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Abstract 
This paper presents a new approach for mapping and scheduling task graphs for heterogeneous 

hardware/software computing systems using heuristic search. Task mapping and scheduling are vital in 

hardware/software codesign and previous approaches that treat them separately lead to suboptimal 

solutions. In this paper, we propose two techniques to enhance the speedup of mapping/scheduling 

solutions: (1) an integrated technique combining task clustering, mapping, and scheduling, and (2) a 

multiple neighborhood function strategy. Our approach is demonstrated by case studies involving 40 

randomly generated task graphs, as well as six applications. Experimental results show that our 

proposed approach outperforms a separate approach in terms of speedup by up to 18.3% for a system 

with a microprocessor, a floating-point digital signal processor, and an FPGA. 

 

Keywords Hardware/software codesign; heuristic search; multiple neighborhood functions 

 

1 INTRODUCTION 

Digital signal processing (DSP) algorithms are often computationally intensive and contain 

different degrees of parallelism as well as different mixes of arithmetic operations. Such 

systems require increasingly greater amounts of processing power and place new demands on 

the computation hardware. Heterogeneous computing systems containing software processors 

(e.g. microprocessors), hardware processors (e.g. reconfigurable hardware), and dedicated DSP 

processors provide potentially more effective solutions than single microprocessor systems for 

many real time and embedded DSP applications. Reconfigurable hardware, such as field 

programmable gate arrays (FPGAs), contains reconfigurable fabric upon which custom 

functional units can be built. Time-critical tasks can be executed on the reconfigurable 

hardware, taking advantage of spatial parallelism to achieve high performance. 

Microprocessors, which often operate with a higher clock rate than reconfigurable hardware, 

execute sequential tasks more efficiently. Dedicated DSP processors, on the other hand, provide 

an efficient way to execute specific arithmetic operations. 

Hardware/software codesign takes an application specification as input, and generates an 

implementation for a heterogeneous computing system that fulfils given performance criteria, 

e.g. minimise the execution time of the application on the hardware platform. Codesign majorly 

involves partitioning, mapping, and scheduling. Partitioning divides the entire application into a 

set of smaller tasks, and a task graph is often constructed to represent the data/control 

precedences among tasks. Mapping process thus assigns tasks to processing elements and 

scheduling process determines the execution sequence of tasks. This work focuses on mapping 

and scheduling. Finding the best mapping and scheduling given a task graph is known to be 

NP-hard in its general form and previous work proposed to address this issue is shown in Table 

1. 
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A list scheduling [32] approach that builds partial valid solutions until a complete solution is 

formed has been widely used. In list scheduling, each task is assigned a priority based on 

heuristics. Available tasks are scheduled in each iteration based on the assigned priority, such 

as critical path [1],[2], job length [4], and number of successors [5]. A review of such list 

scheduling techniques for homogeneous systems is given in [3]. However, the calculated 

priorities may lose their meaning for a heterogeneous system, so such techniques are modified 

to address heterogeneous systems, e.g. using the maximum [6], median [7], or mean processing 

time [8]. Approaches that considering multiple criteria are also proposed, examples are using 

earliest starting and finishing time [9], latest finishing time and earliest starting time [10]. 

Another approach involves a deterministic search-based method. This approach generates an 

initial solution using list scheduling, and then applies a heuristic to move tasks between 

processors to find a better solution. For instance, moving critical tasks to faster processors [11], 

Kim et. al. propose a Push-Pull technique to reduce the idle periods of processors [13]. To 

shorten the search time, a topological order based task selection is proposed [12]. 

TABLE 1 

Some approaches to address mapping/scheduling. 

approach reference 
examples of 

applications 
comments 

list 

scheduling 

[1][2][3] 
Random graphs, 

tracking algorithms 
For homogeneous systems 

[4] Navigation system Shortest job first 

[5] FFT 
Scheduling based on depth of task and 

number of successors 

[6][7][8] Random graphs, FFT 
Use maximum/mean/median execution time 

to calculate priority 

[9][10] Random graphs, FFT 
Use starting/finishing time to calculate 

priority 

deterministic 

search 

[11] Random graphs 
Iteratively move critical task from software 

processor to hardware processor 

[12] 
Random graphs, 

Gaussian elimination 

Selecting tasks based on topological order, 

move task between processors, for 

homogeneous systems 

[13] Random graphs 
Move tasks to fill the idle periods of 

processors 

heuristic 

search 

[14][15] Random graphs 
Genetic algorithm, simulated annealing, 

address mapping only 

[16][17][18

] 

Random graphs, FFT, 

JPEG 
Separate mapping and scheduling 

[19][20][21

] 

[22][23] 

Random graphs, mean 

value analysis 
Combine mapping and scheduling 

this work 
Random graphs, 5 real 

applications 

Integrate clustering, mapping, and 

scheduling, compare two heuristic search 

methods 

integer linear 

programming 

[24] Filtering For VLIW architecture 

[25][26] 
Random graphs, FFT, 

smith waterman 

For reconfigurable hardware. Limited 

number of tasks 

[27] Random graphs 
15 tasks maximally, for homogeneous 

systems 
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[28] Packet forwarding Relax the integer constraint 

[29] AES, DES 
For reconfigurable hardware, choose among 

ILP and list-scheduling 

search 

method 

comparison 

[30] Synthetic 
Address mapping only, assume zero 

communication cost. 

[31] Random graphs Separate mapping and scheduling 

 

Heuristic search techniques [33] are also applied to tackle the mapping and scheduling problem. 

In [14], the mapping process uses a genetic algorithm without considering scheduling. A 

similar approach is also proposed using simulated annealing [15]. Heuristic search has been 

applied to find the best mapping while a list scheduling method estimates the total execution 

time [16],[17],[18]. However, these approaches separate mapping with scheduling and this may 

result in sub-optimal solutions. Alternative approaches are thus proposed that combine mapping 

and scheduling [19],[20],[21],[22],[23]. In these approaches, a mapping/scheduling solution is 

modeled as assigning each processor an ordered job list to be executed. Mapping and 

scheduling are thus combined as a single process that assigns tasks to these job lists, i.e. 

mapping and scheduling of a task is determined after assigning this task to a job list. The 

impacts of various heuristic search methods on mapping/scheduling quality and search time has 

also been analyzed [30],[31]. However, only mapping is addressed and zero communication 

cost is assumed in [30] which is not realistic. In [31], mapping and scheduling are considered 

independently, and heuristic search techniques are only applied to find the best mapping. 

Integer linear programming (ILP) is also applied to solve the mapping/scheduling problem [24]. 

This method guarantees an optimal solution but lacks scalability, the problem size of 

applications analyzed is often limited [25],[26]. The applicability of such an approach is studied 

in [27], but the maximum number of task analyzed is only 15 because of the long search time. 

To reduce search time, a technique that relaxes the integer constraint is proposed [28]. However, 

an additional process of rounding the fractional numbers in the found solution must be carried 

out to construct a feasible solution. This process may generate a solution which is having a 

totally different characteristic. A hybrid approach that consists of an ILP and a list based 

scheduler is proposed in [29]. While the ILP scheduler is chosen for simpler problems, the list 

scheduler is used for complex problems. 

Compared with an approach that considers mapping and scheduling independently, combining 

mapping and scheduling covers a larger search space that results in a higher chance of covering 

good solutions. However, the extended search space can also increase the difficulty of finding 

good solutions as the search space grows exponentially with the problem size. Previous 

approaches use either a separate approach or combining mapping and scheduling [19],[20]. In 

this work, a new integrated approach that combines clustering, mapping, and scheduling is 

presented. The main contributions are as follows: 

• A strategy with multiple neighborhood functions to enhance the speedup of 

mapping/scheduling solutions (Section 2.2). 

• A task clustering technique to reduce data transfer overhead (Section 3.4). 

• Integrating task clustering, mapping, and scheduling in a single process (Sections 3.2 

and 3.4). 

• An analysis of different neighborhood functions and two heuristic search techniques, 

simulated annealing and tabu search (Section 4.4). 
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The remainder of this paper is organised as follows: Section 2 provides an overview of the 

mapping/scheduling system and the multiple neighborhood functions based strategy. The 

design of neighborhood functions and the integrated clustering, mapping, and scheduling 

technique are introduced in Section 3. Experimental results are presented in Section 4, and 

finally, concluding remarks are given in Section 5. 

2 MAPPING AND SCHEDULING 

2.1 Overview 

Figure 1 shows an overview of the approach used to find best mapping/scheduling solutions for 

applications described as directed acyclic task graphs. Given a task graph and a target 

architecture specification which includes processing elements and communication channel 

characteristics, a heuristic search is used to generate the best solution. In particular, different 

mapping/scheduling solutions (neighbors) are generated using multiple neighborhood functions 

iteratively, and an overall processing time, which is the time to finish all tasks, is calculated for 

each solution and used as the cost to guide the search. The goal is to find a solution with 

minimum overall processing time. 

2.2 Multiple neighborhood functions 

Heuristic search techniques can be applied to solve combinatorial optimization problems even 

though they do not guarantee optimal solutions. The basis of these techniques is neighborhood 

search, which starts with a feasible solution and attempts to improve it by searching its 

neighbors, i.e. solutions that can be reached directly from the current solution by an operation 

called a move [34]. This process is repeated until a local optimum or the termination condition 

is reached. Examples of advanced neighborhood search techniques are simulated annealing and 

tabu search [35]. In these techniques, the design of a neighborhood function, also known as a 

move function in the literature, is vital and there is no standard solution [33]. 
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Fig. 1. Overview of the clustering, mapping, and scheduling system with multiple neighborhood functions. 
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Simulated annealing accepts not only neighbors that improve on the previously best solutions, 

but also those that increase the cost. The following probability function is used to determine 

whether to accept a neighbor: 

)/))()((( Tccostbcostexpp −=      (1) 

where b is the best neighbor and c is the current neighbor, T is called the temperature and is 

updated as: T =αT, where α is a constant and typically in the range of 0.9 to 0.99. Instead of 

using a single neighborhood function, a strategy involving multiple neighborhood functions is 

proposed. As shown in Figure 2, a feasible solution is initially generated and a neighborhood 

function is chosen to generate a new neighbor. If the new neighbor yields lower cost than the 

best previous solutions, it is accepted, i.e. a move from previous solution to the new one. 

Otherwise, acceptance of this new neighbor depends on the probability function. If there is no 

improvement after iterating a given number of times, a new neighborhood function is chosen to 

replace the old one. In this work, two neighborhood functions are used alternately, and the 

search ends when neither neighborhood function produces better solutions. 
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Fig. 2. Simulated annealing with multiple neighborhood function strategy. PF: probability function, NF: 

neighborhood function. 
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Tabu search keeps a list of the searched space and uses it to guide the future search direction; it 

can forbid the search moving to some neighbors. The proposed tabu search is based on multiple 

neighborhood functions (Figure 3). After an initial solution is generated, two neighborhood 

functions are used to generate neighbors simultaneously. If there exists a neighbor of lower cost 

than the best solution so far and it cannot be found in the tabu list, this neighbor is recorded. 

Otherwise a neighbor that cannot be found in the tabu list is recorded. If all the above 

conditions cannot be fulfilled, the solution in the tabu list with the least degree, i.e. the solution 

being resident in the tabu list for the longest time, is recorded. If the recorded solution has a 

smaller cost than the best solution so far, it is recorded as the best solution. The searched 

neighbors are added to tabu list and solutions with the least degree are removed. This process is 

repeated until the search cannot find a better solution for a given number of iterations. 

3 METHODOLOGY 

3.1 Directed acyclic task graph 

Given a set of tasks TK = {tk1, tk2, ..., tkn} to be executed, a directed acyclic graph can be 

defined as G = (TK, DF). Each task tki is a node in the graph and DF = {dfij ; i = 1, 2, ..., n; j = 

1, 2, ..., n} is a set of directed edges corresponding to data flow dependencies between tasks. 

Each edge dfij 2 DF denotes an amount of data flow from task tki to tkj , so tki is a predecessor 

of tkj , and conversely, tkj is a successor of tki. The number of nodes and edges are defined as 

|TK| and |DF| respectively. Given a set of interconnected heterogeneous processing elements PE 

= {pe1, pe2, ..., pem}, each task node tki of the task graph is associated with a set {ti1, ti2, ..., tim} 

that denotes the execution times for implementing this task on each processing element of PE. 

The time to transfer results between tasks can be represented as DT = {dtij ; i = 1, 2, ..., n; j = 1, 

2, ..., n}, each dtij denoting the time to transfer results from task tki to tkj . This is calculated as 

the amount of data flow dfij divided by the data transfer rate. 
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Fig. 3. Tabu search with multiple neighborhood function strategy. NF: neighborhood function. 
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012 

133 

 

 

 

3.2 Integrated mapping and scheduling 

In the integrated approach, mapping and scheduling are performed as a single step. Given a set 

of task lists PL = {pl1, pl2, ..., plm}, where plj = (asj1, asj2, ..., asjq) is an ordered task sequence to 

be executed by processing element pej, each task in plj will be processed by pej in sequence 

when it is ready for execution, in other words, when all of its predecessors are finished. Task 

mapping and scheduling thus deal with assigning tasks to task lists. A task assignment function 

is defined as A: TK → PL, e.g. A(tki) = asjk denotes task tki being assigned to asjk   of   list   plj.   

This   means   that   tki   is   the   kth   task   to   be  executed  by  processing  element  pej.  A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mapping/scheduling solution is characterized by assignments of all tasks to processing elements, 

i.e. for every task tki in TK, A(tki) = asjk for a plj in PL. It is assumed that only one task can be 

assigned to each asij . Based on this formulation, simulated annealing and tabu search based on 

multiple neighborhood functions are then applied to modify the task assignment and generate 

mapping/scheduling solutions (neighbors) iteratively. 

In the separate approach, tasks are first mapped to processing elements, and each processing 

element contains a set of un-ordered tasks to be executed. A list scheduling technique is then 

used to determine the execution orders of tasks. For instance, the best task mapping can be 

found using heuristic search techniques, and a longest-execution-time-first scheduling method 
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Fig. 4. An example of a directed acyclic task graph and its mapping/scheduling solutions using the 

separate approach in [16] and an integrated mapping and scheduling approach (Section 3.2), where ti1 

and ti2 denote the execution time of task tki on FPGA and CPU respectively, and dfij is the amount of 

data flow between task tki and tkj. In the separate approach, due to inappropriate task mapping, where 

tk1 and tk4 are mapped to the CPU and the others to the FPGA, a poor scheduling solution is generated 

that execute tasks tk2 and tk3 in sequential order. In the integrated mapping and scheduling approach, as 

the mapping and scheduling of tasks are less constrained, a better solution is generated after moving 

task tk3 from the CPU to FPGA. 
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is used to determine the execution orders of tasks [16]. In contrast to the separate approach with 

constrained execution order, execution orders of tasks can be changed in the integrated 

approach. The search space of the integrated approach is much larger and results in a higher 

chance of covering good solutions. Figure 4 illustrates an example in which a task graph and 

the corresponding mapping/scheduling solutions using the separate approach in [16] and the 

integrated approach, where ti1 and ti2 are the execution times of task tki on an FPGA and CPU 

respectively. In the separate approach, due to inappropriate task mapping, where tk1 and tk4 are 

mapped to the CPU and the others to the FPGA, a poor scheduling solution is generated that 

executes tasks tk2 and tk3 in sequential order. In the integrated mapping and scheduling 

approach, as the mapping and scheduling of tasks are less constrained, a better solution is 

generated after moving task tk3 from the CPU to FPGA. 

Since the search space of the integrated approach is much larger, finding good solutions can be 

more challenging. A multiple neighborhood function strategy is thus proposed to increase the 

diversification of solutions and help to find better solution. Details of this strategy are 

introduced in Section 2.2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RanRlo: random task relocation 

step (1) Randomly select a task from list plp position aspq. 

step (2) Randomly select another task at list plj position asjk. 

step (3) Relocate task from (plp, aspq) to (plj , asjk). 

GudRlo: guided task relocation 

step (1) Randomly select a task at list plp position aspq. 

step (2) For all lists plj in PL and positions asjk: 

Relocate task (plp, aspq) to (plj, asjk) which yields lowest cost. 

RanRloClu: random relocation with task clustering 

step (1) Perform step (1) to (3) of RanRlo. 

step (2) Relocate largest data flow parent of task (plp, aspq) to a position in plj which yields lowest 

cost. 

step (3) Accept such relocation if the cost is lower. 

GudRloClu: guided relocation with task clustering 

step (1) Perform step (1) to (2) of GudRlo. 

step (2) Relocate largest data flow parent of task (plp, aspq) to a position in plj which yields lowest 

cost. 

step (3) Accept such relocation if the cost is lower. 

RanSwp: random task swap 

step (1) Randomly select a task at list plp position aspq. 

step (2) Randomly select another task at list plj position asjk. 

step (3) Swap task in (plp, aspq) with task in (plj , asjk). 

GudSwp: guided task swap 

step (1) Randomly select a task at list plp position aspq. 

step (2) For all lists plj in PL and positions asjk: 

Swap task (plp, aspq) with task (plj, asjk) which yields lowest cost. 

BstRlo: best task relocation 

step (1) For all lists plp in PL and positions aspq: 

Relocate task (plp, aspq) to every list plj in PL and position asjk, 

setp (2) Choose the relocation which yields lowest cost. 

Fig. 5. Seven basic neighborhood functions used in this work. Neighborhood functions RanRloClu and 

GudRloClu further integrate clustering process with mapping and scheduling by employing step (2) in 

these two functions. 
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3.3 Neighborhood functions 
Given that s denotes the current mapping/scheduling solution, Figure 5 shows the seven basic 

neighborhood functions, NFx(s), adopted. RanRlo and GudRlo accept a mapping/scheduling 

solution; relocate a task from one task list to another and form a new neighbor. While RanRlo 

relocates tasks randomly, GudRlo chooses the best relocation position for a randomly selected 

task. In contrast to these two relocation based neighborhood functions, RanSwp and GudSwp 

swap the positions of two tasks and generate a new neighbor. In particular, RanSwp swaps the 

positions of two randomly selected tasks, and GudSwp randomly selects a task and chooses the 

best swapping position for this task. 

Apart from the neighborhood functions introduced above, one more neighborhood function, 

BstRlo, which uses a best-relocation strategy [19], is analysed. This neighborhood function 

searches all possible relocations for all tasks, and chooses the one which yields lowest cost as 

the new neighbor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Integrated clustering, mapping, and scheduling 

Based on the observation that mapping tasks with large data flow to the same processing 

element can potentially reduce data transfer overhead, a clustering technique, which attempts to 

group tasks with large data flow and allocate them to the same processing elements has been 

proposed [16]. However, clustering, mapping, and scheduling were solved separately in 

previous works, which give sub-optimal results. This work thus proposes two new 

neighborhood functions, RanRloClu and GudRloClu, which integrate the clustering technique 

into the neighborhood function, i.e. after relocating a task to another task list, move the parent 

which has the largest data flow among all parents of the current task to the same task list. If 

such a move yields lower cost, we accept this move and generate a new neighbor, otherwise, 

discard it. As mapping and scheduling have already been integrated (Section 3.2), by further 

combining clustering, neighborhood functions RanRloClu and GudRloClu thus integrate 

clustering, mapping, and scheduling in a single neighborhood function. 
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Fig. 6. Two reference architecture models of heterogeneous computing systems: (a) Loosely-coupled 

architecture with fully-connected communication. (b) Tightly-coupled architecture with bus 

communication. 
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3.5 Cost function 

As mentioned before, overall processing time is used as the cost to guide the heuristic search. 

This is the time for processing all tasks using the reference heterogeneous computing system 

and includes data transfer time. The processing time of a task tki on processing element pek is 

calculated as the execution time of tki on pek plus the time to retrieve results from all of its 

predecessors. The data transfer time between a task and a predecessor is assumed to be zero if 

they are assigned in the same processing element. 

It is noted that tasks cannot be arbitrarily moved due to data dependencies, i.e. a task cannot be 

moved to a location such that it will execute prior to its predecessor. To avoid generating such 

infeasible solutions, our approach inflicts a large penalty cost in such cases. 

4 RESULTS 

4.1 Reference architecture 

Multiprocessors systems can be tightly-coupled or loosely-coupled [36]. In a tightly-coupled 

architecture, shared memory is used to communicate between processing elements, data sent 

from one processing element are buffered in shared memory before being read by another 

processing element. However, shared memory is not used in a loosely-coupled architecture. 

Data are sent from one processing element to another directly without buffering. In this work, 

performance of the proposed mapping/scheduling system is evaluated on both architectures 

although generalisations are possible. 

Figure 6 shows the two reference heterogeneous computing systems analysed: a loosely-

coupled architecture with fully-connected communication having low communication 

contention, and a tightly-coupled architecture with bus communication having high 

communication contention. Both systems contain three processing elements: one 

microprocessor, one FPGA, and one DSP processor. Each processing element has a local 

memory for data storage during task execution, and results of a task’s predecessors must be 

transferred to the local memory before this task starts execution. For example, if a task tki is 

assigned to the CPU and its predecessor tkj is running on the FPGA, before tki can start 

execution, the results of tkj must be transferred from the FPGA to the local memory of the CPU.  

4.2 Experimental setup 

The neighborhood size for the tabu search is 10 and the tabu list length is 10. The search 

terminates if it cannot find a better solution after 200 iterations. In simulated annealing, the 

cooling rate α is 0.99, and it changes neighborhood function if current function yields no 

improvement after 200 iterations. 

The experimental data set consists of randomly generated task graphs and task graphs of five 

real applications. 

The following parameters are involved in generating random task graphs: 

 

• GS: Graph size, it is defined as the number of tasks in a task graph. 

• ANS: Average number of immediate successors per task in a task graph. 

• CCR: Computation to communication ratio, which is the ratio between average 

processing time of tasks and average data transfer time among tasks in a task graph. 

• TA: The target architecture used to evaluate the speedup of mapping/scheduling 

solutions, i.e. the fully connected or bus architecture (Section 4.1). 
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Directed acyclic task graphs with GS from 10 to 80, ANS from 2 to 5, and CCR from 0.1 to 

100 are analyzed, 10 task graphs of each configuration are generated. 

4.3 Performance evaluation 

The overall processing time using a single CPU is divided by the overall processing time using 

the reference heterogeneous computing system to obtain a speedup: 
 

systemreference

CPUgle

timeprocessingoverall

timeprocessingoverall
speedup

sin
=   (2) 

 

Two factors: average speedup and speedup improvement are used to measure the performance 

of different experimental setups. They are defined as follows: 

 

• Average Speedup: Each experimental setup is run for a given duration (time constraint) 

and the best speedup (BSU) is recorded. An average BSU of 10 runs is calculated and 

used as an average speedup, which represents the average quality of 

mapping/scheduling solutions a particular experimental setup can achieve. A higher 

average speedup means the solution is better. 

• Speedup Improvement: Assume that the average speedups of two experimental setups, 

S1 and S2, are su1 and su2 respectively. The speedup improvement of su1 over su2 is 

calculated as: 

%100
2

21
×

−
=

su

susu
timprovemenspeedup     (3) 

Hence, a larger speedup improvement means the mapping/scheduling solution found by 

S1 is better. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2 

Average speedups of seven basic neighborhood functions. Experimental setup: target architecture = 

fully connected, data set = random graphs, average number of successors per task (ANS) = 2, 

computation to communication ratio (CCR) = 10. TABU: Tabu search, SA: simulated annealing. 
Search 

method 

Neighborhood 

function 

Graph size (No. of tasks) 

10 30 50 80 

TABU 

RanSwp 3.07 3.81 3.08 3.05 

GudSwp 3.10 4.35 3.70 3.30 

BstRlo 3.34 5.43 5.00 3.41 

RanRlo 3.33 5.35 4.99 4.43 

RanRloClu 3.34 5.59 5.23 4.75 

GudRloClu 3.34 6.45 6.82 6.81 

GudRlo 3.34 6.46 6.81 6.82 

SA 

RanSwp 3.04 4.90 4.17 3.65 

GudSwp 2.98 4.56 4.51 4.22 

BstRlo 3.34 5.78 5.57 5.49 

RanRlo 3.22 5.69 5.85 5.76 

RanRloClu 3.24 5.74 5.90 5.60 

GudRloClu 3.34 6.37 6.59 6.50 

GudRlo 3.34 6.39 6.58 6.56 
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TABLE 3 

Average speedups of multiple neighborhood functions. For instance, (RanSwp,GudSwp) means using 

both 

neighborhood functions RanSwp and GudSwp. Experimental setup: target architecture = fully connected, 

data set = random graphs, average number of successors per task (ANS) = 2, computation to 

communication ratio (CCR) = 10. TABU: tabu search, SA: simulated annealing. 

Search 

method 

Multiple neighborhood 

functions 

Graph size (No. of tasks) 

10 30 50 80 

TABU 

(RanSwp, GudSwp) 3.07 4.63 3.94 3.47 

(RanRloClu, RanSwp) 3.34 5.41 4.92 4.32 

(RanRlo, RanSwp) 3.34 5.66 4.99 4.43 

(RanRloClu, GudRloClu) 3.34 6.40 6.62 6.55 

(GudRloClu, RanSwp) 3.34 6.42 6.62 6.57 

(RanRlo, GudRloClu) 3.34 6.40 6.65 6.59 

(GudRlo, RanSwp) 3.34 6.44 6.64 6.60 

(RanRloClu, GudSwp) 3.34 6.45 6.91 7.08 

(RanRlo, GudSwp) 3.34 6.42 6.90 7.10 

(GudRlo, GudSwp) 3.34 6.50 7.00 7.13 

(GudRloClu, GudSwp) 3.34 6.51 7.04 7.17 

SA 

(RanSwp, GudSwp) 2.99 4.83 4.70 4.07 

(RanRloClu, GudRloClu) 3.34 6.37 6.48 6.37 

(GudRlo, RanRlo) 3.34 6.35 6.53 6.43 

(RanRlo, GudRlo) 3.33 6.34 6.52 6.45 

(RanRloClu, RanSwp) 3.29 6.21 6.52 6.45 

(GudRloClu, RanRloClu) 3.34 6.36 6.63 6.50 

(GudRlo, RanSwp) 3.34 6.43 6.67 6.59 

(RanSwp,,RanRloClu) 3.34 6.44 6.73 6.64 

(RanSwp, RanRlo) 3.34 6.44 6.69 6.64 

(RanRlo, RanSwp) 3.29 6.20 6.59 6.68 

(GudSwp, RanRloClu) 3.32 6.28 6.60 6.75 

(GudSwp, RanRlo) 3.32 6.28 6.62 6.76 

(GudRloClu, RanSwp) 3.34 6.44 6.77 6.67 

(RanRloClu, GudSwp) 3.28 6.28 6.72 6.86 

(RanRlo, GudSwp) 3.28 6.29 6.72 6.93 

(GudRlo, GudSwp) 3.34 6.46 6.84 6.98 

(GudRloClu, GudSwp) 3.34 6.46 6.86 7.01 
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Fig. 7. Average speedup comparison between strategies with single and multiple neighborhood functions. 

The percentages show the speedup improvement of using multiple neighborhood functions over single 

neighborhood function strategy. Experimental setup: target architecture = fully connected, data set = 

random graphs, average number of successors per task (ANS) = 2, computation to communication ratio 

(CCR) = 10. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Single and multiple neighborhood functions 

Tables 2 and 3 show the average speedup obtained using integrated approach with single and multiple 

neighborhood functions respectively. The results of using the strategy with two neighborhood functions 

are designated by the notation (NFa, NFb). For simulated annealing, this notation also denotes the order 

to choose the neighborhood function: NFa is used first to generate neighbors, changing to NFb if there is 

no improvement after 200 iterations. The notation (NFa) means using a single neighborhood function 

NFa. Average speedups of different neighborhood functions are obtained by given the same search time 

constraint, in particular, the search time constraints for graph size 10, 30, 50, and 80 are 10, 30, 50, and 

80 seconds respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Speedup improvement of the clustering technique using (GudRloClu,GudSwp) over the non-

clustering approach using (GudRlo,GudSwp) for different computation to communication ratios. 

Experimental setup: data set = random graphs, graph size = 80 tasks, average number of successors per 

task (ANS) = 2. 
 

 
Fig. 9. Speedup improvement of the clustering technique using (GudRloClu,GudSwp) over the non-

clustering approach using (GudRlo,GudSwp) for different ANSes. Experimental setup: data set = 

random graphs, graph size = 80 tasks, computation to communication ratio (CCR) = 1. 
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In Table 2, both results obtained using tabu search and simulated annealing shows that 

GudRloClu and GudRlo achieve the highest average speedup: their values are almost twice as 

much as others for most problem instances. 

Table 3 shows the average speedups of using multiple neighborhood functions. It is found that 

the two neighborhood functions strategy with clustering i.e. using (GudRloClu,GudSwp), 

achieves highest speedup. Both tables 2 and 3 show that tabu search outperforms simulated 

annealing. 

 

An average speedup comparison between single and multiple neighborhood functions is shown 

in Figure 7. This clearly shows that using a strategy with two neighborhood functions yields 

higher speedup than a single neighborhood function. The improvement is more significant for 

larger problem sizes. For instance, using (GudRloClu,GudSwp) with tabu search outperforms 

GudRloClu with tabu search by 5.3% for the case with 80 tasks, and using 

(GudRloClu,GudSwp) with simulated annealing outperforms GudRloClu with simulated 

annealing by 7.8%. Figure 7 shows that tabu search with (GudRloClu,GudSwp) achieves the 

highest speedup, which is actually the highest among all experimental setups chosen in this 

work; this strategy is used later in our experiments with real applications (Section 4.6). 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Speedup improvement of this work over a separate approach in [16] for different 

computation to communication ratios. Experimental setup: data set = random graphs, graph size = 80 

tasks, average number of successors per task = 2. 
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4.5 Clustering technique 

 
 

 

Figure 8 shows the speedup improvement of the proposed clustering technique over the non-

clustering approach for different computation to communication ratios. It is found that the 

speedup is significantly improved for high data contention cases, e.g. an improvement of 

114.5% is obtained using a bus architecture with CCR equal to 0.1. On average, the clustering 

technique achieves higher improvement on bus architecture. The speedup improvements for 

different number of successors are shown in Figures 9. Bus architecture still achieves higher 

improvement and the improvement is higher for the cases of large number of successors which 

have higher data contention. These results reflect that the clustering technique is able to reduce 

communication overhead. 

Table 4 shows the speedup improvements of this work over two other approaches: a best-

relocation based integrated approach [19], and a separate approach proposed in [16] where tabu 

search was found to yield best performance. Our approach outperforms both approaches in all 

problem instances; the improvement is more significant for larger problems, it is 16.2% higher 

than the separate approach and 110.3% higher than the best relocation based approach for the 

case with 80 tasks. Figure 10 and 11 shows the speedup improvement of the proposed 

integrated approach over the separate approach. It is found that the integrated approach 

 
Fig. 11. Speedup improvement of this work over a separate approach in [16] for different average 

number of successors per task. Experimental setup: data set = random graphs, graph size = 80 tasks, 

computation to communication ratio = 10. 
 

TABLE 4 

Speedup improvements of this work over other two approaches using random graphs. SEP: separate 

approach, INT: integrating mapping and scheduling only. This work uses tabu search with neighborhood 

functions 

(GudRloClu,GudSwp). Experimental setup: target architecture = fully connected, data set = random 

graphs, computation to communication ratio = 10. 

Graph size (No. of task) 10 30 50 80 

SEP, TABU [16] 0.9% 10.5% 13% 16.2% 

INT, TABU [19] 0% 19.9% 40.8% 110.3% 
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outperforms the separate approach in most of the cases. However, their performance is similar 

for cases with high data contention, e.g. bus architecture with CCR equals to 0.1. This is 

because tasks are intended to be mapped to one processing element in such a case. The separate 

approach which is mapping biased can thus generate similar solutions. In Figure 10, one can 

also see that the speedup improvement decreases for cases with lower data contention. This is 

because lower communication demands diminish the advantage of the clustering technique 

which is designed to reduce data transfer overhead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6 Real applications 

Apart from random graphs, the commonly used butterfly structure for the fast Fourier transform 

(FFT) [37] is used as an additional example. A 32-point FFT containing 80 butterfly nodes with 

each node regarded as a single task is used. The execution time of each node is measured for 

processing 1.0×10
7
 32-point FFTs, and the communication speed is assumed to be 1.0×10

8
 data 

elements per second. For an Intel Pentium-4 3.2GHz microprocessor and an Atmel mAgic 

floating-point digital signal processor [38] the execution times of each node are 384ms and 

100ms respectively. A fully pipelined architecture for the butterfly node has been developed for 

a Xilinx Virtex-II XC2V6000 FPGA [39] using the Haydn design-flow [40]. The execution 

time for this architecture is 91ms. 

TABLE 5 

Speedup improvements of this work over other two approaches for different search time constraints using 

FFT. This work uses tabu search with neighborhood functions (GudRloClu,GudSwp). 

Time constraint (s) 10 30 30 

SEP, TABU [16] 4.3% 9.1% 10.1% 

INT, TABU [19] 158.1% 153% 138.5% 

 

 
 
Fig. 12. Normalized average speedup for various applications given a 30-second search time 

constraint and the speedup improvement of this work over the other two approaches. This work uses 

tabu search with neighborhood functions (GudRloClu,GudSwp). 
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Table 5 illustrates the speedup improvements for different search time constraints. One can see 

that solutions with higher speedup can be found using an integrated approach with tabu search 

and (GudRloClu,GudSwp). The maximum improvement is 10.0% over the separate approach 

and 158.1% higher than the best relocation based approach which uses neighborhood function 

BstRlo.  

Besides FFT, five more applications are employed to evaluate the proposed approach in this 

work; these include FIR filtering, hidden Markov model (HMM) decoding for pattern 

recognition, matrix multiplication, Gaussian elimination, and the molecular dynamics code 

used in [8]. Figure 12 illustrates the normalized average speedup given a 30-second search time 

constraint, the proposed multiple neighborhood function strategy outperforms the other two 

approaches in all cases, the corresponding improvements over the separate approach are 18.3%, 

4.5%, 

13.2%, 6.1%, and 14.8% respectively. The improvements for HMM is less significant; one 

reason is that the amount of data flow is smaller in these two applications, so the penalty of 

inappropriate task mapping using the separate approach is also less significant. 

5 CONCLUSIONS 

An integrated hardware/software codesign approach using multiple neighborhood function 

strategy is presented where clustering, mapping, and scheduling are integrated in a single step. 

It is found that the clustering technique outperforms a non-clustering approach and the average 

speedup can be further improved using the multiple neighborhood function strategy. For 

instance, using the clustering technique, the average speedup can be improved by up to 114.5%, 

and the multiple neighborhood function strategy can improve the average speedup by up to 

7.8%. Experimental results obtained using both randomly generated task graphs and six real 

applications show that the proposed integrated approach with multiple neighborhood functions 

is superior to previous approaches in terms of speedup by up to 18.3%. Current and future work 

includes exploring opportunities for carrying out mapping and scheduling at run time, and 

extending the proposed approach to cover a wide range of applications and systems. 
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