
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

DOI : 10.5121/ijcsit.2012.4207                                                                                                                   83 

 

 

 

REVIEW ON COMMON CRITERIA AS A SECURE 

SOFTWARE DEVELOPMENT MODEL  

Mehmet Kara
1 

1
TUBITAK BILGEM UEKAE, Kocaeli, Turkey  

mkara@uekae.tubitak.gov.tr  

 

ABSTRACT 

Standards, models, frameworks and guidelines have been developed for secure software development 

such as such as Common Criteria, SSE-CMM, Microsoft SDL, OpenSAMM. Current standards and 

models provide guidance for particular areas such as threat modelling, risk management, secure coding, 

security testing, verification, patch management, configuration management etc. But there is not a 

generally accepted model for a secure software development lifecycle. Common Criteria provides 

objective evaluation methodology to validate that a product satisfies a specified set of security 

requirements. In this paper Common Criteria secure software development approach is examined and 

compared with other well known standards and models. 

KEYWORDS 

Common Criteria, Secure Software Development, Vulnerability, Confidentiality, Integrity, Availability.   

1. INTRODUCTION 

Software applications are increasingly ubiquitous, heterogeneous, mission-critical and 

vulnerable to security incidents, so that it is absolutely vital that information systems are 

properly ensured from the very beginning, due to the potential losses faced by organizations that 

put their trust in all these information systems and because it is cost-effective and also brings 

about more robust designs. Therefore, security is among the non-functional requirements which 

are more seriously taken into account nowadays [1]. 

Software development process has been continuing for a long time. Characteristic of the first 

software projects was missed schedules, blown budget, and flawed products. But when we 

looked to the past there wasn’t a magic solution, a single development, in either technology or 

management technique, promises magnitude improvement in productivity, in reliability, in 

simplicity [15]. In addition to new programming languages, new programming techniques, a 

few standards and models have been developed to solve these problems such as CMMI, FAA-

iCMM, OpenSAMM.  

In addition to poor secure software development methodologies, exponential increase in the 

internet enabled applications, unconscious internet users and hackers caused new problems. One 

of the most important of these problems is software vulnerabilities used by hackers and 

unconscious users. Vulnerabilities are weaknesses in software that allow hackers to compromise 

the integrity, availability or confidentiality of processed data or that software. Some of the most 

severe vulnerabilities allow hackers to run malicious code, potentially compromising the 

computer, its software, and the data that resides on the computer.  

Various sources including software vendors, security software vendors, independent security 

researchers, and those who create malicious software can cause disclosure of vulnerability. 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

84 

 

 

 

Number of software vulnerabilities according to years is shown at figure 1. Main reason for the 

fast increase in the number of vulnerabilities is the widespread use of the Internet and new 

computer applications [3]. The other reason is the emphasis given to functionality than security 

during the software development phases.  Fixing vulnerabilities in released software requires 

much time and work force so vulnerability detection in the early stages of development 

decreases the cost of fixing them. Consequently, it is important to employ such processes 

throughout the lifecycle. 

 

 

Figure 1. Number of software vulnerabilities 

In the traditional software development lifecycle, security testing is often added later, and 

security verification and testing processes are postponed until after the software has been 

developed. Software vulnerabilities are an emergent property which appear during the design 

and implementation cycles. So, "before, during, and after" approach should be considered at 

software development. 

Secure software development models, frameworks and guidelines are used for software 

development processes such as System Security Engineering Capability Maturity Model (SSE-

CMM), Microsoft Security Development Lifecycle (SDL), Open Software Assurance Maturity 

Model (OpenSAMM), Common Criteria (CC)[13, 10]. But there is not a generally accepted 

model for secure software development. Current models provide guidance for particular areas 

such as threat modelling, risk management, secure coding, security testing, verification, patch 

management, configuration management etc. It is crucial for these to be combined into an 

integrated and more comprehensive construction method [11]. Several advances have recently 

been made in the definition of processes for secure software development. However, there has 

been no objective and comprehensive comparison of these methodologies with general secure 

software requirements [7,12,14]. Therefore, it is difficult for consumers and developers to 

understand their strengths and weaknesses and, hence, it is hard to make an ‘informed’ decision 

about which one is more appropriate for the job. 

When we look to CC development process TCSEC, ITSEC and CTCPEC are well known 

security testing and evaluation models. Trusted Computer System Evaluation Criteria (TCSEC), 

also called the Orange Book was developed in the United States in the early 1980’s. TCSEC 

sets basic requirements for evaluating the effectiveness of computer security controls built into a 

computer system. Main purpose of the TCSEC evaluate, classify and select computer systems 

which is being considered for the processing, storage and retrieval of sensitive or classified 

information. In the succeeding decade, various countries especially in Europe began initiatives 

to develop evaluation criteria that built upon the concepts of the TCSEC.    



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

85 

 

 

 

Information Technology Security Evaluation Criteria (ITSEC) is published under auspices of 

the European commission in 1991. The ITSEC shall be used as a guideline for evaluation and 

certification of the security of IT products. At the same years Canada used Trusted Computer 

Product Evaluation Criteria (CTCPEC) methodology for IT product security evaluation.  

Different methodology usage in United States, Europe and other countries caused product 

certification and evaluation problems. One IT product produced in Europe sold outside the 

Europe its security certification was not accepted by purchaser country. The same scenario was 

valid for United States and other countries.  

The CC 1.0 were developed through a combined effort of six countries: the United States, 

Canada, France, Germany, the Netherlands, and the United Kingdom. This effort built on earlier 

standards, including Europe's ITSEC, the United TCSEC, and the Canadian CTCPEC. The CC 

is an international standard (ISO/IEC15408) for IT security. A CC evaluation allows an 

objective evaluation to validate that a particular product satisfies a defined security 

requirements. The focus of the CC is evaluation of a product or system, and less on 

development of requirements. Nevertheless, its evaluation role makes it of interest to those who 

develop security requirements. 

The goal of this paper is to evaluate and compare Microsoft SDL, SSE-CMMI, OpenSAMM 

and CC secure software development approaches. CC is hardware/software security evaluation 

standard Which is used for security testing, security requirements definition another secure 

system issues [1]. In this paper Common Criteria is used as secure software development 

guidance and compared with Microsoft SDL, SSE-CMMI, OpenSAMM.   

The structure of this paper is as follows: Section 2 describes the software development models, 

Section 3 contains CC secure development approach. Section 4 explains a secure software 

development lifecycle objectives and compare with standards and models according to these 

objectives. Section 5 presents results. 

2. SOFTWARE DEVELOPMENT MODELS  

2.1 Capability Maturity Model Integration 

Capability Maturity Models to provide a reference model of mature practices for a specified 

engineering discipline. These models created by Carnegie Mellon University.  Organizations 

can compare its practices according to the model to identify potential areas for improvement. 

The CMMs provide goal-level definitions for and key attributes of specific processes such as 

software engineering, systems engineering, security engineering, but they do not generally help 

operational guidance for performing the work. In other words, they don’t explain processes, 

they explain process characteristics; they define the what should be done, but not the how 

should be done. “CMM-based evaluations don’t mention directly product evaluation or system 

certification. They are focus process improvement efforts on problem identified areas” [2]. 

Capability Maturity Model Integration (CMMI) purposes to increase the maturity of 

organizations processes to improve long-term business performance. CMMI provides the latest 

best practices capabilities for product life cycle. This model provides improvement in systems 

engineering, software engineering, integrated product and process development, supplier 

sourcing, and acquisition. 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

86 

 

 

 

2.2 Federal Aviation Administration integrated Capability Maturity Model (FAA-

iCMM) 

The FAA-iCMM is widely used in the Federal Aviation Administration. The FAA-iCMM gives 

a best practices model for enterprise-wide improvement. This model includes outsourcing and 

supplier management. Also integrated enterprise management, information management, 

deployment/transition/disposal, and operation/support areas are covered at the latest version. 

The ISO 9001:2008, EIA/IS 731, Malcolm Baldrige National Quality Award and President's 

Quality Award criteria, CMMI-SE/SW/IPPD and CMMI-A, ISO/IEC TR 15504, ISO/IEC 

12207, and ISO/IEC CD 15288 standards and models can be integrated with FAA-iCMM [9]. 

2.3 SSE-CMM -- Systems Security Engineering Capability Maturity Model 

The SSE-CMM purposes to improve and evaluate the security engineering capability of an 

organization. This model provides a comprehensive model for evaluating security engineering 

practices against the generally accepted security engineering principles. This model can be used 

to measure and improve performance in the application of security engineering. The SSE-CMM 

is published as an ISO standard which is  ISO/IEC 21827 and version 3 is now available [4]. 

2.4 Microsoft Security Development lifecycle 

Microsoft Security Development Lifecycle has adopted for software development that needs to 

withstand security attacks [5]. Microsoft's software development process includes a series of 

security-focused activities and deliverables to each phase of software development. Microsoft 

Security Development Lifecycle (SDL) was formed with the Trustworthy Computing (TwC) 

directive of January 2002. At that time, many software development groups at Microsoft started 

to find ways to improve the security of existing code. 

 

 
 

Figure 2. Simplified security development model 

 

Microsoft SDL was designed as an integral part of the software development process at 

Microsoft and published as a mandatory policy in 2004. The development, implementation, and 

constant improvement of the SDL adopted at Microsoft. As a result of this policy software is 

designed, developed, and tested for security. The Microsoft SDL has been getting matured into 

a well-defined methodology.  

Basic steps of SDL model is shown at Figure 2. Microsoft has added a lot of new property and 

capability since 2002. Important of this capabilities such as bug bar, fuzzing, cryptographic 

standards, runtime verification testing, banned API (Application Programme Interface),  Privacy 

standard for development, online service requirements, cross site scripting defences, SQL 

injection defences,  XML parsing defences, Address space layout randomization, cross site 

request forgery defence,  fuzzying (network), operational security reviews, third party licensing 

security requirements,  external tool release, sample code compliance with SDL, external tool 

releases [5].  



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

87 

 

 

 

2.5 OpenSAMM Model 

The Software Assurance Maturity Model (SAMM) is an open model to enable organizations 

formulate and implement a strategy for software security. This model try to solve the specific 

software security risks facing the organization. The resources provided by SAMM will aid in: 

• Evaluating an organization’s existing software security practices 

• Building a balanced software security assurance program in well-defined iterations 

• Demonstrating concrete improvements to a security assurance program 

• Defining and measuring security-related activities throughout an organization 

SAMM was can be utilized by any size of organizations using any style of software 

development. Additionally, this model can be applied organization-wide, for all of business, or 

an individual project. OpenSAMM, offers a roadmap and well-defined maturity model for 

secure software development and deployment. At the same time it offers some good tools for 

self-assessment and planning. 

Each Business Function defines three Security Practices. Each security practice build assurance 

for the related Business Function. So overall, there are twelve Security Practices that are the 

independent silos for improvement that map underneath the Business Functions of software 

development 

Governance, Construction, Verification and Deployment critical business functions take part at 

the top level of the SAMM hierarchical model.  

Governance includes concerns that cross-cut groups involved in development as well as 

business processes that are established at the organization level. Strategy and metrics, policy 

and compliance, education and guidance are regulated this business function at organization or 

project. 

Construction concerns the processes and activities related to how an organization defines goals 

and creates software within development projects. In general, this will include security 

requirements, threat assessment and secure architecture.  

Verification is concern the processes and activities related to how an organization checks and 

tests error produced at software development phase. This is focused on design review, security 

testing and code review.  

Deployment is interested in the processes and activities related to how an organization manages 

release of software that has been created. This can involve products delivery to end users, 

deploying products to internal or external hosts, and normal operations of software in the 

runtime environment. 

OpenSAMM model is shown at figure 3. OpenSAMM is created model like CoBIT (Control 

Objective for Information and Related Technology) to measure quantitatively every security 

objective. In this model security operation maturity level take a value between ‘0’ and ‘3’.  ‘0’ 

means operation is not applied, ‘1’ means there is not a systematic approach but there is basic 

level application   at organization. ‘2’ means operation is applied enough maturity level at 

organization. ‘3’ means operation is applied perfectly at organization.  According to this model 

project or time based audits could be improve organization security level [6]. 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

88 

 

 

 

 
 

Figure 3. OpenSAMM model 

 

3. COMMON CRITERIA SECURE SOFTWARE DEVELOPMENT APPROACH 

The CC (ISO 15408) provides guidance for the development, evaluation and/or procurement of 

IT products with security functionality. The CC permits comparability between the results of 

independent security evaluations. This compatibility is provided a common set of requirements 

for the security functionality of IT products and for assurance measures applied to these IT 

products. These IT products may be implemented in hardware, firmware or software [8]. 

In the evaluation process, firstly Target of Evaluation (TOE) is checked for CC conformance 

than carried out vulnerabilities and functional tests. In addition to functional and vulnerability 

tests, CC provides methodology and discipline capability to design process, minimum 

vulnerability, maximum security and reliability for targeted assurance level. CC include risk 

analysis, configuration management, methodological design, life cycle, development tools and 

techniques, development security, flow remediation, functional tests in development and 

disciplines for Evaluation Assurance Level 4(EAL4)  and upper level evaluations[8]. 

3.1 Risk Analysis  

Risk analysis is mandated at product design level CC standard ASE (Security Target) assurance 

class. If product is evaluated according to CC designer must be define TOE, TOE operational 

environment, non TOE assets (software, hardware, firmware), user profile, legal and 

organizational security issues for TOE. All assets will be protected by TOE and effected by 

TOE availability are listed. All probable threats, threat agents and threat scenarios are detailed 

suitable with organizational policy. Last step at risk analysis process every threat, assumption 

and organizational security process are related and checked with IT and non IT security 

requirements by designer.   

This risk analysis process mandated at design level to minimize security threat risks. Every 

threat is concerned providing targeted assurance to the TOE or TOE operating environment. 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

89 

 

 

 

3.2 Configuration Management  

Purpose of Configuration Management (ALC_CMC) assurance family is minimizing human 

mistakes at design and implementation level. Complex TOEs are increase project personnel 

number and require discrimination of rolls and responsibilities. Configuration Management 

tools control rolls, responsibilities, documents access according to configuration management 

plan such as CVS, SVN etc. These controls provide more security and reliable TOE preventing 

wrong code execute, outdated design document, false delete, wrong version create.   

3.2 Methodological Design  

Methodological design is performed ADV (Development) assurance class in CC. IT product is 

described step by step sub systems, modules, security functions respectively. All detail of 

internal and external interfaces between sub systems, modules and security functions are 

described. In this description security functions, interface behaviours and error messages are 

defined. Upper level CC assurance packets design (EAL5, EAL6, EAL7) is require semiformal 

(UML) or formal language (Z model ). This approach is minimized the logic error in informal 

design level and provide maximum security and reliability at design level. 

3.3 Life Cycle Model  

Purpose of life cycle model is to define requirements for providing security, reliability and 

privacy for TOE being planned for development. These are a set of critical properties for 

computer applications that are vital to running an enterprise, such as accounting, authorization,, 

payroll, supply chain management, and resource planning applications. 

Poorly controlled development and maintenance of the TOE does not meet all of its Security 

Functional requirements. Therefore, a model for the development and maintenance of a TOE 

must be established as early as possible in the TOE's life-cycle.  

Necessary control over the development and maintenance of the TOE can be provided a life 

cycle model. If the model enables sufficient minimization of the risk the TOE will meet its 

security requirements. CC require a lifecycle model in design level such as waterfall model, 

spiral model etc. 

3.5 Tools and Techniques 

Tools and techniques is reference the tool selection that is used to develop, analyse, implement 

and manage the TOE. It helps to prevent misdefined, inconsistent or incorrect development 

tools from being used to develop the TOE. This includes, but is not limited to, programming 

languages, configuration management tools, documentation, standards, and other parts of the 

TOE such as supporting runtime libraries, interfaces and third party software or software.  

Tools and techniques distinguishes between the implementation standards applied by the 

developer and the implementation standards for “all parts of the TOE” which include third party 

software, hardware or firmware.  

CC evaluate tools and techniques with ALC_TAT assurance class in development process.  

3.6 Development Security   

Development security is interested in physical, procedural, personnel, environmental and other 

security and safety measures that may be used in the development environment to protect the 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

90 

 

 

 

TOE and its parts. It includes the physical security of the development location and any 

procedures used to select development staff  

CC evaluate IT development environment with Development Security (ALC_DVS) assurance 

class. These controls lead to produce more secure and reliable IT products.  

3.7 Flaw Remediation 

Flaw remediation purposes that discovered security flaws be monitored, recorded and corrected 

by the developer. Future compliance with flaw remediation procedures cannot be determined at 

the time of the TOE evaluation, but it is possible to evaluate the policies and procedures that a 

developer has these capabilities.  

This family guarantee that the TOE will be maintained and supported in the future. This is 

provided TOE developer using tracking and correcting flaws mechanism. Additionally, 

requirements must be included distribution of flaw corrections. 

CC evaluate IT flaw remediation process with Flow Remediation (ALC_FLR) assurance class. 

This leads to produce more secure and reliable IT products. 

3.8 Tests 

IT product is tested methodologically using Test (ATE) assurance family in CC. Every security 

function is tested internal and external interfaces and behaviours described at design documents.  

CC standard provide methodological test method. 

The emphasis in this class is on confirmation that the TOE security function operates according 

to its design descriptions. This class does not address penetration testing, which is based upon 

an analysis of the TOE security function that specifically seeks to identify vulnerabilities in the 

design and implementation of the TOE security function. Penetration testing is addressed 

separately in the Vulnerability Assessment Class (AVA). 

4. SOFTWARE DEVELOPMENT MODELS SECURITY APPROACH 

In this section, security properties of CC, SSE-CMMI, Microsoft SDL, and OpenSAMM 

standards and models are compared according to security properties of the models as given in 

Table 1. While creating this table all possible security properties were considered in secure 

software development lifecycle and were compared with secure software development models.   

CC is product evaluation focused standard and it expects that the producer completes required 

criteria according to the security target. In this paper CC is dealt with as secure software 

development guidance. SSE-CMMI recommends a model that security should be considered at 

system development level. However SEE-CMMI is not directly secure software development 

focused model. CC, Microsoft SDL and OpenSAMM models are directly focused on secure 

software development.   

It is very important for all members of software development teams to receive appropriate 

training to stay informed about security basics and recent trends in security and privacy. 

Individuals who develop software programs should attend regularly security training. SSE-

CMM, Microsoft SDL and OpenSAMM check personnel education and awareness. Since CC is 

a product focused standard it is not directly interested in this subject. On the other hand in the 

product evaluation process, evaluators can visit development environments and check personnel 

education and awareness.  



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

91 

 

 

 

Physical security and logical security (network security and application security controls, access 

controls) are checked by CC, SEE-CMMI. But Microsoft SDL and OpenSAMM do not directly 

examine physical and logical security.  

Table 1. Comparison of secure software development standards and models 

 

 C
o
m

m
o
n

 

C
ri

te
ri

a
 

S
S

E
-C

M
M

 

M
ic

ro
so

ft
- 

S
D

L
 

O
p

en
S

A
M

M
 

Security Training and Awareness  X � � � 

Physical and Logical Security  � � X X 

Secure Configuration Management  � � X X 

Law, policy and procedure compliance  X � X � 

Threat Modeling  � � � � 

Risk Analysis � � � � 

Security Requirements Definition  � � � � 

Security Architecture  � � � � 

Secure Design  � � � � 

Source Code Analysis X X � � 

Vulnerability Analysis X � � � 

Security Verification  � � � � 

Vulnerability Management  � � � � 

Secure Development Techniques and 

Applications  

X � � � 

Operational Environment Security  � � � � 

Secure Integration with Peripheral  � � � � 

Secure Delivery  � � X � 

 

Secure configuration management provides secure access to source code, secure control and 

management of software development documents. CC and SEE-CMMI handle secure 

configuration management. But Microsoft SDL and OpenSAMM do not directly address this 

subject.  

An organization might have a wide variety of law, policy and compliance requirements. These 

requirements are either directly or indirectly affect the organization software or hardware 

products.  Microsoft SDL and Common Criteria do not directly address law, policy and 

procedure compliance but SSE-CMMI and OpenSAMM consider these items.  

Threat modelling is used to realise meaningful security risk. This approach provides that 

development teams to consider, document, and discuss the security implications of designs in 

the operational environment and structured fashion. Threat modelling enables consideration of 

security issues at the asset or application level. Threat modelling is a team exercise, developers, 

testers, and represents the primary security analysis task performed during the software design 

phase. OpenSAMM is carried out application specific threat modelling at construction phase.  

Security Management Family describe security threats to evaluated product at Common 

Criteria. Threat modelling has been carried out since early phase of Microsoft SDL.   



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

92 

 

 

 

A risk analysis involves identifying the most probable threats to software and analyzing the 

related vulnerabilities of the software to these threats. All standards and models handle this 

subject. 

A very important part in the software development process for the achievement of secure 

software systems is that known as security requirements which provides techniques, methods 

and standards for tackling this task in the information system development cycle. Software 

development process must be repeatable and systematic procedures. This approach ensures that 

the set of requirements obtained is complete, consistent and easy to understand and analyzable 

by the different actors involved in the development of the system. All of three standards 

consider that threat, assumption and organizational security process are related and checked 

with IT and non IT security requirements by designer. 

Secure architecture and design needs to be take in to account the very early phase of the 

software development lifecycle. If this needs not to be considered, this can lead to design-level 

security flaws. In order to ensure adequate attention in all appropriate stages of the software 

development lifecycle, security architecture and design is needed as a necessary part of software 

engineering. All of standards and models take care of security architecture and design.   

Source code analysis is very important for finding vulnerabilities at secure software 

development. Source code analysis can be made by commercial tools. But Analysis results 

should be reviewed by experts to eliminate false positives. Source code analysis is not 

mandatory in the CC standard.  If the evaluator wants to perform source code analysis this can 

be done. SEE-CMMI does not directly address source code analysis. Microsoft SDL and 

OpenSAMM are especially emphasize importance of source code analyze and encourage to use 

automatic tools. 

Vulnerability analysis includes black box and wide box testing. Vulnerability analysis is not 

mandatory for developers in the CC standard but evaluators have to do vulnerability analysis 

during evaluation phases. SSE-CMM, Microsoft-SDL and OpenSAMM require vulnerability 

analysis.  

Purpose of security validation is the confirmation of security requirements and application 

design. So security reviews and tests are applied in security lifecycle management processes. 

Design review, unit security tests, integration security tests and security acceptance tests are sub 

component of security validation. All standards and models include security validation. 

Microsoft SDL and OpenSAMM have detailed procedures for security validation.  

Vulnerability management focused on notification of detected security vulnerabilities and 

weakness to the development team, deal with vulnerability and software updates. All standards 

and models include vulnerability management processes. 

Secure development techniques cover definition of secure code development procedures and use 

of the best security practices during the development phase. CC is a product focused standard so 

it does not directly mention this subject. But evaluators could check this subject at laboratory 

visits. SSE-CMM, Microsoft SDL and OpenSAMM have criteria for this subject.  

The purpose of operational environment security is to develop security related guidance and 

provide it to system users and administrators. This operational guidance tells the users and 

administrators what must be done to install, configure, operate, and decommission the system in 

a secure manner. In addition to guidance documents this information can be given by program 

helps or other tools. To ensure that this is possible, the development of the operational security 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

93 

 

 

 

guidance should start early in the life cycle. All standards and models include operational  

environment security. 

The concern of secure delivery is the secure transfer of the finished product from the 

development environment into the responsibility of the user.  Delivery requirements must be 

defined to provide assurance during distribution of the product to the user. Other than Microsoft 

SDL, security standard and models deal with secure delivery. 

 

5. CONCLUSIONS  

Because of poor secure software development processes and tools, resulting software products 

have weaknesses and vulnerabilities. These vulnerabilities and weaknesses are misused or 

exploited by unconscious users or attackers. Secure software development standards and models 

have been developed to minimize weakness and vulnerabilities. They consider management of 

weaknesses and vulnerabilities during design, implementation and life time of product. But non 

of them could provide all requirement of secure software development lifecycle. CC which is an 

international IT security standard (ISO/IEC 15408) allows an objective evaluation to validate 

that a particular product satisfies a defined set of security requirements. This paper shows CC 

can be used as a secure software development lifecycle guidance for developers in addition to 

use evaluation of IT products. Some security functions such as law, policy and procedure 

compliance can be added to the future versions of the CC standard to provide more secure 

products and information to the customers. 

REFERENCES 

[1] Madello D., Medina E. F., Pianttini M., (2007) “A common criteria based security requirements 

engineering process for the development of secure information systems”,  Computer Standards 

& Interfaces, Vol. 29, No. 2, pp244-253 

[2] Carol Woody, (2009), "Secure Software Development Life Cycle Processes" Carnegie Mellon 

University,  ID: 326-BSI, Version: 22, https://buildsecurityin.us-

cert.gov/bsi/articles/knowledge/sdlc/326-BSI.pdf 

[3] IBM X-Force 2010 Trend and Risk Report, (2011), http://www-

935.ibm.com/services/us/iss/xforce/trendreports/ 

[4] System Security Engineering Capability Maturity Model, (2003)  http://www.sse-

cmm.org/docs/ssecmmv3final.pdf  

[5] SDL Progress Report 2004-2010, Microsoft, (2011) 

http://www.microsoft.com/download/en/details.aspx?id=14107 

 [6] Software Assurance Maturity Model, (2009) “A Guide to Building Security into Software 

Development Version. 1.0”, http://www.opensamm.org  

[7] Gregorie J., Buyens K., Win B., Scanfariato R., Joosen W., (2007) “On the Secure Software 

Development Process: CLASP and SDL Compared”, 29th International Conference on Software 

Engineering Workshop 

[8] Common Evaluation Methodology v3.1 rev 3, (2009) http://www.commoncriteriaportal.org/cc/   

[9] Woody C., (2009) “Secure Software Development Life Cycle Processes”, Carnegie Mellon 

University,  https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc/326-BSI.html   

[10] Khan M. U. A., Zulkernine M., (2008)"Quantifying Security in Secure Software Development 

Phases" 32nd Annual IEEE International Computer Software and Applications Conference 

(COMPSAC), pp:955-960, 28 July- 1 August 2008, Turku  



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

94 

 

 

 

[11] Thuraisingham B., Hamlen, K. W., (2010) “Challenges and Future Directions of Software 

Technology: Secure Software Development”, IEEE 34th Annual Computer Software and 

Applications Conference (COMPSAC), pp19-20, 19-23 July 2010, Soul, South Korea 

[12] Brian Chess, Brad Arkin, (2011)“Software Security in Practice”, IEEE Security & Privacy, 

Vol.9- No.2 pp88-92 

[13] Davis N., (2005)“ Secure Software Development Life Cycle Processes: A Technology Scouting 

Report”, CMU/SEI-2005-TN-024 Technical Report, Carnegie Mellon University,  

[14] Halkidis S. T., Alexander Chatzigeorgiou A., Stephanides G.,(2006) “A qualitative analysis of 

software security patterns”, Computers & Securit,y Vol. 25, No. 5, pp379-392 

[15] Brooks, F., P., (1987) “No Silver Bullet- Essence and Accidents of Software Engineering” IEEE 

Conference Vol 20, No:4,  pp10-19  

 

   

Authors 

Mehmet Kara is a Principal Researcher at UEKAE. He received his 

Ph.D. in Electronics and Communications Engineering from Kocaeli 

University. His research interests include most aspects of network 

security and in particular, the areas of secure network design, network 

security testing, intrusion detection/prevention, firewalls, and secure 

software development and malicious code analysis. Mehmet took part in 

the foundation of the Common Criteria laboratory in Turkey and he is a 

Common Criteria evaluator of this laboratory since 2003. Mehmet has 

served as program committee member and reviewer in various 

conferences. His research has been published in national and 

international journals and conferences. 


