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ABSTRACT

Two metaheuristic algorithms namely Artificial Immune Systems (AIS) and Genetic Algorithms are
classified as computational systems inspired by theoretical immunology and genetics mechanisms.  In this
work we examine the comparative performances of two algorithms.  A special selection algorithm, Clonal
Selection Algorithm (CLONALG), which is a subset of Artificial Immune Systems, and Genetic Algorithms
are tested with certain benchmark functions. It is shown that depending on type of a function Clonal
Selection Algorithm and Genetic Algorithm have better performance over each other.
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1. INTRODUCTION

Many heuristic optimization algorithms have been developed and solved in the solution of certain
benchmark functions as well as being applied to common optimization problems over the years.
Most of these algorithms are inspired by biological studies, and some of them developed through
the study of immunology and genetics.

Immune Algorithm, which is developed from immunology, is studied with various settings and
got some modifications over the years as well as being applied to various common day problems
[1]-[5].  Clonal Selection Algorithm is a special class of Artificial Immune System which uses the
clonal selection part of the Artificial Immune Systems as a main mechanism.  This algorithm was
initially proposed to solve nonlinear functions by De Castro and Van Zuben in 2000 [7]-[8].
The comparative studies have always been of interest to find which algorithm is more superior to
the other. Comparative study of Artificial Bee Colony algorithm was done by Karaboğa and Akay
[9], comparative study of memetic algorithm is done by Merz and Freisleben[10]. In this work the
performance of Clonal Selection Algorithm and Genetic Algorithm.  Similar work was done
before [11] however our aim is to extend this work to different types of functions with different
parameters and find a clear performance relationship between the type of a function and the
algorithm.
.
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2. ALGORITHMS

2.1. Clonal Selection Algorithm

Immune Algorithm is derived through the study of immune response. In short, it models how
antibodies of the immune system learn adaptively the features of the intruding antigen and act
upon.  Clonal Selection Algorithm is a special class of Artificial Immune Systems.  In this work,
CLONALG algorithm which was originally proposed by De Castro and Van Zuben [7] is used.
The algorithm starts by defining a purpose function f(x) which needs to be optimized. Some
possible candidate solutions are created, antibodies will be used in the purpose function to
calculate their affinity and this will determine the ones which will be cloned for the next step. The
cloned values are changed, mutated with a predefined ratio and the affinities are recalculated and
sorted.  After certain evaluations of affinity, affinity with the smallest value is the solution closest
to our problem.

Clonal Selection Algorithm can be listed as follows:

Step 1: Generate a set of antibodies (generally created in a random manner) which are the current
candidate solutions of a problem.
Step 2: Calculate the affinity values of each candidate solutions.
Step 3: Sort the antibodies starting from the lowest affinity. Lowest affinity means that a better
matching between antibody and antigen.
Step 4: Clone the better matching antibodies more with some predefined ratio.
Step 5: Mutate the antibodies with some predefined ratio. This ratio is obtained in a way that
better matching clones mutated less and weakly matching clones mutated much more in order to
reach the optimal solution.
Step 6: Calculate the new affinity values of each antibody.
Step 7: Repeat Steps 3 through 6 while the minimum error criterion is not met.

2.2. Genetic Algorithm

Biologists have worked with genetic systems in order to find the information that passed from
parents to children through the genes. Mendel first worked with genetics and his works published
first in 1865 and then in English in 1901 [12]. Holland can be considered as the father of Genetic
Algorithms since his paper in 1975 [13].

Genetic Algorithm is developed [14], and many researchers from various fields adapted Genetic
Algorithms into their optimization problems in engineering, biology, economics, physics and
many other fields. Genetic Algorithms have also been used in solving multi-objective
optimization problems since Shaffer proposed in 1985 [15]. Genetic Algorithms has been used in
applications for a long time. An example work was done by Nongmeikapam, and Bandyopadhyay
[16].

The steps of Genetic Algorithm can be listed as follows:

Step 1: Generate a set of chromosomes (created in a random manner), and these are the current
candidate solutions for the given problem.
Step 2: Calculate the fitness values of each chromosome.
Step 3: Sort the chromosomes starting from the lowest fitness (i.e. better solution).
Step 4: Clone the better chromosomes in order to spread good attributes through the population.
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Step 5: Perform a crossover operation for the parent chromosomes to obtain new offspring
population.
Step 6: Mutate the chromosomes with a small predefined ratio.
Step 7: Calculate the new fitness values of each chromosome.
Step 8: Repeat Steps 3 through 7 while the minimum error criterion is not met.

3. PROBLEM DEFINITON AND FUNCTIONS

In this work, our aim was to apply Clonal Selection Algorithm and Genetic Algorithm to certain
benchmark functions and examine their performances with each other.  The performances are
evaluated by comparing convergence to the optimum value and number of iterations required to
obtain a solution to our problem.

The benchmark functions that we worked on are as follows: Sphere Function, Rastrigin’s
Function, Ackley’s Function, Modified Sinusoidal Function, Sum of Different Power Function,
and Non-generalized Schwefel’s Function.  The graphs for 2 dimensional version of each of these
functions are shown in Fig.1 through Fig.6.

3.1. Sphere Function

Sphere function is a quadratic function of n dimensions. This function is continuous, convex and
unimodal. For these reasons almost all the optimization algorithms can find the global optimum
solution. The general function for n dimensions can be given in equation (1):
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Figure 1. Sphere Function in two dimensions
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This function is evaluated by generating numbers in the range –100 to 100 and for 10 dimensions.
The global minimum value for this function is 0 and it occurs when all the variables are 0.

3.2 Rastrigin’s Function

The Rastrigin’s function is based on the sphere model with the addition of cosine modulation in
order to generate many local minimums.  The Rastrigin’s function is highly multimodal. The
function for n dimensions can be given in equation (2):
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Figure 2: Rastrigin’s Function in two dimensions

This function is evaluated by generating numbers in the range –5.12 to 5.12 and with 10
dimensions.  The global minimum value is 0 and it occurs when all the variables are 0.

3.3 Ackley’s Function

The Ackley problem is a benchmark function which is multimodal, and for n dimensions it is
given by equation (3):
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Figure 3. Ackley’s function in two dimensions

This function is evaluated by generating numbers in the range –32 to 32 and with 10 dimensions.
The global minimum value is 0 and it occurs when all the variables are 0.

3.4. Modified Sinusoidal function

Non-modified sinusoidal function has many global minimum values which correspond to many
different points.  To refrain from these points, sinusoidal function is modified and reduced to one
global minimum point. This function is evaluated by generating numbers in the range 0 to 6 and
with 10 dimensions.  The function in n dimensions is given by equation (4):
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Figure 4. Modified Sinusoidal function in two dimensions
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The global minimum value for ten variables is 0 and it occurs when all the variables are 4.714.

3.5. Sum of Different Powers function

This function is a smooth shaped unimodal benchmark function. The equation for n dimensions is
given by equation (5):
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Figure 5. Modified Sinusoidal function in two dimensions

This function is evaluated by generating numbers in the range –2.048 to 2.048 with 10
dimensions.  The global minimum value is 0 and it occurs when all the variables are 0.

3.6. Non-Generalized Schwefel’s function
Non-generalized Schwefel’s function has one global peak and many local peak points, for n
dimensions it is given by the following equation (6):
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Figure 6. Non-Generalized Schwefel’s function in two dimensions

The function is evaluated by generating numbers in the range –10.0 and 10.0 with 10 dimensions.
The global minimum value is 0 and it occurs when all the variables are 0.

4. RESULTS

Functions explained above are the benchmark test functions used for evaluating the Clonal
Selection Algorithm and Genetic Algorithm.  While the tests are performed, search space is kept
same for each of the problems.  The search space consists of 40 rows of being either 0 or 1 (i.e. as
bits) and 200 columns.  Each row holds 10 variables with 20 bits each. During the testing the
benchmark functions with Clonal Selection and Genetic Algorithm parameters are selected as
cloning rate and mutation rate for both algorithms and they are changed for each run.
Performances of algorithms are shown in between Fig.7 and Fig.12 for each function.
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Mutation rates are different for two algorithms because mutation is the main driving parameter in
Clonal Selection Algorithm however crossover and mutation together are the main components in
Genetic Algorithm.  Cloning rate is very important for both algorithms. Genetic Algorithm
normally uses Roulette Wheel Selection in natural selection part however in this work instead of
Roulette Wheel Selection various cloning rates were used to give higher probability to the better
fitness values in Genetic Algorithm.
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Figure 8. Responses for Rastrigin’s Function
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Figure 9. Responses for Ackley’s Function

Many different rates of parameters are used in both of the algorithms but some rates worked
better than the others.  Rates that gave better results are selected for comparison.  Three different
cloning and mutation rates are used in Clonal Selection Algorithm and Genetic Algorithm.

In the Clonal Selection Algorithm, four best affinity values are selected and cloned with a
predefined ratio. Then antibodies are mutated with the given rates.  The cloning rate is determined
in a way that better matching antibodies are cloned much more and weakly matching antibodies
are cloned less.  With a similar logic better matching antibodies are mutated less and weakly
matching antibodies are mutated more.  Similar approach is used in Genetic Algorithm.
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Figure 10: Responses for Modified Sinusoidal Function.
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Figure 11: Responses for Sum of Different Power Function
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Figure 12: Responses for Non-Generalized Schwefel’s Function
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Three different sets for cloning were done in Table 1.  The table shows the clone rates for Clonal
Selection and Genetic Algorithm.

TABLE 1. DEFINITION OF SETS FOR THE CLONE RATES

Number of cloned
antibody/chromosome in

each set
Set 1 Set 2 Set 3

First best
Antibody/Chromosome

15 17 18

Second best Antibody/
Chromosome

7 8 9

Third best
Antibody/Chromosome

5 5 6

Fourth best Antibody/
Chromosome

3 4 4

The mutation rates that are applied for each set are composed of three groups; Group 1, consisting

TABLE II. COMPARISON OF ALGORITHMS WITH THE BEST PARAMETERS

of 0.01, 0.02, 0.03, 0.04 and 0.05 as mutation rates, then Group 2, consisting of 0.015, 0.04,
0.065, 0.09, 0.115  as mutation rates and Group 3 consisting of 0.025, 0.05, 0.075, 0.1, 0.125 as
mutation rates.  These mutation rates are applied to all the antibodies except for the first best four.
In Genetic Algorithm, lower mutations rates are applied which are 0.005, 0.001 and 0.01 for each
of the sets.

For each of the benchmark functions first the best clone rate/mutation rate combination are found
for Clonal Selection and Genetic Algorithm and then these two rates are compared with proximity
to the desired value (i.e. answer) as well as number of iterations to reach to the optimal solution.
The comparison of algorithms with the best parameters is shown in Table 2.  In all the functions
both of the algorithms are applied and solutions are all found successfully. The iterations are all
averaged over ten independent runs for each function and algorithm.  If we consider function-by-
function proximity to the actual answer is about the same so a correct determination of
performance by analyzing the iterations is evaluated.
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In sphere model Clonal Selection Algorithm reaches to a solution faster than the Genetic
Algorithm.  In Rastrigin’s function the performance of Genetic Algorithm seems much better than
the Clonal Selection Algorithm.

In Ackley’s, Sum of Different Powers, and Non-generalized Schwefel’s functions the Clonal
Selection Algorithm works faster however for Modified Sinusoidal function Genetic Algorithm
seems to work relatively faster.

5. CONCLUSIONS

In this work, Clonal Selection Algorithm and Genetic Algorithm were tested via different
benchmark functions. Out of six benchmark functions; two benchmark functions were selected as
a unimodal functions called smooth shaped functions, two of them were multimodal functions
which has many local optimums, and two of them were highly multimodal functions which has
much more local optimums than multimodal ones. Conclusions can be derived as looking at
different types of functions.

Sphere and Sum of Different Powers are unimodal and convex functions.  Ackley’s and Non-
generalized Schwefel’s are multimodal functions, which has many local minimums.  However,
Rastrigin’s and Modified Sinusoidal functions are highly multimodal functions which have much
more local minimums than the multimodal functions.  It is challenging to find the global optimum
among the local optimums.

Clonal Selection Algorithm seems a better choice for a smooth shape, unimodal and multimodal
functions like Sphere, Ackley’s, Sum of Different Powers and Non-generalized Schwefel’s
functions.  However, Genetic Algorithm has worked with better performance on highly
multimodal test functions like Rastrigin’s function and Modified Sinusoidal functions.
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