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ABSTRACT

This paper proposes a novel approach to schedule real-time applications represented by Fork-Join (FJ)
task graphs on a cluster platform. The novelty of our approach lies in its ability to efficiently utilize the
power of the cluster’s computational resources to improve the system throughput. Our approach integrates
two heuristic scheduling algorithms: the first algorithm (partition algorithm) works on the cluster level to
search for the best allocation scheme for the application’s tasks on the cluster’s processors. This search is
guided by an objective function that aims to optimize the utilization of cluster’s resources. The second
algorithm (local scheduler) works on the individual processor level to efficiently utilize the processing
power of each processor. A set of simulation experiments have been conducted to evaluate the
performance of our scheduling approach on both homogeneous and heterogeneous clusters. The results
show that our approach improves the acceptance rate of the parallel applications on the cluster compared
to traditional approach.
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1. INTRODUCTION

Cluster Computing is one of the important platforms for solving large scale problems. A
computer cluster is a group of loosely coupled computers connected through fast local area
network and work together closely so that in many respects it can be viewed as a single computer.
Cluster computing is currently used in several high performance applications that exhibit real-
time characteristics (i.e. should respond within certain pre-set deadlines). A middleware called
scheduler is an urgent demand to manage the allocation of the cluster’s resources to the admitted
applications. Scheduler plays a critical role in the efficient utilization of the cluster’s computing
resources, such that the cluster can accommodate as many applications as possible (i.e.
maximizing the system throughput).   The problem of scheduling tasks over a multi-processor or
distributed platform is known to be NP-complete in general [16]. Efficient algorithms that give
the optimal schedule can only be obtained when some restrictions are imposed on the models
representing the application and the multiprocessor or distributed system. There are only few
known deterministic polynomial-time scheduling algorithms [10,17,18]; therefore, solving the
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general scheduling problem in polynomial-time requires the use of heuristic algorithms that
provide near-optimal solutions.

Scheduling real time (RT) applications on these platforms adds another challenge to this problem,
as it is required to satisfy the timing constraints of the RT-applications. A vast body of research
has been conducted to investigate the problem of scheduling RT-applications across the
computing resources of multiprocessor/multicore platforms [1,2,4,7,9,19] or distributed platforms
[13,15,21,22,23]. Some proposed partition algorithms to schedule independent RT-tasks [1,15]
while others proposed partition algorithms to schedule task graph applications
[3,6,7,8,11,12,13,20]. Each proposed algorithm tries to maximize certain performance criteria
such as saving energy over platforms with dynamic voltage scaling (DVS) [1, 15, 19, 23]. Other
algorithms are concerned with achieving effective fault-tolerant in RT-systems [21,22]. A third
category of algorithms aim to minimize the application makespan [12, 13].  However, a very few
number of them tried to improve the processing power utilization. Moreover, most of the
researchers restrict their attention to developing the partition algorithm on the cluster level and
employ any previous simple algorithm, at the processor level, for processing power reservations.
Some employs algorithms that assigns each task a fixed percentage CPU reservation and don’t
efficiently utilize the processor [13]. Others use the earliest-deadline-first scheduler [5]; which
doesn’t include a mechanism that prevents one task from causing others to miss their deadlines.

In this paper, we propose a new approach for scheduling RT-applications represented by Fork-
Join task graph on a cluster. Our approach has the advantage of efficient utilization of the power
of the cluster’s computing resources in order to provide deadline guarantees to the RT-
applications and   improve their acceptance rate (acceptance rate is defined as the number of
schedulable applications to the total number of submitted  applications). Our scheduling approach
consists of two heuristic algorithms namely: partition algorithm and local scheduler. Both of them
cooperate for efficient utilization of the power of the processors. On the cluster level, the partition
algorithm partitions the application and searches for the best allocation scheme of the tasks of the
application on the cluster’s processors such that the  acceptance rate of the applications is
maximized. On the processor level, each individual processor has a local scheduler that manages
the execution of the assigned tasks to that processor in a way that efficiently utilizes the processor
and provides guarantees to deadlines requirements. This paper discusses the proposed partition
algorithm in detail and its integration with the efficient local scheduler proposed by us in [14].

The rest of the paper is organized as follows: Section 2 presents models for the scheduling
environment (i.e., the cluster and the application). Our scheduling approach is discussed in
Section 3. Section 4 presents an illustration example for the proposed approach. Section 5
evaluates the performance of our scheduling approach with respect to the traditional approach
through a set of simulation experiments. Finally, section 6 concludes the paper and suggests
extension to our approach as a future work.

2. MODELLING APPROACH

This section describes briefly each of the cluster and application models that are used in our
approach.

2.1. Cluster Model

The cluster system is modelled by an undirected graph, G = (N,E) where:

N = {N1, N2, … , Nk} is a set of nodes (computing resources) constituting the cluster.
E is a set of edges (communication links) between the nodes.
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The cluster is functioning under the following assumptions:

• Cluster network graph G is complete (i.e., the nodes are fully connected), as shown in
figure 1a.

• Cluster processors may be homogeneous (have the same speed) or heterogeneous (have
different speeds).

• Each node has a local scheduler maintains a data structure called reservation table that
has information about the executing tasks on this processor which includes their starting
times, deadlines and processing power percentages. The reservation tables of all the
nodes are publicly available and dynamically changing.

• The partition algorithm uses the reservation tables to get the available workload on each
processor .

• Local scheduler guarantees that it will provide the computing resources as announced and
will release them as soon as the task is completed.

• The system is fault free.

2.2. Application Model

A set of N applications, A = {A1, A2, …, AN}, compete for the cluster resources. Each submitted
application Ai = {Ti,1, Ti,2, … , Ti,ni} is represented by a set of ni parallel real-time tasks in the
form of a Fork-Join task graph as shown in figure 1b. We made the following assumptions:

• There is no communication between the parallel tasks during execution.
• The whole set of application tasks are known at submission time. The reason for such an

assumption is to schedule all tasks of an application at once.
• Applications randomly arrive.
• The tasks belong to one application have the same start time Si and the same deadline

Di. Each task , of an application is characterized by its estimated execution time , .

Figure 1. (a) Cluster model. (b) Fork-Join application model

3. PROPOSED SCHEDULING APPROACH

The main goal of our scheduling approach is to improve acceptance rate of F-J task graph
applications on the cluster. This goal is achieved by the efficient utilization of the power of the
cluster’s computing resources.  Our scheduling approach consists of two schedulers, namely: the
partition algorithm and the local scheduler. The following subsections describe the role of each
scheduler in allocating the tasks on the cluster such that the required goal is achieved.
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3.1. Local Scheduler

In our approach, each processor in the cluster has its own local scheduler, which is responsible for
executing the tasks on this processor. The local scheduler adopted in this paper is discussed in
detail in [14]. It efficiently utilizes the processing power of the cluster’s processors to
accommodate as many tasks as possible. It relies basically on two ideas:

• First, when allocating a task on a processor a variable processing power is used to
allocate the task’s workload when enough constant processing power cannot be
guaranteed.

• Second, between the arrivals of two applications or when a task finishes and its
processing power is released; the available processing power is exploited and
redistributed among the executing tasks to reduce their execution time and to give the
chance for the new admitted applications to be accepted.

Within this scheduler, the processor alternates between two modes during scheduling, the
reservation mode and the execution mode:

• Reservation Mode (RM): is activated at the arrival of a new application. In this mode,
new reduced processing powers are assigned to the executing tasks such that they
guarantee no deadlines violation. Consequently, more available workload is provided to
the new arrived applications.  This gives a higher chance for these applications to be
accepted.

• Execution Mode (EM): is activated between two successive arrivals of the applications
or at the departure of a task. In this mode, available workload is distributed over the
executing tasks proportional to their current workloads.

3.2. Partition Algorithm

Partition algorithm is responsible for partitioning the application and allocating its tasks across
the available processors. It is a heuristic algorithm that searches for a scheduling scheme on the
cluster that maximizes acceptance rate of the applications. This search is guided by an objective
function that integrates two performance criteria namely: processing power fragmentation and
context switching. Optimizing these criteria results in assigning the processors to the tasks in a
way that leads to better utilization of the processors. Consequently, the acceptance rate of the
applications is improved. The optimal scheduling scheme is the one with the maximum value of
the objective function.

The Objective Function

The objective function is given by the following equation:

pjipji
pji cf ,,,,

,, *

1=

Where:

pjif ,, : Fragmentation when task jiT , is allocated on processor pP .
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pjiC ,, : Context switching on processor pP in the window of jiT , .

• Fragmentation Term ( , ,i j pf ): the objective of this term is to minimize processing

power fragmentation by attempting allocate tasks on the processor with the minimum
enough available workload leaving other processors that have more available workload to
allocate new applications. This increases acceptance rate of the newly arrived
applications. This term is expressed by the following equation:

i

jipava
pji D

WLWL
f ,_

,,

−
=

Where:

iD : Deadline of the application iA

pavaWL _ : Available workload on processor .

:, jiWL Required workload of jiT , .

• Context Switching Term ( pjiC ,, ): the objective of this term is to minimize the context

switching time cost. This is the time used by the processor to switch from one task to
another during execution and is added to the execution time of each task allocated on the
processor. Adding this time to the execution time of a task will be compensated by
additional processing power for the task to finish at its desired deadline which reduces
acceptance rate of the tasks on the processors. It can be measured as the number of times
a processor switches from the execution of one task to another task within the

deadline of jiT , .

As can be noticed there is a conflict between minimizing processing power fragmentation and
minimizing context switching. While the former tends to allocate the task on a busy processor the
latter tends to allocate it on an empty processor. In our approach, we select the candidate
processor based on the resultant of merging these objectives together in one function, which is the
objective function pji ,, .

PARTITION ALGORITHM STEPS

When an application is submitted to the cluster, the partition algorithm proceeds as follows:

• The partition algorithm stimulates the local schedulers to convert the processors from
execution mode (EM) to reservation mode (RM).

• Then, the partition algorithm checks out the initial acceptance of the application on the
cluster. The application is accepted initially if the summation of the available workloads
on the cluster’s processors during the application’s deadline is greater than or equal to the
summation of the required workloads by the tasks of the application, (i.e.∑ ≥ ∑ , ). If an application fails the initial acceptance test, it is
rejected immediately.

• If the application is initially accepted, its tasks are sorted in descending order according
to their required workload in order to ensure that the task demanding the largest workload
will be allocated the first (has the highest priority), then the next demanding task and so
on till all the tasks are allocated. We set these priorities because all the application’s tasks
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have the same start time and deadline, and allocating one task on a processor reduces its
available workload and consequently affects the acceptance of other tasks.

• For the highest priority task , , the set of processors on which , can be
accommodated (i.e., available processors set , ) is determined. A task , can be
accommodated on a processor if ≥ , .

• If , (p is an empty set, the application is rejected, otherwise, the values of the objective
function are computed for the task , when allocated on each processor in its available
processors set (i. e. , , ∀ ∈ , ). The task , is allocated on the processor with
the maximum value of the objective functio (ma , , ).

• Then the algorithm proceeds with the next highest priority task until all the tasks of the
application , , = {1. . } are scheduled or an empty processor set , is encountered
and the application is rejected.

• After that, the partition algorithm stimulates the local schedulers such that each of them
distributes the processing power of his processor over the allocated tasks; then switches
its processor from RM back to EM.

The steps of the algorithm are summarized in figure2. The example in the following section
further illustrates the idea of our partition algorithm.

The computational complexity of this algorithm is )*( nmO where n is the number of tasks in
the application; m is the number of processors in the cluster.

______________________________________________________________________________________________________

Algorithm: Partition algorithm
Input: F-J task graph application that includes tasks { , , , ,, … , , }
Output: Scheduling scheme on the cluster

Begin
1. Stimulates local schedulers to switch from EM to RM
2. If ∑ ≥ ∑ , then executes steps from 3 to 8.
3. Sort , in descending order based on , , ∀ = {1. . }
4. For each ,
5. , = empty
6. For each processor
7. if: ≥ , then add to ,
8. If  ( , = empty ) break; else

9. Compute the objective function pji ,, of , on each available processor

(i.e. , , ∀ ∈ , )
10. Allocate , on the processor with the maximum , ,
11. Reduce the available work load of processor by ,

(i.e. = − , )

End

__________________________________________________________________________________________________________________

Figure 2. The partition Algorithm



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 5, October 2012

203

4. ILLUSTRATION EXAMPLE

Suppose a F-J application consists of 4 parallel tasks is arrived to a cluster of eight nodes. The
proposed partition algorithm stimulates the local schedulers to switch from EM to RM, and then
calculates the available workload on each processor. Table1 shows the application and table 2
shows the available workloads on the cluster processors during the application’s deadline (these
values are selected for illustration purpose only).

Table 1. Tasks of F-J application.

S τi D
T1 100 140 200
T2 100 100 200
T3 100 60 200
T4 100 20 200

Table 2. Available workload on each processor at the arrival of  the application.

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 110 90 150 200 350 80 190 300

The required workload for each task is calculated and initial acceptance test is performed. Table 3
shows the required workloads of the tasks.

Table 3. Required workloads of the tasks.

τi D PPi WLi

T1 140 200 0.7 140
T2 100 200 0.5 100
T3 60 200 0.3 60
T4 20 200 0.1 15

As ∑ = (140 + 100 + 60 + 15) = 31 <= (110 + 90 + 150 + 200 + 350 + 80 + 190 + 300)
The application is accepted initially and the tasks are sorted in descending order based on their
workload requirements as shown by table 3.

The available processor set for task T1 (task with greatest workload requirements) is
determined as shown in table 4.

Table 4. Available processor set for task T1

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 110 90 150 200 350 80 190 300
● ● ● ● ●
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The values of the objective function on the processors belong to φ are computed (table 5). The
context switching values of the processors shown in table 5  are selected for illustration only.
Table 5 shows that assigning task T1 to processor P3 maximizes the objective function. So T1 is
allocated on P3

Table 5. Values of the obj. fn. p,1 when T1 is allocated on the processors ∈ .

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 110 90 150 200 350 80 190 300
Context switching 7 9 5 10 8 12 6 16

● ● ● ● ●

p,1 800 66.67 23.81 133.33 23.58

In Table 6, T1 is allocated to P3 and the available workload on P3 is updated by subtracting the
required workload of T3 from its current available workload. Also, the context switching of P3

1 is
updated.

Table 6. Context switching and available workloads on processors after allocating T1 on P3.

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 110 90 10 200 350 80 190 300
Context Switching 7 9 8 10 8 12 6 16
Schedule Scheme T1

In the tables from 7 to 12, we repeat the same procedure for all other tasks in the application. As
can be seen in Table 12 the application is given a schedule that allocates T1 on P3, T2 on P1, and
T3 and T4 on P6.

Table 7. Available workload on processors at the arrival of T2 and the values of obj. fn.

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 110 90 10 200 350 80 190 300
Context Switching 7 9 8 10 8 12 6 16
Schedule Scheme T1

● ● ● ● ●

p,2 571.42 40 20 74.07 12.5

Table 8. Available workload on processors after allocating T2 on P1

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 10 90 10 200 350 80 190 300
Context Switching 12 9 8 10 8 12 6 16
Schedule Scheme T2 T1

1 This update is done for illustration purpose only and does not reflect a specific case study.
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Table 9. Available workload on processors at the arrival of T3 and the values of obj. fn.

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 10 90 10 200 350 80 190 300
Context Switching 12 9 8 10 8 12 6 16
Schedule Scheme T2 T1

● ● ● ● ● ●

p,3 148.15 28.57 17.24 166.67 51.28 10.42

Table 10. Available workload on processors after allocating T3 on P6

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 10 90 10 200 350 20 190 300
Context Switching 12 9 8 10 8 15 6 16
Schedule Scheme T2 T1 T3

Table 11. Available workload on processors at the arrival of T4 and the values of obj. fn.

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 10 90 10 200 350 20 190 300
Context Switching 12 9 8 10 8 15 6 16
Schedule Scheme T2 T1 T3

● ● ● ● ● ●

p,4 59.26 21.62 14.93 533.33 38.1 8.77

Table 12. Available workload on processors after allocating T4 on P6.

Processor P1 P2 P3 P4 P5 P6 P7 P8

WLava-p 10 90 10 200 350 5 190 300
Context Switching 12 9 8 10 8 18 6 16
Schedule Scheme T2 T1 T3, T4

5. SIMULATION EXPERIMENTS

We have conducted a set of simulation experiments to evaluate the performance of our proposed
scheduler.  Two local schedulers have been experimented along with the proposed partition
algorithm: 1) Our proposed local scheduler (WLEM) [14],  2) A previous scheduler that is
developed by Microsoft [13] (Traditional). The two local schedulers have been experimented to
show that an inefficient local scheduler may degrade the performance of the partition algorithm.
The following two subsections discuss the simulation experiments setup and the results.

5.1. Experiments Setup

The simulation experiments have been conducted on both homogeneous and heterogeneous
clusters. The performance metric used in these experiments is the acceptance rate of the
applications on the cluster. We measure acceptance rate at different values of mean inter-arrival
time of the applications (1/λ) and at different values of mean execution time (1/μ) (λ and μ are the
arrival and the departure rate respectively).
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In each experiment, sets of applications are generated using the following settings:

1. Each set contains 10000 randomly generated applications. Each application is represented
by a F-J task graph (i.e. application tasks have the same start time, finish time, and
deadline)

2. Different sets of application have different values of (1/λ). However, they have the same
value of (1/μ).

3. In a set of application, an exponential probability distribution with mean (1/λ) is used to
generate random values for the inter-arrival time of the applications.

4. In a set of applications, a uniform probability distribution of mean (1/μ) is used to
generate random values for task execution times.

5. A uniform probability distribution is used to generate a unified deadline of the tasks such
that it is not less than the maximum execution time of the tasks.

6. A uniform probability distribution, U(2,12), is used to generate number of tasks in the
application.

7. A uniform probability distribution, U(1.5,5), is used to generate values for α = 1/pp.

5.2. Experimental Results

Figures 3, 4, and 5 show the acceptance rate vs. mean inter-arrival time for each experiment in
case of homogeneous clusters. In all experiments, results show that the performance of our
proposed partition algorithm when adopting our proposed local scheduler is superior to the
performance when adopting traditional local scheduler approach. Results also show that in both
cases more applications are rejected when applications arrive faster than the cluster can handle
(i.e. when the cluster is overloaded). However, our algorithm is still superior to the traditional
one. By contrast, both approaches perform competitively well for large values of 1/λ (slow
arrival). This is because the applications arrive apart from each other; hence, the scheduling
process becomes easier.

Figure 6 shows the percentage improvement in the acceptance rate achieved by our approach over
that of the traditional approach at different values of 1/µ.  As can be seen on the graph, the
improvement diminished as 1/λ increases. This is due to the fact that both approaches perform
well for large values of mean inter-arrival time (slow arrival).  The graph also shows that we
achieve higher amount of improvement for small values of 1/λ (fast arrivals) and large value of
1/µ (slow departure). Hence, we conclude that our proposed approach has a major improvement
when long tasks arrive at high arrival rate. In this case the scheduling process becomes difficult
and the traditional approach has relatively low acceptance rate.

Figures 7, 8, 9  and 10 show the results in case of heterogeneous clusters. Conclusions similar to
the above conclusions can be derived from these graphs.
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Fig. 3: Acceptance Rate at 1/µ = 3.5 (homogenous cluster)

Fig. 4: Acceptance Rate at 1/µ = 5 (homogenous cluster)
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Fig. 5: Acceptance Rate at 1/µ = 6.5 (homogenous cluster)

Fig. 6: Improvement at different values of 1/µ (homogenous cluster)
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Fig. 7: Acceptance Rate at 1/µ = 3.5 (heterogeneous cluster)

Fig. 8: Acceptance Rate at 1/µ = 4 (heterogeneous cluster)
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Fig. 9: Improvement at 1/µ = 5 (heterogeneous cluster)

Fig. 10: Improvement at different values of 1/µ (heterogeneous cluster)
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6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a heuristic scheduling algorithm to schedule real-time applications
represented by F-J task graph on a cluster platform. This algorithm consists of two hierarchical
schedulers. Both of them efficiently utilize the processing power of the cluster’s processors and,
consequently, improve acceptance rate. A simulation study has been conducted to evaluate the
performance of our approach through a set of experiments on homogeneous and heterogeneous
clusters. The results showed that our approach considerably outperforms a traditional scheduling
approach in terms of acceptance rate. We plan to investigate applying our scheduling approach to
multiprocessor/distributed platforms that include processors with dynamic voltage scaling with
the intent of reducing power consumption.
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