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ABSTRACT:

Real Time strategy games offer an environment where game AI is known to conduct actuality. One feature
of realistic behavior in game AI is the ability to recognize the strategy of the opponent player. This is
known as opponent modeling. In this paper, a classification Rough-Neuro hybrid model of the RTS
opponent player behavior process is proposed.  As a mean to achieve better game performance, reduction
of  the agent decision space and better high-level winning of real-time strategy games. The Rough-Neuro
methodology allows the classification model to some extent simulate opponent behavior in playing RTS
games. The methodology incorporates a two-stage hybrid mechanism. Rough sets for reduction of relevant
attributes and artificial neural networks for classification opponent behavior during game playing. The
proposed hybrid approach has been tested on an open source 3D RTS game called Glest. From our results
we can deduce that the tactic may be successfully used for foretelling the demeanor of contender in the
Glest game.
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1. INTRODUCTION

Real Time Strategy (RTS) [8][24] video game genre began to appear roughly two decades ago.
RTS are games in which several players choose races and struggle against enemy factions by
harvesting resources scattered over a terrain, producing buildings and units, and fighting one
another in order to set up economies, improve their technological skill and level, and win battles,
until their enemies are extinct. The better equation you get amidst economy, technology and
force the more opportunity you have to earn. Many studies exist on learning to win games with
comparatively small search spaces, while few studies exist on learning to win complex strategy
games.

An important factor that influences the choice of strategy is the strategy of the opponent. For
instance, if one knows what types of units the opponent has, then typically one would choose to
build units that are strong against those of the opponent [3].
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To make classifications about the opponent's strategy whether he is defensive or offensive, an AI
player can establish an opponent model. Many researches mention the importance of designing
the contender’s tactic and illustrate that contender samples are grudgingly needed to handle the
complexities of state of the technique video games [9][10].

Opponent modeling is an important research area in game playing, it concerns establishing
models of the opponent player, and utilizing the models in actual play. In general, an opponent
model is an abstracted description of a player [21] or of a player's behavior in a game. The goal of
[15] opponent modeling is to improve the capabilities of the artificial player by allowing it to
adapt to its opponent and exploit his weaknesses. Albeit a game theoretical best settlement to a
game is known a computer program which has the ability to design its conductor’s demeanor may
gain a higher prize.

Setting up effective conductor samples in RTS games is a specially challenge that is why the
reduction of perfect information of the game environment. In traditional board games the entire
[5][21] board is being seen to the player; a player can notice all the actions of the contender.
Hence; estimating the contender’s strategy and setting up a contender sample is potential by
default, for proposal by using case based reasoning techniques.

In RTS games, however, the player has to deal with imperfect information Typically, [16] the
player can only observe the game map within a certain visibility range of its own units. This
renders constructing opponent models in an RTS game a difficult task.

Research specially focused on the topic of opponent-modeling search started in 1993, Carmel and
Markovitch [5] investigated in depth the learning of models of opponent strategies. While ,Iida et
al. [12] investigated potential applications of opponent-model search.

In the year 1994, Uiterwijk and Van den Herik [17] invented a search technique to speculate on
the fallibility of the opponent player.

In the 2000s, Donkers et al. [10][11] defined probabilistic contender samples, which seek to avoid
the traps of contender designing by insertion the player’s uncertainly about the contender’s
strategy.

Houlette [21], Charles and Black [6], Charles et al. [7], and Bohil and Biocca [3] discussed the
challenges of opponent modelling in game environments, and suggested possible
implementations of opponent modeling. A challenge for contender designing in games is that
samples of the contender player have to be set in a comparatively realistic and complex game
environment with an ideal little time for noticing and often with only partial noticeable of the
environment.

While, Rohs [18] was able to model accurately the preferences of opponent players in the game
Civilization. Van der Heijden et. al. [19] applied opponent modeling in RTS games to increase
the effectiveness of strategies in a simple game mode of the ORTS game. For adding, researchers
inserted techniques to foretell successions of user actions as the place of contender players in first
person shooters [4] [23]and in the game Warcraft [2].
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So in this paper we will try to predict opponent's strategy through modeling opponent behavior in
an imperfect-information RTS-game environment. We will introduce a proposed hybrid rough-
neuro model applied on Glest RTS game and implemented using Rosetta and Matlab applications.
Our model will try to reduce uncertainty in predicting opponent behavior through using neural
networks (NN) predicting capabilities and rough set abilities in solving NN problems.

The paper is organized as follows. In Section (2) we will present a brief overview of rough set
and neural networks.  In Section (3) a detailed description of our proposed Rough-Neuro model.
Model results will be in Section (4) and finally in Section (5), conclusions are drawn.

2. ROUGH SET- NEURAL NETWORK: A BRIEF OVERVIEW

2.1 Rough Set

RS theory is to some extent a new smart technique for managing uncertainly that is used for the
detection of data dependencies in order to estimate the importance of features to find out types in
data, to minimize repetitions [25][26][27] and to realize and grade objects. Over and above, it is
being used for the extraction of basis from databases where one vantage is the induction of
readable if then bases. Such bases have a possibility to detect previously unfound types in data.
On the other hand, it also collectively tasks like a classifier for invisible samples.

Unlike other computational smart techniques, rough set analysis requires no outer parameters and
uses only the information offered in the personal data. One of the fine advantages of rough set
theory [1][26] is that it can tell if the data is complete or not count on the data itself. Whether the
data is imperfect, it will offer that more information about the objects is wanted.

Moreover, whether the data is full rough sets are capable of detection if there are any repetitions
in the data and discover the least data needed for rating. This matter of rough sets is very
important [20][27] for applications where sphere knowledge is very bounded or data collection is
costly painful because it makes sure the data collected is just enough to set a good ranking sample
without victimization the fineness or losing time and effort to collect additional information about
objects.

2.2 Neural Networks

Artificial neural networks (ANN) are computational models of nervous systems. A neural
network is a system composed of many simple processing elements called neurons operating in
parallel whose function is determined by network structure, connection [22] strengths, and the
processing performed at computing elements or nodes. Neurons  are groued into layers or slabs.
The neurons in each layer are the same type.  Each neuron is connected to other layers by means
of  interconnections or links with an associated weight. The behaviour of an ANN depends on
both the interconnections  and the input-output function (transfer function) that is specified for the
units.

Neural  networks is trained rather than programmed. They have perfect ability to learn the
connection between input/output designation from a given dataset without any information or
proposition about the statistical apportionment of data [22][29]. This ability of learning from data
without any advanced information makes spooky networks especially for classification favorable
and regression functions in workable situations and in most fiscal and manufacturing
applications. The neurons in every category are the same pattern.
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Neural networks are also originally non-linear that makes them more workable and precise in
designing complex data types as contrary to many classical ways which are linear.

3. ROUGH-NEURO OPPONENT MODELING

A lot of algorithmic and architectures ways have been given to design contenders. Some of them
are so complicated or expensive to perform. It still unsolved problem to discover workable
solutions.

Here we focus on a particular method well suited for predicting opponent behavior in RTS games.
Neural  networks is one of the most popular techniques in classification that can solve opponent
modeling and reduce decision space of AI player.

But there are issues related to using neural networks in RTS games as time, storage and training
cost required in neural networks of a higher input dimensions [we had 13 inputs to model
opponent in Glest]. Neural Networks also have a slow learning rate, Complex network structure
and umbiguous meaning of network.

But we mentioned in section 2.1 that rough set has the ability to evaluate the importance of
attributes and to reduce them. The result of attribute reduction called reduct [14]which gives the
same result as the whole attributes do. So we tried to make benefit of attribute reduction based
rough set and neural networks classification cabapilities. Using rough set we can reduce number
of arributes and so reduce the amont of data which solves the neural networks highly time and
storage training cost. So we proposed a Rough-Neuro model  consists of two main steps, Figure
(1):

Fig.(1): Opponent Modeling Rough-Neuro Model
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• Rough Set Phase
• Neural Network Classifier Phase

We applied these two steps of our model on opoonent features extracted from a 3D RTS games
called Glest [24][28] where you control the armies of two different factions: Tech, which is
mainly composed of warriors and mechanical devices, and Magic, that consists of mages and
summoned creatures in the battlefield. Glest is not just a game, but also a Free Software (cross-
platform), fully modifiable engine to create strategy games based on XML and a set of tools.
We had 13 feature extracted from Glest we used in modelling opponent and its behavior
especially strategic behavior, e.g., the opponent's preference of unit type, the focus of an
opponent's technological development, the strength of his economy, and the aggressiveness of the
opponent, can generally be inferred from observing the feature values during actual play. As
Glest is a typical RTS game, the defined features may be generalized to similar strategic games.
The 13 defined features are given in table (1).

3.1 Rough Set Phase

3.1.1 Attribute Reduction

There often exist conditional attributes that do not provide “almost” [5] any additional
information about the objects. These features need to be removed to minimize the complexity and
value of decision process, but discovering all the reducts [13] is NP-complete but luckily in
applications it is always not needful to discover all of them , one or a few of them are enough
Generally, rough set theory presents helpful techniques to minimize beside the point and
superfluous features from a large database with lots of features. The dependency degree (or
approximation quality, classification quality) and the information entropy are two most common
attribute reduction measures in rough set theory. Table (1) displays a sample of opponent dataset
and two reducts of it.

3.1.2 Reduct Evaluation

Selecting the best reduct is important. Choosing the best reduct is significant; the selection is
based on the ideal standard with the features. If a cost task could be assigned to features then the
selection can be depended on the collective least cost standards. In this paper, we adopt three
criteria [3].
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Table (1): A Sample of Opponent Data set and two different reducts

# 
of

 U
ni

ts

Gold(a) 2000 500 350 150

Wood(b) 300 400 300 300

Stone(c) 1500 1000 2000 1500

Food(d) 30 60 30 60

Castle(e) 0 1 1 0

defense_tower(f) 2 3 0 1

Worker(g) 2 3 1 1

Swordman(h) 1 1 3 3

Archer(i) 1 0 3 2

Guard(j) 3 2 1 1

battle_machine(k) 1 2 4 3

Armor(l) 40 100 40 25

Sight value(m) 15 10 25 30

Type (s) Deffinsive Deffinsive Offensive Offensive

# 
of

 U
ni

ts

(a) 2000 500 350 150

(f) 2 3 0 1

(g) 2 3 1 1

(h) 1 1 3 3

(i) 1 0 3 2

(j) 3 2 1 0

(k) 1 2 4 3

(s) Deffinsive Deffinsive Offensive Offensive

# 
of

 U
ni

ts

(a) 2000 500
350 150

(c) 1500 1000 2000 1500

(e) 0 1 1 0

(f) 2 3 0 1

(h) 1 1 3 3

(i) 1 0 3 2

(k) 1 2 4 3

(s)
Deffinsiv

e
Deffinsiv

e

Offensive Offensi

ve
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Cardinality means the number of attributes of the reduct. The  less the cardinality the better the
reduct. But the cardinality measure alone did not shrink our list of available reduction algorithms
a lot so we needed more measurements.

• Number of generated rules: it uses the same concept as the reduct cardinality, i.e. the less the
number of rules the better [14].

• Support: is a total number of correctly classified objects divided by total number of objects to be
classified (that is size of a training set).  Hence, the highier the support the better the reduct.

3.2 Neural Networks Classifier Phase

In an attempt to validate the feasibility of the reduct, a classifier based on a feed forward neural
network (FFNN) was implemented A series of experiments was performed in order to determine
the best possible configuration, i.e., network’s structure, activation functions and training
algorithms.

The main goal of this stage of the project was to perform a preliminary analysis and comparison
of the behavior of the FFNN-based classifier that uses only those inputs that were included in the
RS-derived reduct.

A feed forward neural network with one hidden layer was used. The number of neurons in the
layer varied from the ½ of the number of inputs to the double number of inputs + 1. The training
algorithm that proved to be the most effective during preliminary experiments, and was used in
final computations was the Levenberg-Marquardt backpropagation algorithm.

where Pi
e is the success probability of the ith output estimated by the Levenberg-Marquardt

neural network, Pi
a is the actual probability of the ith output, and n is the total number of

proposals in the testing set. Logsig activation function was used, which is usually performed
better than others.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Rough Set Phase

4.1.1 Attribute Reduction

Using RSs attributes reduction algorithms programmed in Aleksander Øhrn ROSETTA [4], we
tried to reduce the number of measured attributes through applying them on each of the eight
reduction algorithms, generating each algorithm reducts and rules. The data is available as
Microsoft Access database, loaded in ROSETTA as an ODBC [4] and applied in each reduction
algorithm.

MSE= 1/n ∑  (Pi
e - Pi

a )2
n

i=1

1
f(x)=

1+ exp(-x)
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Let A be a "universal " set of n elements, $={S1,S2,….Sk} a collection of subset U formaing a cover
for it, and c:$→Q+ a cost function . Johnson΄s approximation
algorithm finds a sub-collection of $ covring all the elements of U at minimal cost

Input : C =0, T=0
Output : T

1. Step1   let C=0 , T =0

2. Step2   while C≠U do
• Find S € $ such that c(S)\|S\C| is minimum
• ¥ x € s, define cost(x)= C(S)\ |S\C|.
• C←C U S , T ←C U {S}

3. Step3  Result = T

Figure 3 : JohnsonReducer algorithm

4.1.2 Reduct Evaluation

As we mentioned previously in section 3.1.2 that reduct evaluation is performed according to
three criteria , we can see from table (2) that ManualReducer has the lowest number of rules but
it also has the lowest number of support which eliminats it from our list of choice. After
ManualReducer elimination we  found that JohnsonReducer has the lowest no of rules and
cardinality and the highest support. Which tells us that JohnsonReducer is the best choice for our
system .

Table (2): The evaluation measurements of reducts and rules

No. Reduction algorithms No. of
reducts

No. of
rules

cardinalities
of reduct

Support
of reduct

1 SAVGeneticReducer 21 450 5,6,7 89

2 JohnsonReducer 1 21 5 100

3 Holte1RReducer 8 61 6 35

4 ManualReducer 1 15 5 1

5 RSESDynamicReducer 64 982 6,7,8 1,59,52,24

6 RSESExhaustiveReducer 21 553 5,6,7 1

7 RSESJohnsonReducer 5 42 5,7 1

8 RSESGeneticReducer 17 348 6,7,8 1

Johnson’s algorithm is a typical greedy algorithm with a natural tendency to find a single prime
implicant of minimal length. In our experiment it provides only one reduct with five attributes
(the amount of gold , the number of defense_tower units, , the number of sowrdman units, the
number of archer units, , the number of battle-machine) that gives the same decision as the whole
13 attributes. It provides a reduction method that is fast and efficient with the minimum
overhead, and using Rosetta software makes it faster, easier and even more efficient.
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Figure 4: displays the number of attributes before and after reduction

4.2 Neural Network Classifier Phase

In order to start NN classifier phase we split our opponent dataset to two parts 50 opponent data
for training and 30 for network classification performance testing. A MATLAB environment with
the Neural Networks Toolbox was used to perform classifier training and testing. Figures
(5),(6),(7) and (8) display the MSE test results for FFNN classifiers with different number of
hidden neurons at 3000 and 4000 epochs. Each classifier training and testing were performed
before and after input reduction.

Figure 5: displays after reduction MSE for the logsig output activation function for LR=0.5

Figure 6: displays before reduction MSE for the logsig output activation function for LR=0.5
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Figure 7: displays before reduction MSE for the logsig output activation function for LR=1

Figure 8: displays before reduction MSE for the logsig output activation function for LR=1

From the results we can observe that the rough sets based reduction of the attribute space improves
the efficiency of the classifier. Tables (4) and (5) show that the classification error is at least
comparable, if not smaller, when the set of inputs reduced. Also, since it is possible to obtain it
with a smaller neural network (5 Input- 9 Hidden- 2 Output) trained at 4000 epochs with learning
rate (LR=1) 1, the convergence time and storage will significantly reduced.

From all the previous we can say that our model can model opponent through predictiog if the
opponenet is offensive or defensive to allow the AI player to face the opponent and beat him. Our
model make use of the rough set to solve ANN storage and time problem to make it effective for
the game real-time environment.

5. CONCLUSIONS

In this paper we proposed a hybrid intelligent opponent modeling system based  rough sets and
artificial neural networks. Rough sets provide a method for easily having an effective reduct of
given data and its belonging rules using Johnson’s reducer algorithm programmed in Aleksander
Øhrn application ROSETTA. Hence;  we become able to minimize attributes count which are
used in our game to 62% reduction in complexity. This reduction solves the neural network
problem with the increasing size of training data. As the five inputs neural network classifier
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gives the same conclusion as the 13  inputs do besides saving memory and time. Experimental
results from testing the proposed model in the game environment were particularly encouraging,
showing that this method is capable of handling uncertainty better than other soft computing
techniques.
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