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Abstract                                                                                                                                                         
The problem of ranking popular items is getting increasing interest from a number of research areas. 

Several algorithms have been proposed for this task. The described problem of ranking and suggesting 

items arises in diverse applications include interactive computational system for helping people to 

leverage social information; in technical these systems are called social navigation systems. These social 

navigation systems help each individual in their performance and decision making over selecting the 

items. Based on the each individual response the ranking and suggesting of popular items were done. The 

individual feedback might be obtained by displaying a set of suggested items, where the selection of items 

is based on the preference of the individual. The aim is to suggest popular items by rapidly studying the 

true popularity ranking of items. The difficulty in suggesting the true popular items to the users can give 

emphasis to reputation for some items but may mutilate the resulting item ranking for other items. So the 

problem of ranking and suggesting items affected many applications including suggestions and search 

query suggestions for social tagging systems. In this paper we propose Naïve Bayes algorithm for 

ranking and suggesting popular items. 

Keywords                                                                                                                  
Label ranking, suggesting, computational systems, col laborat ive filtering, preferential 

attachment, mutilate, true popular item sets, tagging systems, suggested itemsn and ranking 

rules. 

1. INTRODUCTION  

    About Naive Bayes 

Our work is completely based on the Bayes theory. We want to  propose Naive Bayes algorithm 

that is based on conditional probabilities. Ranking uses Bayes theory concepts.A Bayes theorem 

is a mathematical formula that calculates probability by including the frequency of values and 

combinations of values in the chronological data. Bayes theorem finds the probability of an 

event occurring in the probability of another event that has already occurred. If B represents the 

dependent event and A represents the prior event, then the Bayes' theorem can be stated as 

follows. 
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Bayes' Theorem, published posthumously in the eighteenth century by Reverend Thomas 

Bayes, says that you can use conditional probability to make predictions in reverse! It is very 

powerful. 

For Naïve Bayes, supervised binning is performed by automatic data preparation. Decision trees 

are used by supervised binning to create the optimal bin boundaries. Both categorical and 

numerical attributes are binned. 

The missing values in Naive Bayes are handled naturally as missing at random. The Naïve 

Bayes algorithm replaces sparse numerical data with zeros and sparse categorical data with zero 

vectors. The missing values in nested columns are interpreted as sparse and the missing values 

in columns with simple data types are interpreted as missing at random. 

For example, if you want to manage your own data preparation, remember that Naive Bayes 

usually requires supervised binning. Naive Bayes totally relies on counting techniques for 

calculating probabilities. The columns should be binned to reduce the cardinality as suitable. 

The Numerical data can be binned into ranges of values like low, medium, and high. The 

categorical data can be binned into meta-classes like regions instead of cities. Equal-width 

binning is not suggested, since outliers will cause most of the data to concentrate in a few bins, 

sometimes a single bin. As a result, the discriminating power of the algorithms will be 

significantly reduced 

  We suppose the problem of learning the popularity of items that is considered to be a priori 

unidentified but have to be learned from the observed user’s selection of items. Especially, we 

consider systems in which each user is presented with a list of items  called suggested items and 

the user selects a set of favored items that can contain either suggested items or any other items 

preferred by the user. The inventory of suggested items would naturally contain only a small 

subset of popular items. The goal of any inventory system is to efficiently learn the popularity 

of items and suggest popular items to users. The items are suggested to users to make easy tasks 

such as browsing or tagging of the content.  

  Items could be search query keywords, files and any items selected by users from short lists of 

popular items. A precise application is that of tagging of the content where items are tags 

applied by users to content such as books details for their later retrieval or personal information 

management. The basic idea of social tagging is that the user can select any set of tags for an 

information object according to her/his preference. In the majority existing social tagging 

applications, users are offered with tag suggestions that are made based on the history of tag 

selections. The process of learning of item popularity is complicated by the suggesting of items 

to users. In reality, we expect that users would be inclined to select suggested items more 

frequently. There are various reasons for this could happen. For example, “least effort “ where 

users select suggested items, as it is easier than thinking of alternatives. Wherever humans may 

be likely to conform to choices of other users that are reflected in the suggestion set presenting 

a few popular items. Actually, we find indications that such popularity prejudice may happen. If 

the process of suggesting popular items seems to be difficult due to potential popularity 

disorder, why can’t we make suggestions in the first place? There are several reasons for this. 

For example, sometimes suggestions may help to remember what candidate items are. A fasten 

to avoid popularity slant would be to suggest all candidate items and not restrict to a small list 

of few popular items. But this is often impractical for the reasons such as limited user interface 

space, user’s capability to process smaller sets easier, and the triviality of less popular items. 

Consequently, the number of suggestion items in the item set is limited to a small number.  

   In this paper, our goal is to propose Naïve Bayes algorithm for popular items to users in a way 

that enables learning of the users’ true preference over items. The factual first choice refers to 

the preference over items that would be pragmatic from the user’s selections over items without 

revelation to any suggestions. A simple scheme for ranking and suggesting popular items (that 
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appears in common use in practice) presents a fixed number of the most popular items as 

observed from the past item selections. We illustrate an analysis that suggests a simple system 

with a security device to lock down to a set of items that are not the truest popular items if the 

popularity prejudice is sufficiently large, and may vague learning the true predilection over 

items. 

   In this paper, we propose Naïve Bayes algorithm designed to avoid such fortifications and 

offer strict performance analysis of the ranking boundary points and popularity of the suggested 

items.  

 The probability in Naive Bayes algorithm is calculated by dividing the percentage of pair-wise 

occurrences by the percentage of singleton occurrences. If the percentages that are calculated 

are very small for a known predictor, they probably will not contribute to the effectiveness of 

the model. The occurrences below a certain threshold value can usually be disregarded. The 

Naive Bayes algorithm provides a fast, highly scalable model. The algorithm scales linearly 

with the number of predictors and rows. The put up process for Naive Bayes is parallelized. It 

means that scoring can be parallelized irrespective of the algorithm. 

Both binary and multiclass classification problems use Naïve Bayes Algorithm. 

 According to the definition of conditional probability: [1] P(B|A) = P(A and B)/P(A)  

Bayes' Theorem is used to solve for the inverse conditional probability, P(A|B). By definition, 

[2] P(A|B) = P(A and B)/P(B) Solving [1] for P(A and B) and substituting into[2] gives

 Bayes'Theorem:  

P(A|B) = [P(B|A)][P(A)]/P(B)  

Using Bayes'Theorem,  

P(A|B) = [P(B|A)][P(A)]/P(B)  

Example 1 for Bayes theorem:- 

event                                            description probability 

A                                Drawer A has two gold coins 0.5 

B                      Person chooses a gold coin out of the four coins 0.75 

B|A 
 Conditional probability of choosing a gold coin from A if it has two gold 

coins 
1.0 

Using Bayes' Theorem,we  have  

P(A|B) = [P(B|A)][P(A)]/P(B) = [1.0][0.5]/[0.75] = 2/3  

Example 2  for Bayes theorem:- 

event                                  description probability 

A                Someone has kidney cancer 0.000002 

B       Someone has microscopic hematuria 0.10 

B|A Conditional probability of having hematuria given kidney cancer 1.0 
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Using Bayes'Theorem,we have  

P(A|B) = [P(B|A)][P(A)]/P(B) = [1.0][0.000002]/[0.1] = .00002  

That is, you still have a very low probability of kidney cancer.  

Prob (B given A) = Prob(A and B)/Prob(A) 

2. Previous work 

  We  consider   the problem   of learning the  popularity  of items  based  on  user  

feedback.    In  particular, we consider a  system where  each  user  is  presented with  a  

set  of items (”suggested items”),  and  the  user  can  then  select  her  set of preferred 

items  either  choosing items  from the suggestion set, or by choosing any other  item.  

Here we are interested in the  situation where the  set of suggested items  contains only 

a small subset  of all possible items.  The  goal is to design an algorithm  for ranking and 

suggesting items such that system  can quickly  learn  the  true popularity of individual 

items. The  problem  of how to  rank  and  suggest  items  to  users arises  in several  

applications including  social tagging  appli- cations, browsing components of some 

web application (e.g. del.icio.us’  ”tags  to watch”  list containing a list of tags and 

”popular” page  containing a  list  of urls),   and  search  en- gines.   In  the  context of 

social  tagging  applications, items to  be  ranked  and  suggested  correspond to the  

tags  (key- words) that users attach to information objects such as pho- tos (e.g.  

Flickr), videos (e.g.  YouTube), or web pages to users a set of suggested  tags  based on 

the tagging history of a given itemThe difficulty that arises in the above problem  is 

that sug- gesting items  to users can reinforce  the popularity of items,  and  possibly  

distort the  resulting  ranking.    This  will hap- pen  if users  are  likely to  choose items  

from  the  suggestion set. This behavior  can be seen as a ”bandwagon problem”, i.e.   

user’s  choice  is swayed  toward  items  from  the  sugges- tion sets due to a tendency 

to conform to the choice of users that already made  their  selections,  or  just  because  

it takes less (cognitive) effort to  choose  from  the  presented set  of items. That the  

bandwagon problem  indeed  arises  in so- cial  tagging  scenarios  is  suggested   by  the  

work of Sen  et al [20]    In  our  analysis,  we show  that ”bandwagoning” can indeed  

be a problem  by considering an algorithm  for suggesting items  (that appears  to be in 

com- mon use in practise) which presents to users a fixed number  of the top most 

popular  items as observed from the past  user selections. We show that if the  

bandwagoning is sufficiently large,  then this scheme  (TOP)  can  lock  down to  a set of 

items  that does not  correspond to the  set of the most popular items.  Motivated by 

this observation, we then consider  several  algorithms  for  ranking  and  suggesting  of 

popular  items  with  the goal to (a)  learn  the  true popularity ranking of items, (b) 

suggest popular items,  and (c) identify  the  popular  items  quickly.   In  particular, we 

propose  and study the performance of three  randomized update rules for making  item  

suggestions based  on  the  history of the item selections.   Two of our  proposed  

algorithms are  lightweight in their computational and storage requirements.Our 

proposed schemes enable dis- playing a larger  set of popular items  over time than can 

be accommodated into a single suggestion  set, which may be of interest  in 

application scenarios  where  the size  of the  sug- gestion size is limited  and  is desired  

to  display  a larger  set of popular  items  than can fit into a single suggestion set. 

User Model:  Part of our  analysis  is  based  on  a  user model that is summarized as 

follows. Each  user selects  an item  according to her true pref- erence over items  either  

from the entire set of items  or from the  suggestion set  of  items.   We  call  the  
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probability with which  the  latter  case  happens, the  ”imitation probability” and 

evaluate the robustness in learning the  true popularity of items  with  respect  to this  

parameter of the  suggestion  set  size and  the  true  popularity  ranks  of items.   This  

result  enables  us to estimate the threshold im- itation probability for given true 

popularity ranks  of items. We have done this  using the inferred  popularity rank  scores 

of the  tags  from our dataset where we find that the median  imitation  probability over  

the bookmarks in the dataset is around 0.1 for the  suggestion  set sizes ranging  from 

1 to 10 tags.   This  result  suggests that in  real-world  scenarios  using the simple 

scheme TOP may result  in failing to learn the true   popularity  of items  already at a  

small  level of  imitation.  We next  discuss the three randomized algorithms that we 

consider  in this  paper. First, we consider a randomized algorithm(PROP) that suggests to 

each user a random set of items S sampled with the probability proportional to the sum of the 

current item popularity rank scores. 

    We  call  this  algorithm PROP (frequency  pro-portional sampling).  Sampling  the  

suggestion set  of  items proportional to the  sum  of the  item  popularity rank  scores 

appears   a  natural randomisation  strategy  that one  would consider  to avoid  the 

popularity ranking  skew, letting each item  appearing recurrently in the suggestion set.  

We show, however, that this is guaranteed  only if the  imitation prob- ability  is  

smaller   than a  threshold and  fully  specify  this  threshold.   Another issue  with  

PROP is that the  frequency proportional sampling  can  be computationally  

demanding. In the sequel,  we present two algorithms that are computa- tionally  

lightweight.We  second  consider  a randomized, recursive  update  rule for the  

suggestion set of items  described  as follows.  When- ever a user selects  an item  that is 

in the  suggestion set pre- sented  to this user,  nothing  happens.  Otherwise, the  item 

replaces  a  randomly  evicted  item  from  the  suggestion  set.We call this algorithm 

M2S, alluding  to the  apparent ”move to  set”  feature of the  algorithm. The  reader  

may note that the  algorithm biases to showing recently  used items;  for the special  case  

of the  suggestion  set size  equal  to  1 item,  the algorithm  corresponds to  showing  the  

last  used  item.   It  is worth  noting  that the  M2S does not  require  using the coun- ters  

for the  number  of per-item selections.  We will see that this  rule tends  to sampling  the  

suggestion  set of items  pro- portional to the  product   of the item  true  popularity 

rank scores.  We show that M2S combined  with  ranking the pop-ularity  of items  with  

respect to the  number  of per-item se- lections  guarantees to learn  the  true popularity 

ranking, for any  imitation probability  <  1.   This  is a  very  interesting roperty 

suggesting   robustness of the M2S update  rule to the  users’  imitation.  Note  that 

under  algorithm  M2S,  any item  selected  by a user that was not  suggested to this 

user, replaces an item in the suggestion set.  Hence, any item that is recurrently 

selected  by users (no matter how small the fre- quency  of selection  is) appears 

recurrently in the suggestion set. We next consider  an algorithm  that tends  to 

displaying  only  sufficiently  popular items,  which  may  be preferred  in some 

applications. 

 We third consider the randomized algorithm FM2S (”fre-quency move-to-set”) described as 

follows.At a high level,FM2S replaces an item in the suggestion set with a new item only if 

this new item is (likely to be) more popular than at least one item already in the suggestion 

set.The  algorithm can be seen as TOP but  with  the rank  scores redefined to the number  

of per-item selections  updated only  when  an  item is selected  and  was not  suggested. 

This  is done to mitigate the  positive  reinforcement of the  item popularity due to ex-

posure  in the  suggestion set.   We  show that FM2S tends  to displaying a subset  of 

sufficiently popular items with respect  to the  true  popularity and  fully determine this 

set in terms  of the suggestion  set size and the true popularity rank scores of items.   The  

ranking of these  items  can  be inferred  from their  frequency  of  appearance in  the  
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suggestion set.   This algorithm  proposal  can  be seen as a relaxation of  TOP that 

avoids locking down to suggesting  a set of items that are not the  true  most  popular. It  

enables  displaying  a larger  set of true  most  popular items  than it can be 

accommodated into a single suggestion  set, which may be of interest in practise. As a 

final point, we present numerical results obtained by evaluating our analytical results using the 

popularity rank scores of tags for bookmarks derived from a month-long crawl of the social 

bookmarking application delectable. 

We  consider  user  selection  over  C  > 1 items  and  denote  this set as C := {1, 2, . . . , 

C }.    Let us consider  r = (r1 , r2 , ..., rC ) be  the  user’s  true preference  over  the  set  

of items  C,  and call  r the  true popularity rank  scores.   For  an  item  i, we interpret 

ri   as  the portion of users  that would  select  item i if suggestions were  not  made.  

We  assume  that the  true  popularity rank scores r are such that (a)  ri  is strictly  

pos- itive  for  each  item  i, (b)  items  are  enumerated such  that  r1  ≥ r2  ≥ ·  ·  ·  ≥ 

rC , and  (c) r is normalized such that it is a probability distribution, i.e.  r1 + r2 + 

· · ·  + rC  = 1. An algorithm is specified by (a) ranking rule: the rule that specifies how to 

update the ranking scores of items, denoted as ρ = (ρ1 , . . . , ρC ) and (b) suggestion rule: this 

rule  specifies that, what subset of items to suggest to a particular user. We suppose that the 

size of the suggestion set is fixed to s, a positive integer that is a system configuration 

parameter. 

The  design objective  to learn  the  true  popularity ranking if items means  that the 

ranking order induced  by ρ(t) is the same as that induced  by the true popularity ranking 

scores r, as the number  of users t tends  to be large.  In other  words, we want that for any 

two items  i and  j, ri  ≥ rj   implies ρi (t) ≥ ρj (t), for sufficiently  large t. The  

design  objectives are also to  suggest  true  popular items  and  to  identify quickly  the  

true  popular items  (ideally,  we would  like that the ranking order induced  by ρ(t) 

conforms  to  that  induced  by r, after a small  number  if item selections).  Let s be the 

size of the set S.  Let v be the smallest positive  integer  s ≤ v < C  such  that rs  = ·  

·  ·  = rv   < rv+1(if r(s) = · ·  ·  = rC ,  then  set  v = C ).   If item  s  is  strictly more 

popular than item  s + 1, then v = s.   

User’s choice model:  the user selects  an item over a set of  8  items and 

is  suggested the set  of  items S  = {2, 4, 5, 7}.With probability 1 − pS , the user selects an item 

by sampling from the distribution r over the entire set of items, else, the same but confined to 

the items in the set S.is thus by a fixed multiplicative factor greater than one We then  have  

the imitation probability pS  := [(α − 1)rS ]/[1 + (α − 1)rS ] where rS  := 
P

j€S  rj 

.Note  that given  the  suggestion  set  of items,   the  user’s item  selection  is 

stochastically independent of the  past item selections.   This  may  not  hold  if we 

consider items  selected.ere  1A  = 1 if A holds,  and  1A  = 0 else.  In other  words, 

prec(S) is the fraction of most popular items  1, 2, . . . , v that are  in  the set  S.   This  is 

a  standard  information-retrieval measure   of precision   [18,  21]  defining  the set  of 

relevant items  as the  most popular items  1, 2, . . . , v. 

2.1 User’s choice model :-  We  introduce a  user’s  choice  model  defined  as  

follows. Suppose a user is presented a set S of suggested items. The user selects an item 

from the entire set of items by sampling using the true item popularity distribution r, with 

probabil- ity 1 − pS .Otherwise, the  user  does the  same  but confines her  choice to 

items  in the  suggestion  set S.  In other words, 

2.2 A Naïve A          lgorithm 

We first introduce the simple algorithm TOP which consists ranking and  a suggestion  
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rule as defined  below. 

TOP (Top popular) 

Init:   Vi  = 0 for each  item  i 

At the t-th user  selection: 

If item  i selected: 

Vi  ← Vi  + 1 

S ← a set of s items  with largest  V  counts 

Fig:1 TOP Algorithm. 

The ranking rule is to set the rank score of an item equal to the number of selections of this 

item in the past. For this algorithms and the algorithms introduced later, we initialize Vi = 0 for 

each item i. The implicit assumption is that we assume no prior information about the 

popularity of items, and hence, initially assume that all items are equally popular. 

The s u gg e s t i o n  rule sets the suggestion set to a set
 

=   (1 − pS )ri  + pS    -2 

 the  top s most popular  items  with  respect to the current popularity rank  scores.We 

admitted this  simple  and  intuitive  model  in  order  to facilitate analysis  under   a  

model  of user’s  choice  that bi- ases to items  in the  suggestion set.  The user’s choice 

model accommodates two special  cases: 

Case  1: L e t  u s  c onsider  a dichotomous user population where a fraction  1 − p of 

users sample  an item  from the distribution r over the  entire  set of items  and  the 

remaining fraction of users,  p, imitate by sampling  an item  from their preference  

distribution r confined  to the presented suggestion  set.  We  then  have that Eq. (2) 

holds with  pS  ≡ p. 

Case 2: Suppose that suggesting  an item boosts its proba-bility of selection  in the 

following particular way.  Each user selects an item  i with  probability proportional to 

αri  where α  > 1 if item  i is suggested   and  α  = 1  if  item  i is suggested.  The 

boost of items presented in the suggestion set 

We  will  later  identify cases  when  this  simple  algorithm can  get  locked  down  to  a  

ranking  ρ that  induces  different ranking than that induced  by the true popularity 

ranking r, and  thus,  may fail to learn the true  popularity of items.  To overcome this 

problem, we consider  in the following alterna- tive ranking and  suggestion rules. 

2.3 Ranking Rules 

In this subsection, we define two ranking  rules called rank rule 1 and  rank  rule 2. 

Rank Rule 1.  A simple  ranking  rule is the  one that we already encountered in  the  

algorithm TOP,  where  the  rank 

 In practise, one may use prior information about  item pop- ularity. For example,  in 

social bookmarking applications, in- formation from the  keywords meta-data and  

content of web pages can be used to bias the initial  tag  popularities. 

score  for  an  item  i is  incremented  by  1  whenever  a  user selects  this  item. 

Init:   Vi  = 0 for each  item  i 
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At the t-th user  selection: 

We will see that this ranking may fail to discover the rank- ing order  of the  true 

popularity when combined with  a sug- gestion  rule  that reinforces  candidates  that 

were  selected early on, as it is the  case under  the  algorithm  TOP. 

Rank Rule 2.   We have noted  that the  rank  rule  1 might  fail  to determine  the 

ranking  order  of the true  popularity of items.  To come out this problem, w e  may change 

the ranking rules(scores) in the following in the following way. 

Now, the rank scores ρ are updated only for an item that is selected by a user and was 

not suggested to this user.  The ranking score ρi  for an item  i can be interpreted as the 

rate  of user selections of item i over users that were not suggested item  i. We have the 

following result: 

Lemma   1.  Let us consider  any  suggestion  rule combined  with the  rank rule  2 under  

the  only  assumption that  each  item exits  the  suggestion   set  infinitely  often.    Then, 

under   the user’s  choice model which is rational  to  the  sum  of the  current  rank  scores  

of  items.  The algorithm is described in more detail below: 

PROP (Frequency proportional)  

At the t-th user  selection: 

Sample  a set S of s items  with probability 

 

Fig 2: PROP Algorithm. 

 

We will later  show analysis suggesting that this suggestion rule combined  with  rank  

rule 1 is more robust to imitation than TOP, but  there  still may exist cases when it fails 

to learn the  true  popularity of items.   Note  also that the  algorithm is computationally 

demanding when the number  of items  C and  suggestion set size s are non small; it 

requires  sampling  on  a  set  of C    elements.    Our  next  algorithm is computationally 

very simple. 

M2S (Move-to-set) 

At the t-th user  selection  with item  i selected: 

If item  i not in the suggestion set S  

Remove  a random item from S Add i to S 

Fig:3 M2S Algorithm. 

The algorithm M2S is a randomized iterative update rule of the suggestion set of true 

popular i t e m s .   The given sugges t i on  s e t  is updated only when a user selects an item  

that is not in the suggestion set presented to the user. Make a note of that for the 

suggestion set  size of one item,M2S suggests  the last used item,  a recommendation rule 

used by many  user  interface designs.   For  the  suggestion set size greater than one 

item,  M2S is different  from  suggesting  the last  s  distinct used  items  due  to  the  

random  eviction   of items  from  the  suggestion  set,  but  note  that the  rule  does bias  

to  presenting recently used  items.   We  will present  how exactly  this  update rule  

tends  to  bias  the  sampling  of the suggestion  set  with  respect  to  true popularity  rank  

scores of items.    Note  also  that M2S relates  to  the  self-organized sorting  of items 

known as move-to-front heuristic .Lim t→+∞ (t) = r.It  follows from the  description 
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of the  suggestion  rule M2S that any  item  would  recurrently  appear  in  the  

suggestion.The  result tells us that under  the user’s choice model, the rank  rule 2 

combined  with  a suggestion rule from broad  set guarantees to  learn  the true  

popularity ranking of items,  where this  set comprises all suggestion rules for which 

each item  exists  the  set with  a probability that is lower bounded by a positive (but 

possibly  very  small)  constant.  The  rank rule  2  might have  a  slow rate  of convergence  

as  the  rank scores are updated only over a subsequence of item selections  when they 

were not suggested. For this reason,  we will focus in the  following on rank  rule 1. 

2.4 SuggestioRules                                         

  We  introduce three   different  suggestion  rules:   (a)  Fre- quency  Proportional 

(PROP),  (b)  Move-to-Set (M2S),  and  (c) Frequency Move-to-Set (FM2S).PROP is a 

randomized algorithm that for each user presents a suggestion set of items,  sampled 

with  probability propor- tional  to  the  sum  of the  current  rank  scores  of  items.  

Having rank  rule 1 conforming  to the true  popularity rank- ing means  that the  true 

popularity ranking  of items  can be inferred  from  the  resulting item  selections  made  

by  users. This  may  be  of interest in  practise, as  one  does  not  need additional  

information  besides  a  sample  of item  selections  to infer the popularity ranking of 

items.t,  provided  only  that it  is  recurrently selected  by  users with  some positive  

probability (no matter how small).  We  call  this  new algorithm  FM2S (frequency  move-

to-set) for the reasons  that we discuss shortly;  the  algorithm is defined by: 

 

FM2S (Frequency move-to-set) 

Init:   Vi  = 0 for each  item  i 

At the t-th user  selection  with item  i selected: 

   If item  i not in the suggestion set S Vi  ← Vi  + 1 

E = {j € S:  VJ < Vi} 

If E  is nonempty 

Remove  a random item  from S that  is in E 

Add i to S  

Fig:4 FM2S Algorithm. 

 For every item,FM2S algorithm uses a counter variable for representing the number of users who 

have selected the particular items,which were not suggested in the item list. Furthermore, a 

selected  item  that was not  suggested does not  immediately qualify for entry in the 

suggestion  set (as with  M2S) but  only if its counter exceeds the  item  that is already 

in  the  suggestion  set. 

 In this section let us consider how the user select’s items. User selects an item from the entire 

set of items by sampling, using the true item popularity distribution r. Where 
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Fig 5: The Proposed Suggestion Set to the user 

3. Present Work 

    3.1 PROPOSED ALGORITHM 

 In this paper we propose Naive Bayes algorithm for constructing a decision tree. We would 

like to give ranking  for popular items based on a decision tree. If a learning algorithm produces 

accurate class probability estimates, it certainly produces an accurate ranking. But the opposite 

is not true. For example, assume that E+ and E¡ are a positive and a negative example 

respectively,and that the actual class probabilities are p(+jE+) = 0:9 and p(+jE¡) = 0:4. An 

algorithm that gives class probability estimates: ^p(+jE+) = 0:5 and ^p(+jE¡) =0:45, gives a 

correct order of E+ and E¡ in the ranking, although the probability estimates are poor. In the 

ranking problem, an algorithm tolerates the error of probability estimates to some extent, which 

is similar to that in classifcation.Recall that a classifcation algorithm gives the correct 

classifcation on an ex-ample, as long as the class with the maximum posterior probability 

estimate is identical to the actual class.Naive Bayes is easy to construct and has surprisingly 

good performance in classifcation, even though the conditional independence assumption is 

rarely true in real-world applications. On the other hand, naive Bayes is found to produce poor 

probability estimates . 

TRAINMULTINOMIALNB(C,D) 

 1 V←ExtractVocabulary(D) 

2 N←CountDocs(D) 

3 for each c   ЄC 

4 do Nc←CountDocsInClass(D,c) 

5   prior[c] ←Nc/N 

6 textc←ConcatenateTextOfAllDocsInClass(D,c) 

7 for each t Є V 

8 do Td←COUNTTOKENOFTERM(textc,t) 
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9 for each t Є V 

10 do condprob[t][c] ←Tct+1/∑dt  Tdt+1 

11 return V,prior,condprob 

Fig 6:Ranking Popular Items using TRAINMULTINOMIALNB 

ApplyMultinomialNB(C,V,prior,condprob,d)                                                                                 

1      for each  W ExtractTokensFromDoc(V, d) 

2 for each c  Є C 

3 do score[c] ←log prior[c] 

4 for each t Є W 

5 do score[c]+=log condprob[t][c] 

6 return arg max score[ c]                                                                                                                                                   

  Fig: 7 Ranking Popular Items using ApplyMultinomialNB ( Code for Ranking Popular Items 

using Naïve Bayes theory  )  

 C is a fixed set of classes and it is given as C = {c1, c2, . . . , cJ} . A training set D of labeled 

documents with each labeled Document (d, c) Є  X x C Using a learning method or learning 

algorithm, we then wish to learn a classifier  that maps documents to classes: : X → C 

4. DESIGN & IMPLEMENTATION  

  In this paper the proposed and studied Naïve Bayes algorithm was used to design a framework 

for ranking and suggesting popular items for the users. Initially to add item sets into the 

framework we used the pseudo code in Fig.9 .And when the user wants to view the item sets a 

pseudo code is proposed in Fig. 10. And when we want to update the popular item sets a pseudo 

code is proposed in Fig. 6.And when the item sets those are not utilized can be deleted using the 

pseudo code is proposed in Fig. 7. 

 

 

 

 

 

 

 

Fig: 8 Home Page 
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Fig 9 : Registration Form. 

 

 

 

 

 

 

 

 

 

 

Fig 10 : Login Page 
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Fig 11: Items in the Iemset 

 

 

 

 

 

 

 

 

 

Fig 12: Items in the Itemset. 
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Fig 13 : Items in the Itemset. 

 

 

Fig 14: Items in the Itemset. 
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Fig 15: Items in the Iemset. 

5. CONCLUSION  

    In this paper we analyzed   randomized algorithms like naive, PROP, M2S, FM2S and 

proposed Naïve Bayes algorithm to suggest the popular items based on ranking and popularity 

of items. We have considered the problem of ranking and suggesting popular items in systems 

where users can select any subset of items and the users’ selection of items can be swayed to 

the suggested items. In this paper we are proposing Naïve Bayes algorithm  for ranking popular 

items based on probabilistic theory using Bayes theory concepts . The problem studied in this 

paper appears to differ from previous studies and may be worth exploring further We identified 

the limit ranking of the items which are provided by the algorithms and how they are related to 

the true popularity ranking and assessed the quality of suggestions as measured by the true 

popularity of suggested items.  
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