This
kind of role information will help maintainer recover the structure of the program. When user
selects one module and presses Role Investigation button, all the modules that have a role
relationship with that targeted module will be listed in a prompted Role Module list window.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

154

Visualize collaboration pattern: The DynamicViewer will be used to generate the recovered
collaboration pattern, and it can zoom in/out to facilitate the study. For example, in figure 6, when
the pattern called “87#_inglossarydlg.c:init” is selected, then DynamicViewer will generate the
visual representations of its correspondent collaboration instances in another window.

4. CASE STUDY: UNDERSTANDING “INTEREST”

In this section, we demonstrate how our approach supports the understanding and recovery of
code collaborations and semantic roles in a legacy system. The example software “Interest” is a
financial management system for personal investments. It is written in C with 94 source files of
approximately 28KLOC. It is designed to analyze individual stock market investment
performance (see figure 7). It is free software, distributed under the GNU General Public License,
and can be obtained from web site http://sourceforge.net/projects/interest

4.1. The analysis question and hypothesis

The legacy system provides a bunch of tools to help users analyze their stock investment
performance. To better understand how these tools are implemented, we put forward several
questions and hypotheses to start our study. We notice that the code is divided into three major
directories. Source root “src/” contains two subdirectories, namely “src/base/” and “src/widgets/”
respectively. Meanwhile, the source file names under each directory have different
characteristics. For example, the files under “/base” subdirectory have names like “color.c”,
“error.c”, “transaction.c” etc. We thus hypothesize that the modules under different directory deal
with different functional issues.

Figure 7. “Interest”- a financial management system for personal investments

http://sourceforge.net/projects/interest

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

155

Questions:

• What’s the relationship between these source files? What are the roles and general functions
they represent?

• Which modules work together to make the most significant contributions?
• How do they cooperate with each other?

Hypotheses:

• We suspect that the modules from root directory provide major system functions, while
modules from the other two subdirectories yields support for those modules.

• Modules follow a certain pattern in cooperating with each other in order to implement the
functionalities.

• Besides, we also guess that each module represents a certain system constructional concept,
which reflects a distinct role in the whole software.

4.2. Code collaboration patterns and semantic roles dynamic recovery

The Rather than try to understand the whole legacy software in one step, we study system
behavior and its implementation based on individual system functionality. In this case, we select
the most interesting part of our target tool, the functionality of graphical analysis of stock
investment. We would like to find out whether these modules follow a pattern in their
cooperation. Furthermore, we also want to know if these patterns recur in other system
functionalities as well. Moreover, we wish to investigate which modules participate in the
patterns, how they interact, what’s the relationship among them and what’s the role of each
module. The recovery of collaborations and roles will substantially help maintainers gain better
understanding of target legacy system.

Recording dynamic information. We execute the target system with instrumented code. The
scenario is focused on stock performance analysis tool. We observe system behavior and
functionalities within this tool. DynamicViewer collects the interaction information into
repository, and visualizes the dynamic effects of module interactions. The scenario creates 68,123
function invocation events.

Setting pattern discovery criteria. We define the following four criteria. (1) select four out of
six interaction components to observe, namely sender module, receiver module, invocated routine
and direction; (2) set the deepest invocation level as 18. (3) do not ignore self-interaction. (4)
omit considerations of the ordering sequence when comparing two collaboration patterns.

Automatic pattern detection with DynamicViewer. We use DynamicViewer to generate the
initial fine-grained result of recovered patterns from the whole interaction serials. As shown in
following figure 8, the total interaction sequence lasts for 85 visual screen frames.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

156

Figure 8. Automatic discovery of code collaboration patterns. (The number indicates frame id)

Early result indicates only three important patterns contribute almost the whole of this system
functionality. Based on frame number, we can see that one lies on “from 2 to 20” plus “from 34
to 51” frames; another one lies on “from 21 to 31” plus “from 52 to 61” plus “from 63 to 74”
frames and the last one lie on “from 75 to 83” frames respectively. These three major
collaboration patterns account for over 90% of the interaction frames. More significantly, the
participants are limited to less than fifteen modules. This result shows that, although the “Stock
analysis tool” has very complex system functionalities and various dynamic behaviors, with the
help of collaboration pattern analysis, maintainers can quickly focus on studying several
important patterns to understand the whole implementation.

Deep study with Collaboration-Investigator. With the help of Collaboration-Investigator,
further analysis will help maintainers to study the details of collaboration patterns and the
semantic relations (roles) among the participants inside of each single pattern. We use
collaboration-investigator to recover all the patterns that satisfy discovery criteria which have
been settled previously. A total of nine patterns have been recovered. They are listed in table 1.
The name of each collaboration pattern is composed of its identity number, the first module’s
name and the first routine name that invoked by that module. We notice that some patterns consist
of several smaller patterns, and some patterns’ appearance may not be contiguous. These kinds of
patterns are not easy to find by only using DynamicViewer.

Recovered collaboration patterns

#01_account.c : ac_init_attributes
#02_import.c : parse_header_data
#03_transaction.c : trans_compare_by_date
#04_nodemenu.c : nodemenu_new
#05_menubar.c : analyze_flags
#06_configuration.c : clear_autoload
#07_intranslist.c : in_trans_list_set_account
#08_dataset.c : ds_show
#09_intransbut.c : in_trans_but_init

Table 1. List of recovered patterns

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

157

To answer the questions and verify the hypotheses in the previous section, we now select one
pattern to study in detail. The No.7 pattern has one of the most significant repetitive
characteristics among all the recovered patterns. It has 31 out of 85 visual screen frames with a
nested pattern No.3. The following interaction fraction shows the retrieved components and
collaboration instances from the Collaboration-Investigator tool. From the composition
relationships illustrated in the segment, we can find that when module Intranslist.c sets
transaction accounts, it in fact fills in the transaction list. To accomplish this job, it first asks
module Translist.c to reset transaction list. Then it delegates the whole task to module
Transaction.c. The latter one deals with the details of comparing and compiling work with the
support from module Transarray.c.

I n t r a n s l i s t . c : i n _ t r a n s _ l i s t _ s e t _ a c c o u n t : i n
 I n t r a n s l i s t . c : f i l l _ t r a n s l i s t : i n
 T r a n s l i s t . c : r e s e t _ t r a n s l i s t : i n
 T t r a n s l i s t . c : r e s e t _ t r a n s l i s t : o u t
 T r a n s a c t i o n . c : t a r r a y _ c o m p i l e : i n
 T r a n s a c t i o n . c : c o m p a r e _ b y _ d a t e : i n
 T r a n s a r r a y . c : t r a n s _ c o m p a r e _ b y _ d a t e : i n
 T r a n s a r r a y . c : t r a n s _ c o m p a r e _ b y _ d a t e : o u t
 T r a n s a c t i o n . c : c o m p a r e _ b y _ d a t e : o u t
 … . . { r e p e a t f o r m a n y f r a m e s } … . . .
 T r a n s a c t i o n . c : t a r r a y _ c o m p i l e : o u t
 I n t r a n s l i s t . c : f i l l _ t r a n s l i s t : o u t
I n t r a n s l i s t . c : i n _ t r a n s _ l i s t _ s e t _ a c c o u n t : o u t

P a t t e r n 3
P a t t e r n 7

Figure 9. Details of automatically recovered code collaboration patterns

Now we further wish to know what is the specific semantic role of each module inside of pattern
7 and pattern 3. This time, we use Collaboration-Investigator tool to inspect the role of each
module. As described in previous section, there are two role stereotypes defined in the tool,
namely “Director-manager-worker” role type and “Consumer-supplier” role type respectively.
Based on the nesting information, each module in the pattern will be assigned at least one of these
two role stereotypes. Maintainer is prompted to add more detailed observation roles to specific
module that she is interested in.

Intranslist.c :
 Intranslist.c : Consumer Director
 Translist.c : Supplier
 Transaction.c : Manager
 Transaction .c :
 Transarray .c : Worker
 Transarray .c :

Pattern 7
Consumer (Controller)

Supplier (Store)
Pattern 3

Figure 10. Module conceptual semantic role recovery

In this case, there are three groups of semantic roles assigned to modules, as shown in figure 9
and 10. For collaboration pattern 3, maintainer may find that this consumer-supplier role
relationship can also be described as “Controller-store (data)”. Further investigation shows that
module Intranslist.c belongs to root directory “/src/”, whereas both modules “Transaction.c” and
“Transarray.c” belong to subdirectory “/src/base/”. From the role relationship between these three
modules, maintainers can also figure out the same relationships between the underlying

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

158

directories. Therefore, this confirms our first hypothesis that modules from subdirectory are
service providers for the modules from the root directory.

To better understand a single module’s function in the scenario, maintainer can choose a single
module, then query all the roles it plays inside of any collaboration pattern, therefore to get a
broad understanding of what kind of role that module has in general. In our case, module
Transarray.c works as “worker” and “supplier”. These give maintainers a strong suggestion that
this module implements a certain system constructional concept, which means “labor”, who does
the real job, and contributes to those who dispatches tasks to others.

Within a single collaboration pattern, we can also use DynamicViewer to analysis two modules
which have strong cooperation, especially when these two modules have a certain type of role
relationships inside of that pattern. See figure 10, the vertical axis represents the number of
invocation times; the horizontal direction represents the invocation depths.

Figure 10. Analyzing two modules in collaboration: Transaction (left) and Transarray (right)

Two modules will be compared with the density of their interaction instances, the depth level, the
activity frequency and time period. Figure shows the comparison of module Transaction.c and
Transarray.c. We can find that starting from depth 7, they have same fluctuation pattern of
invocation frequency and calling instances. This is confirmed by our previous collaboration
pattern analysis, since these two modules cooperate together to form collaboration pattern 3, and
this pattern occupies a relatively large segment in the whole interaction serials (31 out of 85
observing frames). This fact suggests that both modules have tight coupling with each other after
depth level 7. But from depth 1 to 7, module Transarray has no interaction instances, while
module Transaction is still active from depth 4 to 6. This indicates that, the module Transaction
not only cooperates with Transarray, but also participates in other activities, maintainer can
further use our tools to trace it; while from depth level 7, the rest part of module Transaction only
faithfully cooperates with module Transarray. From this analysis result, maintainers can further
build up a more clear comprehension model of target analyzing code artifacts.

5. DISCUSSION

In this case study, we’ve demonstrated how to apply our approach, with the help of tools support,
to automate the recovery process of collaboration patterns from stock analysis software. We also

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

159

use these tools to discover the semantic roles of modules inside of patterns, therefore to get a
deeper comprehension of the source code. Each recovered collaboration pattern represents a
concrete implementation block of the observed system functionality. By characterizing such kind
of program construction, we gain a better understanding of how the system behavior is carried out
through the interactions. This will largely facilitate maintainers’ cognition process in
understanding target software system.

It is also very useful for us to apply the discovered collaboration patterns to a further
decomposition of the whole system into a role-based hierarchical representation. It will help
maintainer rapidly acquire the desired general comprehension of target system. Maintainer can
use this information to study each module within various collaboration patterns, thus to regain
more detailed source code modularization information. Within a collaboration pattern, its
composition modules intensively cooperate together to perform a concrete task inside of the
system functionality. This type of cooperation represents a highly cohesive source code unit.
Many object identification research works agree that highly cohesive program parts normally are
primary candidates for object structures [6][7][18]. Cohesive measurement is widely used to
perform legacy re-construction [8][9][17]. Therefore, collaboration pattern recovery can be
further used in the re-modularization of legacy system.

6. RELATED WORK

Our work on recovering collaboration and role from legacy software is a part of research work for
legacy migration [11][12]. The recovery of collaborations provides us with a decomposition view
of legacy software. Most work on understanding interactions has focused on visualization
techniques, where the challenge is to develop efficient way to visualize the large amount of
dynamic information [13][14]. The work of DePauw et al. [15], now integrated with Jinsight,
allows engineer to visually recognize patterns in the interactions of classes and objects. ISVis [16]
displays interaction diagrams using a mural technique and also provides pattern matching. Our
work in the visualization part is similar to these two approaches. Contrary to the merely focus on
visualization, our approach emphasizes more on the recovery of collaboration and the
understanding of roles. Tamar et al. also propose an approach to analysis role within
collaborations [10], but they purely use the invocation methods as representative of roles. This is
not sufficient in our research to analyze the general function of a module inside of recovered
collaboration pattern. We use predefined conceptual role stereotypes for the recovery of role
based on the invocation relations with other modules. This gives maintainers a better
understanding of how the modules cooperate within a collaboration pattern.

7. CONCLUSIONS

In this paper, we have presented an approach to recover collaboration patterns and semantic roles
from legacy system for the purpose of legacy software understanding. It consists of two major
parts, both of which are supported by software toolsets that we have developed. The first part
focuses on the dynamic analysis of target legacy systems and the automatic discovery of
collaboration patterns. The second part is concentrated on the recovery and analysis of
collaboration patterns and semantic roles with human intervention. We have illustrated our
approach through the analysis of a sample legacy system in a case study, in which we use our
software tools to automate the discovery of collaborations patterns and the semantic roles of the
participants. The initial experience shows the result is very promising. Our approach has
demonstrated the feasibility and utility of using dynamic information to recover and analyze
collaborations and semantic roles from code, hence to support legacy software understanding. We
are continuing this work by improving the analysis functions of our tools.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

160

REFERENCES

[1] Anquetil, N.,Lethbridge, T.C. "Recovering software architecture from the names of source files",
Journal of Software Maintenance: Research and Practice, 11, 1999, pp. 201-221.

[2] Arun Lakhotia. “A unified framework for expressing software subsystem classification techniques”.
Journal of Systems and Software, 1997, mar, 36, pp.211—231.

[3] S. Palthepu, J. Greer, and G. McCalla. “Cliche recognition in legacy software: A scalable, knowledge-
based approach”. IEEE Working Conference on Reverse Engineering, IEEE Comp. Soc. Press, Oct
1997. pp. 94—103

[4] T.Ball, “The concept of dynamic analysis”. Proceedings of ESEC/FSE, LNCS, 1999, pp. 216-234.
[5] Houari A. Sahraoui, Hakim Lounis, Walcelio Melo, Hafedh Mili, “A concept formation based

approach to object identification in procedural code”, Automated Software Engineering Journal, 1999.
[6] A. De Lucia, G.A. Di Lucca, G. Canfora, A. Cimitile, “Decomposing legacy programs: a first step

towards migrating to client-server platforms”, The Journal of Systems and Software, 2000. vol. 54,
pp. 99-110

[7] A. van Deursen, L. Moonen. “Exploring legacy systems using types”. Proceedings 7th Working
Conference on Reverse Engineering, IEEE Comp. Soc, 2000, pp 32-41.

[8] Tobias Kuipers and Leon Moonen. “Types and concept analysis for legacy systems”. Proceedings of
the International Workshop on Programming Comprehension (IWPC 2000). IEEE Computer Society,
2000. June.

[9] Tamar Richner and Stephane Ducasse. “Using dynamic information for the iterative recovery of
collaborations and roles” Proceedings of International Conference of Software Maintenance, IEEE
Computer Society, 2002, pp 34-43.

[10] L.Wu, H. Sahraoui, P. Valtchev, “Legacy design recovery with dynamic visualization”. Proceedings
of the 16th International Conference Software & Systems Engineering and their Applications, 2003

[11] L.Wu, H. Sahraoui, P. Valtchev, “Migrating legacy software towards new technologies”, Proceedings
of the Migration and Evolvability of Long-life Software Systems Workshop, NetObjectDays, 2003.

[12] T.Systa,K.Koskimies and H.Muller. “Shimba – an environment for reverse engineering java software
systems.” Software –Practice and Experience, 1(1), January 2001.

[13] R.J.Walker, G.C.Murphy, B.F.Benson, D.Wright, D.Swanson and J.Issaak. “Visualizing dynamic
software system information through high-level models”, Proceeding OOPSLA’98, 1998, pp.271-283.

[14] W.D.Pauw, D.Lorenz, J.Vlissides, and M.Wgman, “Execution patterns in object-oriented
visualization”, Proceedings Conference on Object-Oriented Technologies and Systems (COOTS’98),
USENIX, 1998, pp. 219-234

[15] D.Jerding and S.Rugaber, “Using visualization for architectural localization and extraction”,
proceedings WCRE, IEEE Computer Society, 1997, pp.56-65

[16] F.P. Coyle “Legacy Integration Changing Perspectives”, IEEE Software, IEEE Computer Soc. Vol.
17 No. 2, March/April Press, pp. 37-41. 2000

[17] R. Richardson, D. Lawless, J. Bisbal, B. Wu, J. Grimson, and V. Wade, “A Survey of Research into
Legacy System Migration”, Technical Report TCD-CS-1997-01, Computer Science Department,
Trinity College Dublin. January 1997

[18] K.H.Bennett, “Legacy Systems: Coping With Success”, IEEE Software, January, Vol 12, No.11 pp
19-23. 1995

[19] Okun, V.; Gaucher, R.; & Black, P. E., eds. Static Analysis Tool Exposition (SATE) 2008 (NIST
Special Publication 500-279). NIST, 2009.

[20] Dannenberg, Roger B.; Dormann, Will; Keaton, David; Seacord, Robert C.; Svoboda, David;
Volkovitsky, Alex; Wilson, Timothy; & Plum, Thomas. “As-If Infinitely Ranged Integer Model,” 91-
100. Proceedings 2010 IEEE 21st International Symposium on Software Reliability Engineering
(ISSRE 2010), San Jose, CA, Nov. 2010. IEEE 2010.

[21] Heffley, J. & Meunier, P. “Can Source Code Auditing Software Identify Common Vulnerabilities and
Be Used to Evaluate Software Security?” Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04) - Track 9 - Volume 9. Island of Hawaii, January 2004.
IEEE Computer Society, 2004.

[22] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E. Merlo, "Recovering Traceability Links between
Code and Documentation," IEEE Transactions on Software Engineering, 28(10):970–983, 2002.

[23] G. Antoniol, Y.-G. Guéhéneuc, "Feature Identification: A Novel Approach and a Case Study," Intl.
Conf. on Software Maintenance (ICSM), 2006.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

161

[24] T. J. Biggerstaff, B. G. Mitbander, D. Webster, "The concept assignment problem in program
understanding," Intl. Conf. on Software Engineering (ICSE), 1993.

[25] B. Boehm, "Software engineering," IEEE Transactions on Computers, C-25(12):1226–1241, 1976. [6] M.
Bruntink, A. v. Deursen, R. v. Engelen, T. Tourwe, "An evaluation of clone detection techniques for
identifying cross-cutting concerns," Intl. Conf. on Software Maintenance (ICSM), 2004.

[26] G. Canfora, L. Cerulo, M. D. Penta, "On the Use of Line Co-change for Identifying Crosscutting Concern
Code," Intl. Conf. on Software Maintenance (ICSM), 2006.

[27] K. Chen, V. Rajlich, "Case study of feature location using dependence graph," Intl. Wkshp. on Program
Comprehension (IWPC), 2000.

[28] M. Eaddy, A. Aho, G. C. Murphy, "Identifying, Assigning, and Quantifying Crosscutting Concerns,"
Wkshp. on Assess. of Contemp. Modularization Techniques (ACoM), 2007.

[29] T. Eisenbarth, R. Koschke, D. Simon, "Locating features in source code," IEEE Trans. on Soft. Eng.,
29:210–224, 2003.

[30] A. D. Eisenberg, K. De Volder, "Dynamic Feature Traces: Finding Features in Unfamiliar Code," Intl.
Conf. on Software Maintenance (ICSM), 2005..

[31] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, "Advanced Candidate Link Generation for Requirements
Tracing: The Study of Methods," IEEE Transactions on Software Engineering, 32(1):4–19, 2006.

[32] E. Hill, L. Pollock, K. Vijay-Shanker, "Exploring the Neighborhood with Dora to Expedite Software
Maintenance," Automated Software Eng. (ASE), 2007.

[33] A. J. Ko, R. DeLine, G. Venolia, "Information Needs in Collocated Software Development Teams," Intl.
Conf. on Software Engineering (ICSE), 2007.

[34] D. Liu, A. Marcus, D. Poshyvanyk, V. Rajlich, "Feature Location via Information Retrieval based Filtering
of a Single Scenario Execution Trace," Automated Software Eng.(ASE), 2007.

[35] A. Marcus, D. Poshyvanyk, R. Ferenc, "Using the Conceptual Cohesion of Classes for Fault Prediction in
Object Oriented Systems," IEEE Transactions on Software Engineering, 2008.

[36] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, V. Rajlich, "Feature Location Using
Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval," IEEE
Transactions on Software Engineering, 33(6):420–432, 2007.

[37] W. Zhao, L. Zhang, Y. Liu, J. Sun, F. Yang, "SNIAFL: Towards a Static Noninteractive Approach to
Feature Location," ACM Transactions on Soft. Eng. and Methodology, 15(2):195–226, 2006.

[38] Holger Schmidt, Jan-Patrick Elsholz, Vladimir Nikolov, Franz J. Hauck, and Rudiger Kapitza OSGi4C:
Enabling OSGi for the Cloud. In Fourth International ICST Conference on OMmunication System
softWAre and middlewaRE (COMSWARE ’09), COMSWARE ’09, Dublin, Ireland, June 2009. ACM.

[39] Marcin Solarski. Dynamic Upgrade of Distributed Software components. PhD thesis, Fakultat IV
(Elektrotechnik und Informatik), Technische Universitat Berlin, 2004. ¨

[40] Marcin Solarski and Hein Meling. Towards Upgrading Actively Replicated Servers on-the-fly. In 26th
Annual International Computer Software and Applications Conference (COMPSAC 2002), pages 1038–
1043, 2002.

[41] N. Sridhar, S.M. Pike, and B.W. Weide. Dynamic Module Replacement in Distributed Protocols. In 23rd
International Conference on Distributed Computing Systems, pages 620–627, May 2003.

[42] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian Neamtiu. Mutatis Mutandis: Safe
and Predictable Dynamic Software Updating. ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(4), August 2007.

[43] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano. A Bytecode Translator for
Distributed Execution of “Legacy” Java Software. In 15th European Conference on Object-Oriented
Programming (ECOOP ’01), ECOOP ’01, pages 236–255. Springer-Verlag, 2001.

[44] Andre L. C. Tavares and Marco Tulio Valente. A Gentle Introduction to OSGi. SIGSOFT Software
Engineering Notes, 33(5), September 2008.

[45] L.A. Tewksbury, L.E. Moser, and P.M. Melliar-Smith. Live Upgrades of CORBA Applications Using
Object Replication. In Proceedings of the IEEE International Conference on Software Maintenance
(ICSM’01), ICSM ’01, pages 488–497. IEEE Computer Society, 2001.

[46] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. Tranquility: A Low Disruptive
Alternative to Quiescence for Ensuring Safe Dynamic Updates. IEEE Transactions on Software
Engineering, 33(12):856–868, December 2007.

[47] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A Break in the Clouds:
towards a Cloud Definition. SIGCOMM Computer Communication Review, 39(1):50–55, January 2009.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

162

Authors

Lei Wu, Assistant Professor of software engineering at University of Houston-Clear
Lake, Houston, U.S.A. His major research interests include software engineering with
artificial intelligence, secure service-oriented architectures, software for robotics and
embedded system intelligence, game software development, and pervasive computing.
He can be reached at wul@uhcl.edu

Sharon White, Associate Professor of software engineering at University of Houston-
Clear Lake, Houston, U.S.A. Her research interests include domain specification
languages, architecture design languages, and software architecture. She can be reached
at whites@uhcl.edu

Yi Feng, Associate Professor of computer science, Algoma University, Sault Ste. Marie,
Canada. Her major research interests include formal verification, software engineering,
signal processing, and system description languages. She can be reached at
feng@algomau.ca

James Helm, Associate Professor of software engineering at University of Houston-
Clear Lake, Houston, U.S.A. His research interests include systems and software
engineering, operations research, computer science, mathematics, physics, simulation,
and modeling. He can be reached at helm@uhcl.edu

Nathanial Wiggins, Professor of Mathematics and Engineering, San Jacinto College,
Houston, U.S.A. His major research interests include scientific computing, numerical
analysis, dynamic system modeling, geometry topology, control theory and
optimization, software engineering, formal verification. He can be reached at
Nathanial.Wiggins@sjcd.edu

mailto:wul@uhcl.edu
mailto:whites@uhcl.edu
mailto:feng@algomau.ca
mailto:helm@uhcl.edu
mailto:Wiggins@sjcd.edu

