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ABSTRACT

In this work, we formalize a generic fast hue-preserving histogram equalization method based on the RGB
color space for image contrast enhancement and two versions of that generic process. The first method
estimates a RGB 3D histogram to be equalized using R-red, G-green, and B-blue 1D histograms, while the
second method employs RG, RB, and GB 2D histograms. The histogram equalization is performed using
shift hue-preserving transformations, avoiding unrealistic colors. Our methods have linear time and space
complexities with respect to the size of the image and do not need to apply conversions from a color space
to another in order to perform the image enhancement. Such design complies with real-time applications
requirements. An objective assessment comparing our methods and others is performed using a contrast
measure and a color image quality measure, where the quality is established as a weighting of the
naturalness and colorfulness indexes. We analyze 300 images from the dataset of the University of
Berkeley. Experiments show that the value of the image contrast produced by our methods is in average
50% greater than the original image value, keeping the quality of the produced images close to the original
one.
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1. INTRODUCTION

The integration of cameras in portable devices, especially in mobile phones and PDAs, has
increased the need for image processing software which can work fast, use as little memory as
possible and produce good quality images. Having this scenario in mind, many algorithms have
been produced in order to enhance the images obtained by these devices, including
[1, 2, 3, 4, 5, 6, 7, 8].

A great variety of methods were developed for gray-level contrast image enhancement. Among
these methods are the ones based on histogram equalization. Histogram Equalization (HE) [9]
methods generate a uniform histogram (i.e., uniform distribution) from an original image by using
the entire range of discrete levels of the image and stretching and/or redistributing these levels in
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the output histogram. The extension of these methods to color images is not straightforward. This
is because there are some particular properties of color images which need to be properly taken
into account during image enhancement.

Among these properties are the luminance, saturation and hue attributes of the color [10]. Color
spaces such as HSV , HSI, CIELUV , CIELAB were conceived based on these three attributes.
Whereas the luminance represents the achromatic part of the color (e.g., it can be defined as a
weighted function of the R, G, and B color channels), the saturation and hue refer to the chromatic
part of the image. The saturation can be defined as the measure of the amount of white in the
color, and the hue as the color attribute which decides its real meaning ("real color"), e.g., red or
green. In the context of color image enhancement, the hue should not be changed for any pixel
such that an unnatural aspect for the output images is avoided.

On the other hand the RGB color space (i.e., R-red, G-green, and B-blue) is commonly used for
displaying, transmitting, and storing color images in digital devices, such as mobile phones,
cameras and PDAs. For image processing tasks, this color space is not the most appropriated one,
since other color spaces explicitly separate the meaning of the attribute colors while the RGB one
does not. It is trivial the conversion from the RGB color space to a Luminance-Hue-Saturation
(LHS)-based color space. However, this process can be both not appropriate to the device where
the images are acquired and not suitable for real-time applications. Moreover, tackling the well-
known gamut problem when working on a LHS-based color space is required [11].

The literature of HE methods for color contrast image enhancement present works based on the
RGB, LHS, and CIELUV color spaces, as described. In [12], it is proposed a HE method based on
the brightness, saturation, and hue (HSI) color space. This technique yields an image with
uniform brightness and saturation histograms, leaving the hue channel unchanged. In [13], a
technique similar to this one is proposed. In this latter work, a special care is given to saturation,
where high frequency information is present. However, portable devices require more efficient
methods to be used in.

Furthermore, in [14], a gray-level images enhancement method based on semi-HE and a modified
cosine function is proposed, and for color images by equalizing the three channels (R, G, and B)
separately, an extension of this methodology is suggested. Although this method is fast, it does
not preserve the hue. An algorithm for HE taking into account color channels correlation through
mesh deformation is also proposed in [15]. This method always generates almost (i.e. discrete)
uniform color histograms and optimally uses the color space. It is indicated for scientific
visualization purposes, but not for image enhancement, since it does not preserve the image
natural features. In [3], a novel dynamic enhanced algorithm based on histogram specification is
proposed to enhance the contrast of the gray-level images without losing the original histogram
characteristics. However, when the method is extended to the color space, first the image is
converted to a LSH-based color space and after only the luminance is enhanced, keeping both the
hue and saturation unchanged.

By analysing the methods previously presented, we can observe that none of them present all the
characteristics required for use in portable devices: to improve the images contrast, be fast, and
still preserve the hue. In order to reach such aim, this work formalizes a generic fast hue-
preserving HE method based on the RGB color space for image contrast enhancement. From the
generic method we extrapolate two variants, which are determined by the histograms dimension
used, i.e., 1D or 2D. Indeed, in [16, 17], the methods presented here were previously introduced.
The method presented in [16] is not hue-preserving. However, with the modifications presented
here it is. Hue-preserving transformations directly on the RGB color space [11] perform the
histogram equalization, avoiding the conversion requirement between color spaces and the gamut
problem, keeping the hue unchanged. Besides, contrast image enhancement (i.e., the
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improvement of the variance on the luminance attribute) is produced by our methods, and, at the
same time, from the equalization of the uniform RGB histogram, the saturation is modified. Using
R, G and B 1D histograms and RG, RB, and GB 2D histograms, respectively, the methods
estimate the RGB 3D histogram to be equalized, yielding algorithms with space and time
complexities linear with respect to the size of the image. Having these features, these methods
become suitable for real-time applications.

Addition to describing these new fast methods, this article presents another significant
contribution. The images processed are evaluated using quantitative measures, allowing us to
perform an objective comparison among the presented methods and two other related methods
previously introduced in the literature. We run experiments in a dataset of 300 images of the
University of Berkeley, analyzing the contrast and the color quality of the original and processed
images (guided by naturalness and colorfulness index [18]).

The remainder of this paper is organized as follows. Basic definitions for color images are
presented in Section 2. Previous works related to our methods are described in Section 3, and in
Section 4 our new methods are presented. Experiments are shown in Section 5 and, finally,
conclusions are drawn in Section 6.

2. BASIC DEFINITIONS

In a context of discrete variables, the histogram of a variable represents the absolute frequency of
each discrete value, whereas the probability density function of a variable constitutes the relative
frequency of these values. The probability distribution function (or the cumulative probability
density function), in turn, can be seen as the probability of a variable to be less or equal to a
value. The estimation of the probability of an event happening is performed using these functions.
Considering that a color image is a discrete variable, this section describes its multidimensional
histograms and their probability functions, which will be used throughout this work.

Let and denote the set of natural and integer numbers, respectively. Let X be a subset of
points (x,y) ∈ 2, such that 0 ≤x < m, and 0 ≤y < n, where m and n denote the dimensions of X.
Note that ||X||= mn. A mapping I, from X to L

3, is called a (color) image (in the RGB color
space). In applications, L is typically 256. By abuse of terminology we denote a color image by
IRGB.

Indeed, a color image IRGB has three mappings from X to L, which are the red, green and blue
images, i.e. IR, IG and IB, respectively. Let us also define three other mappings from X to L

2, i.e.,
IRG, IRB and IGB. We call these mappings red/green, red/blue and green/blue images, respectively.

For a point (x,y) ∈X, Ri = IR(x,y), Gi = IG(x,y) and Bi = IB(x,y) are called the red, green and blue
levels of the point (x,y) in IRGB, respectively, where 0 ≤ Ri , Bi , Gi < L. We can also denote
(Ri,Gi,Bi), (Ri,Gi), (Ri,Bi) and (Gi,Bi) by I(x,y)

RGB, I(x,y)
RG, I(x,y)

RB and I(x,y)
GB, respectively. In the

following, we define 1D, 2D and 3D histograms and probability density and distribution functions
for color images.

For the 1D case, we first consider the R color channel. Let HRi
IR be the absolute frequency of level

Ri in image IR, where 0 ≤ Ri < L. The mapping HIR from the levels of image IR to its absolute
frequency levels, i.e., HIR : L → , is called the histogram of image IR. Let PIR be the probability
density function of IR. We denote by PRi

IR the probability of level Ri, i.e., PRi
IR = HRi

IR ∕mn, where 0
≤Ri < L. Let CIR be the cumulative density function (or the probability distribution function) of IR.
We denote by CRi

IR the cumulative density of level Ri, i.e., CRi
IR = ∑ ri=0

R
iPr i

IR , where 0 ≤Ri < L. It
is immediate to extend the above definitions of IR image, i.e., HIR , PIR and CIR , to IG and IB

images.
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For the 2D case, we first consider the R and G color channels. Let HRi,Gi
IRG be the absolute

frequency of Ri and Gi colors in image IRG. The mapping HIRG from the levels of image IRG to its
absolute frequency levels, i.e., HIRG : L

2 → , is called the histogram of image IRG. Let PIRG be the
probability density function of IRG. We denote by PRi,Gi

IRG the probability of (Ri,Gi), i.e., PRi,Gi
IRG =

HRi,Gi
IRG ∕(mn). Let CIRG be the cumulative density function of IRG. We denote by CRi,Gi

IRG the
cumulative density of (Ri,Gi), i.e., CRi,Gi

IRG = ∑ ri=0
R

i∑g i=0
G

i Pri,gi
IRG . It is immediate to extend the

above definitions of IRG image, i.e., HIRG , PIRG and CIRG , to IRB and IGB images.

For the 3D case, let us define a single histogram and probability functions. Let HRi,Gi,Bi
IRGB be the

absolute frequency of Ri, Gi, and Bi colors in image I. The mapping HIRGB from the levels of image
I to its absolute frequency levels, i.e., HIRGB : L

3 → , is called the histogram of image IRGB. Let
PIRGB be the probability density function of IRGB. We denote by PRi,Gi,Bi

IRGB the probability of
(Ri,Gi,Bi), i.e., PRi,Gi,Bi

IRGB = HRi,Gi,Bi
IRGB ∕(mn). Let CIRGB be the cumulative density function of IRGB.

We denote by CRi,Gi,Bi
IRGB the cumulative density of (Ri,Gi,Bi), i.e., CRi,Gi,Bi

IRGB = ∑ ri=0
R

i∑g i=0
G

i ∑
bi=0

B
iPr i,gi,bi

IRGB .

3. PREVIOUS WORKS

In this section, we present two HE methods directly related to our proposed methods. Note that all
the HE methods described in this article work in three phases: (1) they compute the histogram of
the image, (2) they compute the density and distribution probability functions of the image from
the histograms, and (3) they enhance the image though HE.

The process carried out to compute the histogram of the image is the same in all methods. With a
single scan throughout the image we can compute 1D, 2D, or 3D histograms, according to the
definitions given in Section 2.

The second phase, where the density and distribution probability functions are calculated,
strongly depends on the dimensions of the probability functions used for the method. It is well
known that a typical color image have not its R, G, and B color channels neither full correlated
nor totally independent distributed. Hence, the dimension (i.e., 1D, 2D, or 3D) of the density and
distribution probability functions of the images used for the methods has a great impact in the
quality of enhanced images and in the time complexity of the methods. In this respect, whereas
some methods take into account only the red, green and blue channels separately (calculating 1D
histograms), others consider the correlation among these channels two at-a-time, or even consider
the three of them all together.

Regarding the third phase (the histogram equalization itself), methods can follow very specific
rules to achieve it. The classical method processes the 1D histograms separately, and then
employs the equalized histograms to enhance the image. Other methods process the image pixel
by pixel, using an iterative process, in a way that the histogram of the output enhanced image has
a uniform distribution, i.e., it is equalized.

In the next section, the classical HE method for gray-level IE is described, which is extended for
color images. We then show the 3D HE method proposed by Trahanias and Venetsanopoulos in
[19]. This last method present important concepts which will be then incorporated into our
methods, described later on in Section 4.

3.1. Classical 1D Histogram Equalization

In this section, the HE method for monochrome images (e.g., gray-level or red ones) is described,
followed by its extension to cope with IRGB images. The goal of HE is to uniformly distribute the
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input histogram over the entire range of levels or, equivalently, to generate a cumulative density
function which increases monotonically as a straight line, such that an image contrast
enhancement is achieved. We focus the description of the method on red images and then extend
it to green and blue images. Putting together these definitions in red, green and blue images, we
can perform HE on the RGB color space.

The HE method for red images is described as follows. Let I and O be the original and the
equalized images, or the input and the output images, respectively. Let HIR , PIR and CIR be defined
as in Section 2. Let HOR be the desired uniform histogram of the output image, where any level Ro

has the same amount of pixels, i.e., HRo
OR = (mn), or the same density, i.e., PRo

OR = 1∕L. The
cumulative density function COR is defined in function of Ro as CRo

OR = ∑ ro=0
R

oPr o
IR = (Ro + 1)∕L.

The Ro
′ output equalized level corresponding to the input level Ri is obtained as the one that

minimizes the difference between CRo
′OR and CRi

IR . In other words, the output level l′ for the input
level Ri can be computed as the transformation function

TIR (Ri), i.e., Ro
′= TIR (Ri) = where stands for the nearest integer to z ∈ . To

generate the output enhanced image with this transformation, for any pixel (x,y) ∈X, we obtain the
output value OR(x,y) as Ro

′= TIR (Ri), where Ri = IR(x,y).

This method can be easily extended for color contrast image enhancement by applying separately
the equalization process described above to the IR, IG, and IB images, separately. A well-known
problem comes with this extended method: since it is not hue preserving [11], it produces
unrealistic colors.

Note that this method has O(max(mn,L)) and O(L) time and space complexities, respectively.
From now on, we call this extended method as the classical 1D HE method, i.e., C1DHE method.

3.2. 3D Histogram Equalization

In this section, the method proposed by Trahanias and Venetsanopoulos [19] is described. The
correlation of the three channels, R, G, and B, is taken into account simultaneously in this
method.

Let I be the input color image and O be the output color image. Following the definition in
Section 2, consider HIRGB , PIRGB , and CIRGB. For the output image, let HORGB be the uniform
histogram, in which any entry (Ro,Go,Bo) has the same amount of pixels, since the same density,
i.e., PRo,Go,Bo

ORGB = 1∕L3 is desired or such output histogram, i.e., HRo,Go,Bo
ORGB = (mn). Hence, any

entry (Ro,Go,Bo) in CORGB is calculated using PORGB , i.e.,

To yield the output enhanced image, for any input pixel (x,y) ∈X, where (Ri,Gi,Bi) = IRGB(x,y), the
smallest (Ro,Go,Bo) for which the inequality

holds. However, an ambiguity is present in this step of calculating the output histogram, mainly
because many possible solutions for (Ro,Go,Bo) which satisfy Equation 2 may exist. This
ambiguity is remedied as follows. The computed value of CIRGB at (Ri,Gi,Bi) is initially compared
to the value of CORGB at (Ro,Go,Bo). If CIRGB is greater (resp. less) than CORGB , then the indexes Ro,
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Go, and Bo are repeatedly increased (resp. decreased), one at-a-time, until Equation 2 is satisfied.
The obtained (Ro,Go,Bo) is the output entry to the corresponding input (Ri,Gi,Bi), i.e., if (x,y) ∈X
and (Ri,Gi,Bi) = IRGB(x,y), then ORGB(x,y) = (Ro,Go,Bo).

From now on, we call the Trahanias and Venetsanopoulos 3D method as TV3DHE method. The
TV3DHE method has O(max(mnL,L3)) and O(L3) time and space complexities, respectively. Note
that the methods discussed in this section have drawbacks that make them not suitable for real-
world and real-time applications. Whereas the C1DHE method is not hue-preserving, the
TV3DHE method is neither hue-preserving nor complies with real-time application requirements.

4. FAST HUE-PRESERVING HISTOGRAM EQUALIZATION
METHODS FOR COLOR IMAGE CONTRAST ENHANCEMENT

In this section, we present a generic method which, in contrast with the methods presented in the
previous section, is both hue-preserving and has time and space complexities which complies
with real-world and real-time applications. We formalize two variants from the generic method,
which are determined by the histograms dimension used to estimate the 3D probability functions,
i.e., 1D or 2D histograms. In other words, the probability function estimation phase is the variant
point of the generic method.

4.1. Generic Hue-preserving Histogram Equalization Method

In this section, our generic method is presented. It is, as the other ones, split in three phases.
Initially, let I be the input image and O the output image. Let the input #D histograms and
probability functions be defined as in Section 2, where # is the histogram dimension used (this is
the variant point of our method). Although the proposed method work with #D histograms per
say, but a 3D pseudo-histogram, H′IRGB . The H′IRGB definition is based on a pseudo 3D cumulative
density function.

The second phase of our method, the computation of this cumulative density function, C′IRGB ,  is
performed for any entry (Ri,Gi,Bi) as the product of the three #D cumulative functions. The
variant methods are formalized in details in Sections 4.2 and 4.3.

The third phase works as follows. The method described in Section 3.2, in order to minimize
Equation 2, iteratively increases or decreases the values of Ro, Go and Bo. Here, for any image
pixel we propose to find the output triplet (Ro,Go,Bo) in a single step, i.e., O(1). Thus, from
Equations 1 and 2, we can obtain

If we take Ro, Go and Bo as Ri + k, Gi + k and Bi + k, respectively, where k would be the number of
iterations required for minimizing Equation 2, we obtain
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where Ri
′, Gi

′, and Bi
′ stand for Ri + 1, Gi + 1, and Bi + 1, respectively. We obtain the desired

output triplet (Ro,Go,Bo), by solving this cubic equation in function of k, as the input one plus the

displacement k, i.e.,
means the nearest integer to k ∈ . Equation 4 can be easily solved by [20] or by the classical
Cardian’s methods which use transcendental functions. We chose to use the former, since it is
faster and mathematically simpler than the latter.

Our generic method hue-preserving [11], since any image pixel is enhanced following a shift
transformation by a k factor, i.e., from (Ri,Gi,Bi) to (Ro,Go,Bo) = (Ri + k,Gi + k,Bi + k).

Having described this generic method, the next subsections show our variant method, which
differ only on the histogram dimension used. By respecting the chronology’s conception of our
methods, the method based on RG, RB and GB 2D histograms [16] (from now on HP2DHE
method), is described first in Section 4.2. Then, the method based on 1D histograms [17] (from
now on HP1DHE method) is presented in Section 4.3.

4.2. 2D Hue-preserving Histogram Equalization

In this section, our HP2DHE method is presented. It is important to note that it is initially
introduced in [16]. It uses 2D histograms (as defined in Section 2) and is based on the correlation
of channels two-at-a-time to perform HE. The cumulative density function, C′IRGB , is computed as
the product of the three 2D cumulative functions for any entry (Ri,Gi,Bi), i.e.,

We hypothesized that the three channels in an image are usually not simultaneously correlated.
This is the main reason for calculating this pseudo-cumulative density function as the product of
three 2D cumulative density functions is.

Observe that Equation 2 is solved iteratively in [17], as done in [19] (TV3DHE method) as well,
by using a non hue-preserving transformation. Here, we propose to use the hue-preserving shift
transformation and the solution of Equation 2 described in the previous subsection modifying the
method originally proposed in [17]. These two modifications on the HP2DHE method presented
here reduces its time complexity from O(max(mnL,L2)) to O(max(mn,L2)) and make it hue-
preserving

4.2. Hue-preserving 1D Histogram Equalization

In this section, a hue-preserving HE method based on the RGB color space for IE is presented. It
is also a variant of the generic method described in Section 4.1 and uses 1D histograms. The
independence assumption of color channels consists in the hypothesis of this method, and for
computing the cumulative density function this assumption is used.

We use 1D histograms to estimate a 3D probability distribution function, and then equalize the
conceived histogram through the estimated function. Hence, the function CIRGB is estimated for
any entry (Ri,Gi,Bi) as the product of every cumulative distribution CRi

IR , CGi
IG , and CBi

IB ,
following the rule, i.e.,
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Note that, in Equation 6, C′IRGB is defined with a true dimensional mathematical meaning, i.e.,
C′IRGB , a 3D cumulative function, is computed as the product of three 1D cumulative functions,
while in Equation 5 C′IRGB is defined with a false dimensional mathematical meaning, i.e., C′IRGB is
computed as the product of three 2D cumulative functions. Nevertheless, the images processed by
the HP2DHE method produce similar results to the HP1DHE method, as the experiments reported
in Section 5.

As we use 1D histograms, this method has the time complexity greater than the HP2DHE method,
i.e., O(max(mn,L)), and the space complexity is linear, i.e., O(L). Furthermore, the space and time
complexities of HP1DHE are the best to our knowledge, which are exactly the ones of the
C1DHE method.

5. EXPERIMENTS

The majority of image enhancement methods found in the literature, including our previous
works [16, 17], assess the contrast improvement of the output image by comparing it to the
original one. In [16, 17], we claimed that it is difficult to judge a processed enhanced image using
a subjective assessment. Hence, in this work, we use quantitative measures to assess the original
and processed images produced by the methods described in Section 3 and ours (presented in
Section 4), and then perform an objective comparison among them. The measures used for
comparing the methods are defined in Section 4.1. The numerical results obtained through these
quantitative measures in a dataset of 300 images taken from the University of Berkeley [21] are
analyzed and discussed in Section 4.2.

5.1. Measures for Assessing Color Images Quality and Contrast

In this section, two types of measures, which can be used to evaluate color images, are described.
The first one is a color image quality measure (CIQM) [18], defined by using the image color
naturalness and colorfulness indexes, and is used to verify if the HE methods preserve the quality
of the images. The second measure aims to show how much the HE methods improve the contrast
of the original image, and refers to the contrast in the CIELUV and in the RGB color spaces.

In order to define our first type of measure, we first need to calculate the color naturalness index
(CNI) and the colorfulness index (CCI). These two indexes are defined in the CIELUV color
space [18]. It is important to note that essential implementation details are not clear in [18], even
though the conversions required for computing the CIQMs are said to be standard. Due to that,
here, we present the required conversions in very high level of details.

The first index, the CNI, is computed as follows:

1. Converting the input image from the RGB color space to the required CIELUV color
space. This is done by first converting the image from the RGB color space to the XY Z
one (using D65 white point), i.e.,
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where

Having the image in the XY Z color space, we convert it to the CIELUV one, i.e.,

where

and un
′ and vn

′ are computed using the D65 white point - (Xn,Y n,Zn) =
(95.047,100.000,108.883), based on Equations 12 and 13.

2. Computing the hue (Huv
*) and saturation (Suv

*), i.e.,

3. Thresholding the L* and Suv
* components, where L* values between 20 and 80 and Suv

*

values over 0.1 are kept.
4. Defining three kinds of pixels according to hue value (Huv

*): 25 -70 is called "skin"
pixels, 95 -135 is called "grass" pixels, and 185 -260 is called "sky" pixels, following the
Yendrikhovskij’s psychophysics studies [18]. Note that saturation and hue values are
defined based on polar coordinates, and the hue varies from 0 to 360 degrees
(see Figure 1).

5. Computing the averaged saturation values for "skin" Sskin, "grass" Sgrass, and "sky" Ssky

pixels, i.e., respectively.
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6. Computing local CNI values for "skin" Nskin, "grass" Ngrass, and "sky" Nsky pixels:

The values 0.763, 0.810, 0.432, 0.524, 0.528 and 0.221 were determined experimentally [18].

7. Finally, computing the global CNI value:

Note that the conversion described above is in low level of detail such that the numerical results
presented in this section can be easily reproduced.

Our second index, the CCI, can be easily computed as

where μSuv
* and σSuv

* stand for the mean and standard deviation of the saturation in CIELUV Suv
*,

defined in Equation 15, respectively.

Having calculated these two indexes, we define the color image quality measure Q in terms of
CNI and CCI, i.e.,

where the weighting parameter w is set to 0.75 as suggested in [18], and CCImax is set to 2.8396
following the maximum CCI value found in our experiments. This first measure depicts the
quality of both the processed and the original images in terms of color.

Figure 1. The "skin", "grass" and "sky" segments derived from the naturalness judgments of the
colors [18], where the "skin", "grass" and "sky" segment centers are represented by a circle, a square, and a
triangle, respectively, and the ellipses stand for standard deviations of a Gaussian approximation to
subject’s responses. Data are shown in the CIELUV color space.
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Now we define the measure of contrast. In order to do that, we first define the regional standard
deviation of the luminance, i.e.,

where

and Lα stands either for the luminance L* in the CIELUV color space (defined as in Equation 9), or
the one in the RGB color space, which can be defined as the average of the three channels R, G
and B, i.e., LRGB = (Ri + Gi + Bi)∕3, and the parameter W is setup to 24 (i.e., blocks of 49 ×49
pixels as in [22]).

From here, we define the overall contrast of an image by the mean of the regional standard
deviations of the luminance [22]. This measure provides a gross measure of the regional contrast
variations, and it has been used by [23] as a measure of contrast in gray-level images.

Note that we define the contrast for the luminance in both the CIELUV and RGB color spaces. In
the CIELUV color space it is done because it is where the color quality image measure is defined,
and in the RGB color space because it is where our methods work. We do that to highlight that the
HE methods improve the contrast for the luminance in both color spaces, as the analysis of the
results, in the next section, will confirm.

5.2. Computational Results

This section presents and discusses the numerical results obtained by using the metrics described
in the previous section to evaluate the two proposed methods (HP1DHE and HP2DHE) and the
others described in Section 4 (C1DHE and TV3DHE) in a dataset composed of 300 images. We
compute, for both the original and the processed images, the contrast in both the CIELUV and
RGB color spaces, as described in Equation 22. We also compute the CIQMs, as described in
Equations 19, 20 and 21. Tables 1 and 2 show these data. Note that the values in both tables are
presented in the form μ ± σ, i.e., the mean and standard deviation of the measures computed on
the dataset of 300 images. All images used in this experiment can be seen in [24]

Table 1. Contrast for the images in the CIELUV and RGB colors spaces.

Method L* LRGB

Original 12.53 ± 15.86 31.13 ± 98.02
C1DHE 18.38 ± 14.28 47.11 ± 95.21
HP1DHE 18.14 ± 13.75 46.73 ± 92.33
HP2DHE 18.55 ± 15.29 47.02 ± 100.20
TV3DHE 13.30 ± 8.36 36.44 ± 59.64

The contrast in both the RGB and CIELUV color spaces for the processed and original images are
shown in Table 1. From this table, we observe that the images processed by our methods, i.e.,
HP1DHE and HP2DHE, have the value of the contrast increased, in average, about 50% in both
the CIELUV and RGB color space. In a similar fashion increase the values of the contrast of
images processed by the C1DHE method. On the other hand, the contrast of the processed images
by the TV3DHE method is increased the less. Observe that, in general, the improvement of the
value of contrast in the RGB color space is proportional to the one in the CIELUV space (the
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range of the RGB luminance is [0,255] (with L = 256) and the CIELUV luminance is [0,100]).
Confirming what we had hypothesized in the previous section, the HE methods increased the
contrast in both color spaces. From this first analysis, we state that significant increasing in the
value of image contrast is yielded by our methods and the C1DHE method.

Table 2. Color image quality measures.

Method Q CNI CCI
Original 0.6754 ± 0.0195 0.8064 ± 0.0332 0.8026 ± 0.1234
C1DHE 0.6780 ± 0.0141 0.7834 ± 0.0260 1.0275 ± 0.1329
HP1DHE 0.6557 ± 0.0205 0.7829 ± 0.0351 0.7779 ± 0.0673
HP2DHE 0.6673 ± 0.0230 0.7828 ± 0.0408 0.9105 ± 0.0987
TV3DHE 0.5831 ± 0.0160 0.7197 ± 0.0247 0.4923 ± 0.0498

Table 2 shows the Q, CNI and CCI measures for the original and processed images. Note that a
weighting function of the CNI and CCI measures produces the Q measure and the first numerical
column in this table reports these values. It is important to note that, in average, the images
processed by our methods have preserved the values of Q in the processed images close to the
value in the original ones. This means that the quality of the original images are similar to the
ones produced by our methods. Also note that the images enhanced by our methods obtained
similar Q values to the ones obtained by the C1DHE method. On the other hand, the Q values
computed from the original images are quite larger than the ones produced from the image
processed by the TV3DHE method. This shows that the images generated by the TV3DHE
method are with deteriorated color quality.

The values for the CNI measure is on the second numerical column of Table 2. We can observe
that, in average, the C1DHE and our methods keep the naturalness of the produced images close
to the one from the original image, while the CNI values from the original images are
significantly larger than the ones obtained from the images produced by the TV3DHE method.

The values for the CCI measure are reported on the third numerical column of Table 2. Note that
the CCI measure is based on statistics from the CIELUV color space: the mean and standard
deviation of the saturation of the image. From the results reported, we can see that, in average, the
values of the CCI measure from the original to the processed images is more frequently increased
by the C1DHE method. Since it equalizes the three R, G and B 1D histograms freely and
separately, it is the one that achieves such result. In contrast, not being hue-preserving is the well-
known drawback of C1DHE method. Such characteristic will be discussed and illustrated further
in this section. In average, the CNI and CCI values and, consequently the Q value, produced from
the images generated by the TV3DHE method are not close to the values of the original images.
The fact that the CCI values obtained from the images generated by the TV3DHE method are
quite different from the ones in the original images supports the hypothesis subjectively claimed
in [16] and [17] that the images produced by the TV3DHE method are over enhanced or over
saturated. In other words, the saturation values of the images produced by other methods are quite
larger than the ones produced by the TV3DHE method.

From the analysis regarding the contrast and the CIQMs, we stated that: 1) Our methods produce
images with contrast values that are in average 50% greater than the contrast of the original
images, while the color quality, measured by the colorfulness and naturalness indexes, of the
original image are close to the ones of the images generated by our methods; 2) The smaller
improvement in the contrast of the original image is produced by the images generated by the
TV3DHE method. Moreover, over enhanced images are produced by this method. Also these
images have deteriorated color quality; 3) Considering the results for contrast enhancement and
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color quality preservation, the values achieved by our methods are as good as the ones for the
C1DHE method.

Note that in order to make the TV3DHE method faster and hue-preserving, one can perform
changes on it, by applying our shift hue-preserving transform. However, even after these
modifications, the TV3DHE method would continue to produce images that are over enhanced
and the contrast improvement would not be significant.

Although the C1DHE method is six times faster than our methods and it presented good results in
our numerical analysis, the C1DHE is not suitable for real-world applications: this method does
not preserve the hue of the original image in the images produced. As a result, the C1DHE
method may produce images with have unnatural colors, even though the CNI, CCI and,
consequently, Q, indicate that the original images have color quality close to the ones of the
produced images. These conflicting results show that the CQIMs used in this work have a
drawback. Although the color quality of an image by means of the naturalness and colorfulness
indexes can be quantitatively represented by them, in such assessment these measures do not take
into account at a the same time the processed and original images.

We will careful analyze one example of an image extracted from the 300 presented in the data
base, named "landscape", in order to exemplify the conclusions reached. In Table 3, we present
the contrast and the CNI, CCI and Q values for the original and processed landscape images
shown in Figure 2. In Figure 2(b), it is quite noticeable the fact that the C1DHE method is not
hue-preserving. We can see that, regarding the original image in Figure 2(a), the colors present in
the image in Figure 2(b) look unnatural, even though the CNI, CCI and Q values of the original
image are close to the ones from the processed image. In Figure 2(c), we also can see that the
TV3DHE method produce an image which is over enhanced, i.e., the colors are over saturated, as
previously explained in this section. Furthermore, from Table 3, we can also observe that the
TV3DHE method generated an image in which the contrast increasing is the smallest among the
compared methods.

Table 3. Color image quality and contrast measures for the images in Figure 2.

Method
Color Quality Contrast

Q CNI CCI CIELUV RGB
Original 0.7038 0.8540 0.7196 07.00 17.03
C1DHE 0.7681 0.9292 0.8089 12.09 30.32
HP1DHE 0.7210 0.8725 0.7575 11.50 28.98
HP2DHE 0.6504 0.7688 0.8381 11.00 27.59
TV3DHE 0.7140 0.9004 0.4392 08.76 23.68
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Finally, the claims about our methods are verified in the images in Figures 2(d) and 2(e) and confirmed in
Table 3. As observed, the images have their contrast value increased by, in average, 50%, while their color
quality measures are kept close to the ones of the original image. Moreover, recall that our methods are
hue-preserving.

6. CONCLUSIONS

Two fast hue-preserving HE methods based on 1D and 2D histograms of the RGB color space for
image contrast enhancement are proposed in this work. The HP1DHE and HP2DHE methods
have O(max(mn,L)) and O(max(mn,L2)) time complexities, respectively. As the term mn on the
time complexity expression is much more important than the second term (L∕L2), on a run-time
comparison the methods have similar performance. Moreover, the HP1DHE and HP2DHE
methods are linear and quadratic for space complexity, i.e., O(L) and O(L2), respectively. Hence,
such time and space complexities comply with real-time application requirements.

Although our method is six times slower the C1DHE method, it is not hue preserving. As shown
in our experiments (Section 5), the processed images by the C1DHE method might look
unrealistic. Remark that our methods are about ten times faster than the TV3DHE one. In
practice, our methods enhance 512 ×512 image pixels in 100 milliseconds on a Pentium 4 -
2GHz.

We evaluated the resulting images objectively by using measures of contrast, naturalness and
colorfulness [18] on a dataset composed of 300 images, such that a quantitative comparison could
be performed. The experiments showed that our method produces images whose value of the
contrast is in average 50% greater than the one of the original image. They also showed that the
quality of image in terms of both naturalness and colorfulness produced by our methods are close
to the quality of the original image. The C1DHE method also achieves similar results. However,
this classical method does not preserve the hue and produce images that are not realistic with
respect to the original image.

For future works, we plan to compare our methods based on the RGB color space with other ones
designed on a real-time application framework and based on other color spaces. The comparison
should be based on the contrast improvement and the quality of the processed images, but run-
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time should be taken into account as well. The drawbacks pointed on the color quality measures
should also be considering. We plan to modify the current measures by taking into account the
original and processed images simultaneously.
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