
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

DOI : 10.5121/ijcsit.2012.4111 127

Integrated Task Clustering, Mapping and
Scheduling for Heterogeneous Computing Systems

Yuet Ming Lam
Macau University of Science and Technology

ymlam@must.edu.mo

Abstract
This paper presents a new approach for mapping and scheduling task graphs for heterogeneous

hardware/software computing systems using heuristic search. Task mapping and scheduling are vital in

hardware/software codesign and previous approaches that treat them separately lead to suboptimal

solutions. In this paper, we propose two techniques to enhance the speedup of mapping/scheduling

solutions: (1) an integrated technique combining task clustering, mapping, and scheduling, and (2) a

multiple neighborhood function strategy. Our approach is demonstrated by case studies involving 40

randomly generated task graphs, as well as six applications. Experimental results show that our

proposed approach outperforms a separate approach in terms of speedup by up to 18.3% for a system

with a microprocessor, a floating-point digital signal processor, and an FPGA.

Keywords Hardware/software codesign; heuristic search; multiple neighborhood functions

1 INTRODUCTION

Digital signal processing (DSP) algorithms are often computationally intensive and contain

different degrees of parallelism as well as different mixes of arithmetic operations. Such

systems require increasingly greater amounts of processing power and place new demands on

the computation hardware. Heterogeneous computing systems containing software processors

(e.g. microprocessors), hardware processors (e.g. reconfigurable hardware), and dedicated DSP

processors provide potentially more effective solutions than single microprocessor systems for

many real time and embedded DSP applications. Reconfigurable hardware, such as field

programmable gate arrays (FPGAs), contains reconfigurable fabric upon which custom

functional units can be built. Time-critical tasks can be executed on the reconfigurable

hardware, taking advantage of spatial parallelism to achieve high performance.

Microprocessors, which often operate with a higher clock rate than reconfigurable hardware,

execute sequential tasks more efficiently. Dedicated DSP processors, on the other hand, provide

an efficient way to execute specific arithmetic operations.

Hardware/software codesign takes an application specification as input, and generates an

implementation for a heterogeneous computing system that fulfils given performance criteria,

e.g. minimise the execution time of the application on the hardware platform. Codesign majorly

involves partitioning, mapping, and scheduling. Partitioning divides the entire application into a

set of smaller tasks, and a task graph is often constructed to represent the data/control

precedences among tasks. Mapping process thus assigns tasks to processing elements and

scheduling process determines the execution sequence of tasks. This work focuses on mapping

and scheduling. Finding the best mapping and scheduling given a task graph is known to be

NP-hard in its general form and previous work proposed to address this issue is shown in Table

1.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

128

A list scheduling [32] approach that builds partial valid solutions until a complete solution is

formed has been widely used. In list scheduling, each task is assigned a priority based on

heuristics. Available tasks are scheduled in each iteration based on the assigned priority, such

as critical path [1],[2], job length [4], and number of successors [5]. A review of such list

scheduling techniques for homogeneous systems is given in [3]. However, the calculated

priorities may lose their meaning for a heterogeneous system, so such techniques are modified

to address heterogeneous systems, e.g. using the maximum [6], median [7], or mean processing

time [8]. Approaches that considering multiple criteria are also proposed, examples are using

earliest starting and finishing time [9], latest finishing time and earliest starting time [10].

Another approach involves a deterministic search-based method. This approach generates an

initial solution using list scheduling, and then applies a heuristic to move tasks between

processors to find a better solution. For instance, moving critical tasks to faster processors [11],

Kim et. al. propose a Push-Pull technique to reduce the idle periods of processors [13]. To

shorten the search time, a topological order based task selection is proposed [12].

TABLE 1

Some approaches to address mapping/scheduling.

approach reference
examples of

applications
comments

list

scheduling

[1][2][3]
Random graphs,

tracking algorithms
For homogeneous systems

[4] Navigation system Shortest job first

[5] FFT
Scheduling based on depth of task and

number of successors

[6][7][8] Random graphs, FFT
Use maximum/mean/median execution time

to calculate priority

[9][10] Random graphs, FFT
Use starting/finishing time to calculate

priority

deterministic

search

[11] Random graphs
Iteratively move critical task from software

processor to hardware processor

[12]
Random graphs,

Gaussian elimination

Selecting tasks based on topological order,

move task between processors, for

homogeneous systems

[13] Random graphs
Move tasks to fill the idle periods of

processors

heuristic

search

[14][15] Random graphs
Genetic algorithm, simulated annealing,

address mapping only

[16][17][18

]

Random graphs, FFT,

JPEG
Separate mapping and scheduling

[19][20][21

]

[22][23]

Random graphs, mean

value analysis
Combine mapping and scheduling

this work
Random graphs, 5 real

applications

Integrate clustering, mapping, and

scheduling, compare two heuristic search

methods

integer linear

programming

[24] Filtering For VLIW architecture

[25][26]
Random graphs, FFT,

smith waterman

For reconfigurable hardware. Limited

number of tasks

[27] Random graphs
15 tasks maximally, for homogeneous

systems

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

129

[28] Packet forwarding Relax the integer constraint

[29] AES, DES
For reconfigurable hardware, choose among

ILP and list-scheduling

search

method

comparison

[30] Synthetic
Address mapping only, assume zero

communication cost.

[31] Random graphs Separate mapping and scheduling

Heuristic search techniques [33] are also applied to tackle the mapping and scheduling problem.

In [14], the mapping process uses a genetic algorithm without considering scheduling. A

similar approach is also proposed using simulated annealing [15]. Heuristic search has been

applied to find the best mapping while a list scheduling method estimates the total execution

time [16],[17],[18]. However, these approaches separate mapping with scheduling and this may

result in sub-optimal solutions. Alternative approaches are thus proposed that combine mapping

and scheduling [19],[20],[21],[22],[23]. In these approaches, a mapping/scheduling solution is

modeled as assigning each processor an ordered job list to be executed. Mapping and

scheduling are thus combined as a single process that assigns tasks to these job lists, i.e.

mapping and scheduling of a task is determined after assigning this task to a job list. The

impacts of various heuristic search methods on mapping/scheduling quality and search time has

also been analyzed [30],[31]. However, only mapping is addressed and zero communication

cost is assumed in [30] which is not realistic. In [31], mapping and scheduling are considered

independently, and heuristic search techniques are only applied to find the best mapping.

Integer linear programming (ILP) is also applied to solve the mapping/scheduling problem [24].

This method guarantees an optimal solution but lacks scalability, the problem size of

applications analyzed is often limited [25],[26]. The applicability of such an approach is studied

in [27], but the maximum number of task analyzed is only 15 because of the long search time.

To reduce search time, a technique that relaxes the integer constraint is proposed [28]. However,

an additional process of rounding the fractional numbers in the found solution must be carried

out to construct a feasible solution. This process may generate a solution which is having a

totally different characteristic. A hybrid approach that consists of an ILP and a list based

scheduler is proposed in [29]. While the ILP scheduler is chosen for simpler problems, the list

scheduler is used for complex problems.

Compared with an approach that considers mapping and scheduling independently, combining

mapping and scheduling covers a larger search space that results in a higher chance of covering

good solutions. However, the extended search space can also increase the difficulty of finding

good solutions as the search space grows exponentially with the problem size. Previous

approaches use either a separate approach or combining mapping and scheduling [19],[20]. In

this work, a new integrated approach that combines clustering, mapping, and scheduling is

presented. The main contributions are as follows:

• A strategy with multiple neighborhood functions to enhance the speedup of

mapping/scheduling solutions (Section 2.2).

• A task clustering technique to reduce data transfer overhead (Section 3.4).

• Integrating task clustering, mapping, and scheduling in a single process (Sections 3.2

and 3.4).

• An analysis of different neighborhood functions and two heuristic search techniques,

simulated annealing and tabu search (Section 4.4).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

130

The remainder of this paper is organised as follows: Section 2 provides an overview of the

mapping/scheduling system and the multiple neighborhood functions based strategy. The

design of neighborhood functions and the integrated clustering, mapping, and scheduling

technique are introduced in Section 3. Experimental results are presented in Section 4, and

finally, concluding remarks are given in Section 5.

2 MAPPING AND SCHEDULING

2.1 Overview

Figure 1 shows an overview of the approach used to find best mapping/scheduling solutions for

applications described as directed acyclic task graphs. Given a task graph and a target

architecture specification which includes processing elements and communication channel

characteristics, a heuristic search is used to generate the best solution. In particular, different

mapping/scheduling solutions (neighbors) are generated using multiple neighborhood functions

iteratively, and an overall processing time, which is the time to finish all tasks, is calculated for

each solution and used as the cost to guide the search. The goal is to find a solution with

minimum overall processing time.

2.2 Multiple neighborhood functions

Heuristic search techniques can be applied to solve combinatorial optimization problems even

though they do not guarantee optimal solutions. The basis of these techniques is neighborhood

search, which starts with a feasible solution and attempts to improve it by searching its

neighbors, i.e. solutions that can be reached directly from the current solution by an operation

called a move [34]. This process is repeated until a local optimum or the termination condition

is reached. Examples of advanced neighborhood search techniques are simulated annealing and

tabu search [35]. In these techniques, the design of a neighborhood function, also known as a

move function in the literature, is vital and there is no standard solution [33].

Directed acyclic

task graph

Architecture

description

Task cluster, mapping, and scheduling

Mapping &

scheduling solution

Heuristic

search with

multiple

neighborhood

functions

Cost

calculator

Mapping &

Scheduling

Solution

Overall

processing

time

single

neighborhood

functions

Fig. 1. Overview of the clustering, mapping, and scheduling system with multiple neighborhood functions.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

131

Simulated annealing accepts not only neighbors that improve on the previously best solutions,

but also those that increase the cost. The following probability function is used to determine

whether to accept a neighbor:

)/))()(((Tccostbcostexpp −= (1)

where b is the best neighbor and c is the current neighbor, T is called the temperature and is

updated as: T =αT, where α is a constant and typically in the range of 0.9 to 0.99. Instead of

using a single neighborhood function, a strategy involving multiple neighborhood functions is

proposed. As shown in Figure 2, a feasible solution is initially generated and a neighborhood

function is chosen to generate a new neighbor. If the new neighbor yields lower cost than the

best previous solutions, it is accepted, i.e. a move from previous solution to the new one.

Otherwise, acceptance of this new neighbor depends on the probability function. If there is no

improvement after iterating a given number of times, a new neighborhood function is chosen to

replace the old one. In this work, two neighborhood functions are used alternately, and the

search ends when neither neighborhood function produces better solutions.

Generate initial

solution

 Generate

neighborhood using

single NF

N

Y

Record the solution

Output the best

solution found

Find better

solution?

Accept solution

based on PF?

Y

N

Both NFs yield

no improvement?
Change NF

Y

N

Fig. 2. Simulated annealing with multiple neighborhood function strategy. PF: probability function, NF:

neighborhood function.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

132

Tabu search keeps a list of the searched space and uses it to guide the future search direction; it

can forbid the search moving to some neighbors. The proposed tabu search is based on multiple

neighborhood functions (Figure 3). After an initial solution is generated, two neighborhood

functions are used to generate neighbors simultaneously. If there exists a neighbor of lower cost

than the best solution so far and it cannot be found in the tabu list, this neighbor is recorded.

Otherwise a neighbor that cannot be found in the tabu list is recorded. If all the above

conditions cannot be fulfilled, the solution in the tabu list with the least degree, i.e. the solution

being resident in the tabu list for the longest time, is recorded. If the recorded solution has a

smaller cost than the best solution so far, it is recorded as the best solution. The searched

neighbors are added to tabu list and solutions with the least degree are removed. This process is

repeated until the search cannot find a better solution for a given number of iterations.

3 METHODOLOGY

3.1 Directed acyclic task graph

Given a set of tasks TK = {tk1, tk2, ..., tkn} to be executed, a directed acyclic graph can be

defined as G = (TK, DF). Each task tki is a node in the graph and DF = {dfij ; i = 1, 2, ..., n; j =

1, 2, ..., n} is a set of directed edges corresponding to data flow dependencies between tasks.

Each edge dfij 2 DF denotes an amount of data flow from task tki to tkj , so tki is a predecessor

of tkj , and conversely, tkj is a successor of tki. The number of nodes and edges are defined as

|TK| and |DF| respectively. Given a set of interconnected heterogeneous processing elements PE

= {pe1, pe2, ..., pem}, each task node tki of the task graph is associated with a set {ti1, ti2, ..., tim}

that denotes the execution times for implementing this task on each processing element of PE.

The time to transfer results between tasks can be represented as DT = {dtij ; i = 1, 2, ..., n; j = 1,

2, ..., n}, each dtij denoting the time to transfer results from task tki to tkj . This is calculated as

the amount of data flow dfij divided by the data transfer rate.

Generate initial

solution

 Generate

neighborhoods

using two NFs

N

Y

Select a solution

in tabu list with

the least degree

Record the

solution

Output the best

solution found

Find better

solution?

Find a solution

not in tabu list?

Cannot find

better solution?

Y

N

Fig. 3. Tabu search with multiple neighborhood function strategy. NF: neighborhood function.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

133

3.2 Integrated mapping and scheduling

In the integrated approach, mapping and scheduling are performed as a single step. Given a set

of task lists PL = {pl1, pl2, ..., plm}, where plj = (asj1, asj2, ..., asjq) is an ordered task sequence to

be executed by processing element pej, each task in plj will be processed by pej in sequence

when it is ready for execution, in other words, when all of its predecessors are finished. Task

mapping and scheduling thus deal with assigning tasks to task lists. A task assignment function

is defined as A: TK → PL, e.g. A(tki) = asjk denotes task tki being assigned to asjk of list plj.

This means that tki is the kth task to be executed by processing element pej. A

mapping/scheduling solution is characterized by assignments of all tasks to processing elements,

i.e. for every task tki in TK, A(tki) = asjk for a plj in PL. It is assumed that only one task can be

assigned to each asij . Based on this formulation, simulated annealing and tabu search based on

multiple neighborhood functions are then applied to modify the task assignment and generate

mapping/scheduling solutions (neighbors) iteratively.

In the separate approach, tasks are first mapped to processing elements, and each processing

element contains a set of un-ordered tasks to be executed. A list scheduling technique is then

used to determine the execution orders of tasks. For instance, the best task mapping can be

found using heuristic search techniques, and a longest-execution-time-first scheduling method

iteratively move

tasks between

job lists

(generating

neighbors)

schedule tasks

within each

processor

tk1

tk3

tk4

tk2

CPU FPGA

idle

as21

as22

as23

as11

as12

as13

idle

t=100

t=500

t=600

Final solution

tk1

tk3

tk4

tk2

CPU FPGA

idle

generate initial

solution using

A(tki)

as21

as22

as23

as11

as12

as13

as14 as24

idle

idle

idle

CPU

tk1
tk4

FPGA

tk2 tk3

map tasks to

processors

tk1

tk2

tk4

tk3

CPU FPGA

idle

idle

idle

idle

t=100

t=300

t=700

t=800

Final solution

df12

tk1

tk2

tk4

tk3

df13

df34

tk1 : {t11=1000, t12 = 100}

tk2 : {t21=200, t22 = 400}

tk3 : {t31=400, t32 = 2000}

tk4 : {t41=1000, t42 = 100}

df12=10

df13=30

df34=20

 FPGA time CPU time

separate

approach

in [16]

integrated

mapping and

scheduling

Fig. 4. An example of a directed acyclic task graph and its mapping/scheduling solutions using the

separate approach in [16] and an integrated mapping and scheduling approach (Section 3.2), where ti1

and ti2 denote the execution time of task tki on FPGA and CPU respectively, and dfij is the amount of

data flow between task tki and tkj. In the separate approach, due to inappropriate task mapping, where

tk1 and tk4 are mapped to the CPU and the others to the FPGA, a poor scheduling solution is generated

that execute tasks tk2 and tk3 in sequential order. In the integrated mapping and scheduling approach, as

the mapping and scheduling of tasks are less constrained, a better solution is generated after moving

task tk3 from the CPU to FPGA.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

134

is used to determine the execution orders of tasks [16]. In contrast to the separate approach with

constrained execution order, execution orders of tasks can be changed in the integrated

approach. The search space of the integrated approach is much larger and results in a higher

chance of covering good solutions. Figure 4 illustrates an example in which a task graph and

the corresponding mapping/scheduling solutions using the separate approach in [16] and the

integrated approach, where ti1 and ti2 are the execution times of task tki on an FPGA and CPU

respectively. In the separate approach, due to inappropriate task mapping, where tk1 and tk4 are

mapped to the CPU and the others to the FPGA, a poor scheduling solution is generated that

executes tasks tk2 and tk3 in sequential order. In the integrated mapping and scheduling

approach, as the mapping and scheduling of tasks are less constrained, a better solution is

generated after moving task tk3 from the CPU to FPGA.

Since the search space of the integrated approach is much larger, finding good solutions can be

more challenging. A multiple neighborhood function strategy is thus proposed to increase the

diversification of solutions and help to find better solution. Details of this strategy are

introduced in Section 2.2.

RanRlo: random task relocation

step (1) Randomly select a task from list plp position aspq.

step (2) Randomly select another task at list plj position asjk.

step (3) Relocate task from (plp, aspq) to (plj , asjk).

GudRlo: guided task relocation

step (1) Randomly select a task at list plp position aspq.

step (2) For all lists plj in PL and positions asjk:

Relocate task (plp, aspq) to (plj, asjk) which yields lowest cost.

RanRloClu: random relocation with task clustering

step (1) Perform step (1) to (3) of RanRlo.

step (2) Relocate largest data flow parent of task (plp, aspq) to a position in plj which yields lowest

cost.

step (3) Accept such relocation if the cost is lower.

GudRloClu: guided relocation with task clustering

step (1) Perform step (1) to (2) of GudRlo.

step (2) Relocate largest data flow parent of task (plp, aspq) to a position in plj which yields lowest

cost.

step (3) Accept such relocation if the cost is lower.

RanSwp: random task swap

step (1) Randomly select a task at list plp position aspq.

step (2) Randomly select another task at list plj position asjk.

step (3) Swap task in (plp, aspq) with task in (plj , asjk).

GudSwp: guided task swap

step (1) Randomly select a task at list plp position aspq.

step (2) For all lists plj in PL and positions asjk:

Swap task (plp, aspq) with task (plj, asjk) which yields lowest cost.

BstRlo: best task relocation

step (1) For all lists plp in PL and positions aspq:

Relocate task (plp, aspq) to every list plj in PL and position asjk,

setp (2) Choose the relocation which yields lowest cost.

Fig. 5. Seven basic neighborhood functions used in this work. Neighborhood functions RanRloClu and

GudRloClu further integrate clustering process with mapping and scheduling by employing step (2) in

these two functions.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

135

3.3 Neighborhood functions
Given that s denotes the current mapping/scheduling solution, Figure 5 shows the seven basic

neighborhood functions, NFx(s), adopted. RanRlo and GudRlo accept a mapping/scheduling

solution; relocate a task from one task list to another and form a new neighbor. While RanRlo

relocates tasks randomly, GudRlo chooses the best relocation position for a randomly selected

task. In contrast to these two relocation based neighborhood functions, RanSwp and GudSwp

swap the positions of two tasks and generate a new neighbor. In particular, RanSwp swaps the

positions of two randomly selected tasks, and GudSwp randomly selects a task and chooses the

best swapping position for this task.

Apart from the neighborhood functions introduced above, one more neighborhood function,

BstRlo, which uses a best-relocation strategy [19], is analysed. This neighborhood function

searches all possible relocations for all tasks, and chooses the one which yields lowest cost as

the new neighbor.

3.4 Integrated clustering, mapping, and scheduling

Based on the observation that mapping tasks with large data flow to the same processing

element can potentially reduce data transfer overhead, a clustering technique, which attempts to

group tasks with large data flow and allocate them to the same processing elements has been

proposed [16]. However, clustering, mapping, and scheduling were solved separately in

previous works, which give sub-optimal results. This work thus proposes two new

neighborhood functions, RanRloClu and GudRloClu, which integrate the clustering technique

into the neighborhood function, i.e. after relocating a task to another task list, move the parent

which has the largest data flow among all parents of the current task to the same task list. If

such a move yields lower cost, we accept this move and generate a new neighbor, otherwise,

discard it. As mapping and scheduling have already been integrated (Section 3.2), by further

combining clustering, neighborhood functions RanRloClu and GudRloClu thus integrate

clustering, mapping, and scheduling in a single neighborhood function.

Share Memory

CPU

Local

Memory

DSP

Local

Memory

Bus

FPGA

Local

Memory

CPU

Local

Memory

DSP

Local

Memory

FPGA

Local

Memory

(a) (b)

Fig. 6. Two reference architecture models of heterogeneous computing systems: (a) Loosely-coupled

architecture with fully-connected communication. (b) Tightly-coupled architecture with bus

communication.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

136

3.5 Cost function

As mentioned before, overall processing time is used as the cost to guide the heuristic search.

This is the time for processing all tasks using the reference heterogeneous computing system

and includes data transfer time. The processing time of a task tki on processing element pek is

calculated as the execution time of tki on pek plus the time to retrieve results from all of its

predecessors. The data transfer time between a task and a predecessor is assumed to be zero if

they are assigned in the same processing element.

It is noted that tasks cannot be arbitrarily moved due to data dependencies, i.e. a task cannot be

moved to a location such that it will execute prior to its predecessor. To avoid generating such

infeasible solutions, our approach inflicts a large penalty cost in such cases.

4 RESULTS

4.1 Reference architecture

Multiprocessors systems can be tightly-coupled or loosely-coupled [36]. In a tightly-coupled

architecture, shared memory is used to communicate between processing elements, data sent

from one processing element are buffered in shared memory before being read by another

processing element. However, shared memory is not used in a loosely-coupled architecture.

Data are sent from one processing element to another directly without buffering. In this work,

performance of the proposed mapping/scheduling system is evaluated on both architectures

although generalisations are possible.

Figure 6 shows the two reference heterogeneous computing systems analysed: a loosely-

coupled architecture with fully-connected communication having low communication

contention, and a tightly-coupled architecture with bus communication having high

communication contention. Both systems contain three processing elements: one

microprocessor, one FPGA, and one DSP processor. Each processing element has a local

memory for data storage during task execution, and results of a task’s predecessors must be

transferred to the local memory before this task starts execution. For example, if a task tki is

assigned to the CPU and its predecessor tkj is running on the FPGA, before tki can start

execution, the results of tkj must be transferred from the FPGA to the local memory of the CPU.

4.2 Experimental setup

The neighborhood size for the tabu search is 10 and the tabu list length is 10. The search

terminates if it cannot find a better solution after 200 iterations. In simulated annealing, the

cooling rate α is 0.99, and it changes neighborhood function if current function yields no

improvement after 200 iterations.

The experimental data set consists of randomly generated task graphs and task graphs of five

real applications.

The following parameters are involved in generating random task graphs:

• GS: Graph size, it is defined as the number of tasks in a task graph.

• ANS: Average number of immediate successors per task in a task graph.

• CCR: Computation to communication ratio, which is the ratio between average

processing time of tasks and average data transfer time among tasks in a task graph.

• TA: The target architecture used to evaluate the speedup of mapping/scheduling

solutions, i.e. the fully connected or bus architecture (Section 4.1).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

137

Directed acyclic task graphs with GS from 10 to 80, ANS from 2 to 5, and CCR from 0.1 to

100 are analyzed, 10 task graphs of each configuration are generated.

4.3 Performance evaluation

The overall processing time using a single CPU is divided by the overall processing time using

the reference heterogeneous computing system to obtain a speedup:

systemreference

CPUgle

timeprocessingoverall

timeprocessingoverall
speedup

sin
= (2)

Two factors: average speedup and speedup improvement are used to measure the performance

of different experimental setups. They are defined as follows:

• Average Speedup: Each experimental setup is run for a given duration (time constraint)

and the best speedup (BSU) is recorded. An average BSU of 10 runs is calculated and

used as an average speedup, which represents the average quality of

mapping/scheduling solutions a particular experimental setup can achieve. A higher

average speedup means the solution is better.

• Speedup Improvement: Assume that the average speedups of two experimental setups,

S1 and S2, are su1 and su2 respectively. The speedup improvement of su1 over su2 is

calculated as:

%100
2

21
×

−
=

su

susu
timprovemenspeedup (3)

Hence, a larger speedup improvement means the mapping/scheduling solution found by

S1 is better.

TABLE 2

Average speedups of seven basic neighborhood functions. Experimental setup: target architecture =

fully connected, data set = random graphs, average number of successors per task (ANS) = 2,

computation to communication ratio (CCR) = 10. TABU: Tabu search, SA: simulated annealing.
Search

method

Neighborhood

function

Graph size (No. of tasks)

10 30 50 80

TABU

RanSwp 3.07 3.81 3.08 3.05

GudSwp 3.10 4.35 3.70 3.30

BstRlo 3.34 5.43 5.00 3.41

RanRlo 3.33 5.35 4.99 4.43

RanRloClu 3.34 5.59 5.23 4.75

GudRloClu 3.34 6.45 6.82 6.81

GudRlo 3.34 6.46 6.81 6.82

SA

RanSwp 3.04 4.90 4.17 3.65

GudSwp 2.98 4.56 4.51 4.22

BstRlo 3.34 5.78 5.57 5.49

RanRlo 3.22 5.69 5.85 5.76

RanRloClu 3.24 5.74 5.90 5.60

GudRloClu 3.34 6.37 6.59 6.50

GudRlo 3.34 6.39 6.58 6.56

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

138

TABLE 3

Average speedups of multiple neighborhood functions. For instance, (RanSwp,GudSwp) means using

both

neighborhood functions RanSwp and GudSwp. Experimental setup: target architecture = fully connected,

data set = random graphs, average number of successors per task (ANS) = 2, computation to

communication ratio (CCR) = 10. TABU: tabu search, SA: simulated annealing.

Search

method

Multiple neighborhood

functions

Graph size (No. of tasks)

10 30 50 80

TABU

(RanSwp, GudSwp) 3.07 4.63 3.94 3.47

(RanRloClu, RanSwp) 3.34 5.41 4.92 4.32

(RanRlo, RanSwp) 3.34 5.66 4.99 4.43

(RanRloClu, GudRloClu) 3.34 6.40 6.62 6.55

(GudRloClu, RanSwp) 3.34 6.42 6.62 6.57

(RanRlo, GudRloClu) 3.34 6.40 6.65 6.59

(GudRlo, RanSwp) 3.34 6.44 6.64 6.60

(RanRloClu, GudSwp) 3.34 6.45 6.91 7.08

(RanRlo, GudSwp) 3.34 6.42 6.90 7.10

(GudRlo, GudSwp) 3.34 6.50 7.00 7.13

(GudRloClu, GudSwp) 3.34 6.51 7.04 7.17

SA

(RanSwp, GudSwp) 2.99 4.83 4.70 4.07

(RanRloClu, GudRloClu) 3.34 6.37 6.48 6.37

(GudRlo, RanRlo) 3.34 6.35 6.53 6.43

(RanRlo, GudRlo) 3.33 6.34 6.52 6.45

(RanRloClu, RanSwp) 3.29 6.21 6.52 6.45

(GudRloClu, RanRloClu) 3.34 6.36 6.63 6.50

(GudRlo, RanSwp) 3.34 6.43 6.67 6.59

(RanSwp,,RanRloClu) 3.34 6.44 6.73 6.64

(RanSwp, RanRlo) 3.34 6.44 6.69 6.64

(RanRlo, RanSwp) 3.29 6.20 6.59 6.68

(GudSwp, RanRloClu) 3.32 6.28 6.60 6.75

(GudSwp, RanRlo) 3.32 6.28 6.62 6.76

(GudRloClu, RanSwp) 3.34 6.44 6.77 6.67

(RanRloClu, GudSwp) 3.28 6.28 6.72 6.86

(RanRlo, GudSwp) 3.28 6.29 6.72 6.93

(GudRlo, GudSwp) 3.34 6.46 6.84 6.98

(GudRloClu, GudSwp) 3.34 6.46 6.86 7.01

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

139

Fig. 7. Average speedup comparison between strategies with single and multiple neighborhood functions.

The percentages show the speedup improvement of using multiple neighborhood functions over single

neighborhood function strategy. Experimental setup: target architecture = fully connected, data set =

random graphs, average number of successors per task (ANS) = 2, computation to communication ratio

(CCR) = 10.

4.4 Single and multiple neighborhood functions

Tables 2 and 3 show the average speedup obtained using integrated approach with single and multiple

neighborhood functions respectively. The results of using the strategy with two neighborhood functions

are designated by the notation (NFa, NFb). For simulated annealing, this notation also denotes the order

to choose the neighborhood function: NFa is used first to generate neighbors, changing to NFb if there is

no improvement after 200 iterations. The notation (NFa) means using a single neighborhood function

NFa. Average speedups of different neighborhood functions are obtained by given the same search time

constraint, in particular, the search time constraints for graph size 10, 30, 50, and 80 are 10, 30, 50, and

80 seconds respectively.

Fig. 8. Speedup improvement of the clustering technique using (GudRloClu,GudSwp) over the non-

clustering approach using (GudRlo,GudSwp) for different computation to communication ratios.

Experimental setup: data set = random graphs, graph size = 80 tasks, average number of successors per

task (ANS) = 2.

Fig. 9. Speedup improvement of the clustering technique using (GudRloClu,GudSwp) over the non-

clustering approach using (GudRlo,GudSwp) for different ANSes. Experimental setup: data set =

random graphs, graph size = 80 tasks, computation to communication ratio (CCR) = 1.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

140

In Table 2, both results obtained using tabu search and simulated annealing shows that

GudRloClu and GudRlo achieve the highest average speedup: their values are almost twice as

much as others for most problem instances.

Table 3 shows the average speedups of using multiple neighborhood functions. It is found that

the two neighborhood functions strategy with clustering i.e. using (GudRloClu,GudSwp),

achieves highest speedup. Both tables 2 and 3 show that tabu search outperforms simulated

annealing.

An average speedup comparison between single and multiple neighborhood functions is shown

in Figure 7. This clearly shows that using a strategy with two neighborhood functions yields

higher speedup than a single neighborhood function. The improvement is more significant for

larger problem sizes. For instance, using (GudRloClu,GudSwp) with tabu search outperforms

GudRloClu with tabu search by 5.3% for the case with 80 tasks, and using

(GudRloClu,GudSwp) with simulated annealing outperforms GudRloClu with simulated

annealing by 7.8%. Figure 7 shows that tabu search with (GudRloClu,GudSwp) achieves the

highest speedup, which is actually the highest among all experimental setups chosen in this

work; this strategy is used later in our experiments with real applications (Section 4.6).

Fig. 10. Speedup improvement of this work over a separate approach in [16] for different

computation to communication ratios. Experimental setup: data set = random graphs, graph size = 80

tasks, average number of successors per task = 2.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

141

4.5 Clustering technique

Figure 8 shows the speedup improvement of the proposed clustering technique over the non-

clustering approach for different computation to communication ratios. It is found that the

speedup is significantly improved for high data contention cases, e.g. an improvement of

114.5% is obtained using a bus architecture with CCR equal to 0.1. On average, the clustering

technique achieves higher improvement on bus architecture. The speedup improvements for

different number of successors are shown in Figures 9. Bus architecture still achieves higher

improvement and the improvement is higher for the cases of large number of successors which

have higher data contention. These results reflect that the clustering technique is able to reduce

communication overhead.

Table 4 shows the speedup improvements of this work over two other approaches: a best-

relocation based integrated approach [19], and a separate approach proposed in [16] where tabu

search was found to yield best performance. Our approach outperforms both approaches in all

problem instances; the improvement is more significant for larger problems, it is 16.2% higher

than the separate approach and 110.3% higher than the best relocation based approach for the

case with 80 tasks. Figure 10 and 11 shows the speedup improvement of the proposed

integrated approach over the separate approach. It is found that the integrated approach

Fig. 11. Speedup improvement of this work over a separate approach in [16] for different average

number of successors per task. Experimental setup: data set = random graphs, graph size = 80 tasks,

computation to communication ratio = 10.

TABLE 4

Speedup improvements of this work over other two approaches using random graphs. SEP: separate

approach, INT: integrating mapping and scheduling only. This work uses tabu search with neighborhood

functions

(GudRloClu,GudSwp). Experimental setup: target architecture = fully connected, data set = random

graphs, computation to communication ratio = 10.

Graph size (No. of task) 10 30 50 80

SEP, TABU [16] 0.9% 10.5% 13% 16.2%

INT, TABU [19] 0% 19.9% 40.8% 110.3%

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

142

outperforms the separate approach in most of the cases. However, their performance is similar

for cases with high data contention, e.g. bus architecture with CCR equals to 0.1. This is

because tasks are intended to be mapped to one processing element in such a case. The separate

approach which is mapping biased can thus generate similar solutions. In Figure 10, one can

also see that the speedup improvement decreases for cases with lower data contention. This is

because lower communication demands diminish the advantage of the clustering technique

which is designed to reduce data transfer overhead.

4.6 Real applications

Apart from random graphs, the commonly used butterfly structure for the fast Fourier transform

(FFT) [37] is used as an additional example. A 32-point FFT containing 80 butterfly nodes with

each node regarded as a single task is used. The execution time of each node is measured for

processing 1.0×10
7
 32-point FFTs, and the communication speed is assumed to be 1.0×10

8
 data

elements per second. For an Intel Pentium-4 3.2GHz microprocessor and an Atmel mAgic

floating-point digital signal processor [38] the execution times of each node are 384ms and

100ms respectively. A fully pipelined architecture for the butterfly node has been developed for

a Xilinx Virtex-II XC2V6000 FPGA [39] using the Haydn design-flow [40]. The execution

time for this architecture is 91ms.

TABLE 5

Speedup improvements of this work over other two approaches for different search time constraints using

FFT. This work uses tabu search with neighborhood functions (GudRloClu,GudSwp).

Time constraint (s) 10 30 30

SEP, TABU [16] 4.3% 9.1% 10.1%

INT, TABU [19] 158.1% 153% 138.5%

Fig. 12. Normalized average speedup for various applications given a 30-second search time

constraint and the speedup improvement of this work over the other two approaches. This work uses

tabu search with neighborhood functions (GudRloClu,GudSwp).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

143

Table 5 illustrates the speedup improvements for different search time constraints. One can see

that solutions with higher speedup can be found using an integrated approach with tabu search

and (GudRloClu,GudSwp). The maximum improvement is 10.0% over the separate approach

and 158.1% higher than the best relocation based approach which uses neighborhood function

BstRlo.

Besides FFT, five more applications are employed to evaluate the proposed approach in this

work; these include FIR filtering, hidden Markov model (HMM) decoding for pattern

recognition, matrix multiplication, Gaussian elimination, and the molecular dynamics code

used in [8]. Figure 12 illustrates the normalized average speedup given a 30-second search time

constraint, the proposed multiple neighborhood function strategy outperforms the other two

approaches in all cases, the corresponding improvements over the separate approach are 18.3%,

4.5%,

13.2%, 6.1%, and 14.8% respectively. The improvements for HMM is less significant; one

reason is that the amount of data flow is smaller in these two applications, so the penalty of

inappropriate task mapping using the separate approach is also less significant.

5 CONCLUSIONS

An integrated hardware/software codesign approach using multiple neighborhood function

strategy is presented where clustering, mapping, and scheduling are integrated in a single step.

It is found that the clustering technique outperforms a non-clustering approach and the average

speedup can be further improved using the multiple neighborhood function strategy. For

instance, using the clustering technique, the average speedup can be improved by up to 114.5%,

and the multiple neighborhood function strategy can improve the average speedup by up to

7.8%. Experimental results obtained using both randomly generated task graphs and six real

applications show that the proposed integrated approach with multiple neighborhood functions

is superior to previous approaches in terms of speedup by up to 18.3%. Current and future work

includes exploring opportunities for carrying out mapping and scheduling at run time, and

extending the proposed approach to cover a wide range of applications and systems.

Acknowledgement The support of Macao Science and Technology Development Fund (Grant

No. 058/2010/A) is gratefully acknowledged.

REFERENCES
[1] K. R. Pattipati, T. Kurien, R. T. Lee, and P. B. Luh, “On Mapping a Tracking Algorithm Onto

Parallel Processors,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 5, pp. 774–

791, 1990.

[2] T. Pop, P. Eles, and Z. Peng, “Holistic Scheduling and Analysis of Mixed Time/Event-Triggered

Distributed Embedded Systems,” in Proceedings of the tenth International Symposium on

Hardware/software Codesign, 2002, pp. 187–192.

[3] Y. K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task Graphs to

Multiprocessors,” ACM Computing Surveys, vol. 31, no. 4, pp. 406–471, 1999.

[4] Y. Shin and K. Choi, “Enforcing schedulability of multi-task systems by hardware-software

codesign,” in Proceedings of the Fifth International Workshop on Hardware/Software Codesign, 1997,

pp. 3–7.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

144

[5] Y. Guo, C. Hoede, and G. Smit, “A pattern selection algorithm for multi-pattern scheduling,” in

Proceedings of the Parallel and Distributed Processing Symposium, 2006, pp. 25–29.

[6] I. Ahmad, M. K. Khodhi, and R. UI-Mustafa, “DPS: Dynamic Priority Scheduling Heuristic for

Heterogeneous Computing Systems,” IEE Proceedings of Computers and Digital Techniques, vol. 145,

no. 6, pp. 411–418, 1998.

[7] G. C. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-Constrained

Heterogeneous Processor Architecture,” IEEE Transactions on Parallel and Distributed Systems, vol. 4,

no. 2, pp. 175–187, 1993.

[8] H. Topcuoglu, S. Hariri, and M. Y. Wu, “Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing,” IEEE Transactions on Parallel and Distributed Systems, vol.

13, no. 3, pp. 260–274, 2002.

[9] M. Hosseinzadeh and H. S. Shahhoseini, “Earliest Starting and Finishing Time Duplication-Based

Algorithm,” in Proceeding of the International Symposium on Performance Evaluation of Computer and

Telecommunication Systems, 2009, pp. 49–56.

[10] D. Bozda˘g, F. ¨Ozg¨uner, and U. V. Catalyurek, “Compaction of Schedules and a Two-Stage

Approach for Duplication-Based DAG Scheduling,” IEEE Transactions on Parallel and Distributed

Systems, vol. 20, no. 6, pp. 857–871, 2009.

[11] H. Liu and D. F. Wong, “Integrated Partitioning and Scheduling for Hardware/Software Co-design,”

in Proceedings of the IEEE International Conference on Computer Design: VLSI in Computers and

Processors, 1998, pp. 609–614.

[12] M. Y. Wu, W. Shu, and J. Gu, “Efficient Local Search for DAG Scheduling,” IEEE Transactions on

Parallel and Distributed Systems, vol. 12, no. 6, pp. 617–627, 2001.

[13] S. C. Kim, S. Lee, and J. Hahm, “Push-Pull: Deterministic Search-Based DAG Scheduling for

Heterogeneous Cluster Systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no.

11, pp. 1489–1502, 2007.

[14] J. I. Hidalgo and J. Lanchares, “Functional Partitioning for Hardware-Software Codesign Using

Genetic Algorithms,” in Proceedings of the 23rd EUROMICRO Conference on New Frontiers of

Information Technology, 1997, pp. 631–638.

[15] S. Banerjee and N. Dutt, “Efficient Search Space Exploration for HW-SW Partitioning,” in

Proceedings of the International Symposium on Hardware/software Codesign and System Synthesis,

2004, pp. 122–127.

[16] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Hardware/Software Codesign: A Systematic

Approach Targeting Data-intesive Applications,” IEEE Signal Processing Magazine, vol. 22, no. 3, pp.

14–22, May 2005.

[17] H. Yu, “A Hybrid GA-based Scheduling Algorithm for Heterogeneous Computing Environments,”

in Proceedings of the IEEE Symposium on Computational Intelligence in Scheduling, 2007, pp. 87–92.

[18] L. Shang, R. P. Dick, and N. K. Jha, “SLOPES: Hardware-Software Cosynthesis of Low-Power

Real-Time Distributed Embedded Systems With Dynamically Reconfigurable FPGAs,” IEEE Trans on

Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 3, pp. 508–526, 2007.

[19] S. C. S. Porto and C. C. Ribeiro, “A Tabu Search Approach to Task Scheduling on Heterogeneous

Processors under Precedence Constraints,” International Journal of High-Speed Computing, vol. 7, pp.

45–71, 1995.

[20] Y. M. Lam, J. G. F. Coutinho, W. Luk, and P. H. W. Leong, “Integrated Hardware/Software

Codesign for Heterogeneous Computing Systems,” in Proceedings of the IEEE IV Southern

Programmable Logic Conference, 2008, pp. 217–220.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

145

[21] H. Barada, S. M. Sait, and N. Baig, “Task Matching and Scheduling in Heterogeneous Systems

Using Simulated Evolution,” in Proceedings of the IEEE International Symposium on Parallel and

Distributed Processing, 2001, pp. 875–882.

[22] Y. W. Wong, R. S. M. Goh, S. H. Kuo, and M. Y. H. Low, “A Tabu Search for the Heterogeneous

DAG Scheduling Problem,” in Proceeding of the International Conference on Parallel and Distributed

Systems, 2009, pp. 663–670.

[23] S. Gupta and G. Agarwal, “Task Scheduling in Multiprocessor System Using Genetic Algorithm,”

in Proceeding of the Second International Conference on Machine Learning and Computing, 2010, pp.

267–271.

[24] A. Bednarski and C. Kessler, “Integer Linear Programming versus Dynamic Programming for

Optimal Integrated VLIW Code Generation,” in Proceedings of the 12th International Workshop on

Compilers for Parallel Computers, 2006, pp. 73–85.

[25] S. O. M. F. Redaelli, M. D. Santambrogio, “An ILP formulation for the Task Graph Scheduling

Problem tailored to bi-dimensional Reconfigurable,” in Proceeding of the International Conference on

Reconfigurable Computing and FPGAs, 2008, pp. 97–102.

[26] R. Cordone, F. Redaelli, M. A. Redaelli, M. D. Santambrogio, and D. Sciuto, “Partitioning and

Scheduling of Task Graphs on Partially Dynamically Reconfigurable FPGAs,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 5, pp. 662–675, 2009.

[27] M. M. Rahman and M. F. I. Chowdhury, “Examining Branch and Bound Strategy on Multiprocessor

Task Scheduling,” in Proceeding of the International Conference on Computer and Information

Technology, 2009, pp. 162–167.

[28] L. Yang, T. Gohad, P. Ghosh, D. Sinha, A. Sen, and A. Richa, “Resource Mapping and Scheduling

for Heterogeneous Network Processor Systems,” in Proceedings of the IEEE International Symposium

on Architecture for networking and communications systems, 2005, pp. 19–28.

[29] J. Cong, K. Gururaj, and G. Han, “Synthesis of Reconfigurable High-performance Multicore

Systems,” in Proceeding of the ACM/SIGDA International Symposium on Field Programmable Gate

Arrays, 2009, pp. 201–208.

[30] T. D. Braun, H. J. Siegel, N. Beck, L. L. B¨ol ¨oni, M. Maheswaran, A. I. Reuther, J. P. Robertson,

M. D. Theys, and B. Yao, “A Comparison of Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed Computing Systems,” Journal of Parallel and

Distributed Computering, vol. 61, pp. 810–837, 2001.

[31] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Comparing Three Heuristic Search Methods for

Functional Partitioning in Hardware-Software Codesign,” Journal on Design Automation for Embedded

Systems, vol. 6, no. 4, pp. 425–449, 2002.

[32] T. C. Hu, “Parallel Sequencing and Assembly Line Problems,” Operations Research, vol. 9, no. 6,

pp. 841–848, 1961.

[33] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity.

Dover Publications, Inc, 1998.

[34] C. R. Reeves, “Modern Heuristic Techniques,” in Modern Heuristic Search Methods, V. J.

Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith, Eds. John Wiley & Sons Ltd, 1996, pp. 1–

25.

[35] E. Aarts and J. K. Lenstra, Local Search in Combinatorial Optimization. John Wiley & Sons Ltd,

1997.

[36] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. Pitman publishing,

1989.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

146

[37] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach. The McGraw-Hill Companies,

Inc, 2002.

[38] Atmel DIOPSIS 740 Dual-core DSP datasheet, Atmel Corporation, 2004.

[39] Virtex-II Platform FPGAs: Complete Data Sheet, Xilinx Inc., 2005.

[40] J. G. F. Coutinho, J. Jiang, andW. Luk, “Interleaving Behavioral and Cycle-Accurate Descriptions

for Reconfigurable Hardware Compilation,” in Proc. of the IEEE Symposium on FCCM, 2005, pp. 245–

254.

