
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

DOI : 10.5121/ijcsit.2012.4112 147

Ranking Popular Items By Naive Bayes
Algorithm

Shiramshetty Gouthami
1
, Golamari.Jose Mary

2
 and Pulluri Srinivas Rao

3

1
Department of Computer Science and Engineering, JNTUH, Jayamukhi Institute of

Technological Sciences,Narsampet, Warangal, Andhrapradesh-506332, India
gouthami.shiramshetty@gmail.com

2
Department of Computer Science Engineering, JNTUH, Jayamukhi Institute

ofTechnological Sciences,Narsampet, Warangal, Andhrapradesh-506332, India
sreyas.2007@yahoo.com

3
Department of Computer Science Engineering, JNTUH, Jayamukhi Institute of

Technological Sciences,Narsampet, Warangal, Andhrapradesh-506332, India
srimarao@yahoo.co.in

Abstract
The problem of ranking popular items is getting increasing interest from a number of research areas.

Several algorithms have been proposed for this task. The described problem of ranking and suggesting

items arises in diverse applications include interactive computational system for helping people to

leverage social information; in technical these systems are called social navigation systems. These social

navigation systems help each individual in their performance and decision making over selecting the

items. Based on the each individual response the ranking and suggesting of popular items were done. The

individual feedback might be obtained by displaying a set of suggested items, where the selection of items

is based on the preference of the individual. The aim is to suggest popular items by rapidly studying the

true popularity ranking of items. The difficulty in suggesting the true popular items to the users can give

emphasis to reputation for some items but may mutilate the resulting item ranking for other items. So the

problem of ranking and suggesting items affected many applications including suggestions and search

query suggestions for social tagging systems. In this paper we propose Naïve Bayes algorithm for

ranking and suggesting popular items.

Keywords
Label ranking, suggesting, computational systems, col laborat ive filtering, preferential

attachment, mutilate, true popular item sets, tagging systems, suggested itemsn and ranking

rules.

1. INTRODUCTION

 About Naive Bayes

Our work is completely based on the Bayes theory. We want to propose Naive Bayes algorithm

that is based on conditional probabilities. Ranking uses Bayes theory concepts.A Bayes theorem

is a mathematical formula that calculates probability by including the frequency of values and

combinations of values in the chronological data. Bayes theorem finds the probability of an

event occurring in the probability of another event that has already occurred. If B represents the

dependent event and A represents the prior event, then the Bayes' theorem can be stated as

follows.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

148

Bayes' Theorem, published posthumously in the eighteenth century by Reverend Thomas

Bayes, says that you can use conditional probability to make predictions in reverse! It is very

powerful.

For Naïve Bayes, supervised binning is performed by automatic data preparation. Decision trees

are used by supervised binning to create the optimal bin boundaries. Both categorical and

numerical attributes are binned.

The missing values in Naive Bayes are handled naturally as missing at random. The Naïve

Bayes algorithm replaces sparse numerical data with zeros and sparse categorical data with zero

vectors. The missing values in nested columns are interpreted as sparse and the missing values

in columns with simple data types are interpreted as missing at random.

For example, if you want to manage your own data preparation, remember that Naive Bayes

usually requires supervised binning. Naive Bayes totally relies on counting techniques for

calculating probabilities. The columns should be binned to reduce the cardinality as suitable.

The Numerical data can be binned into ranges of values like low, medium, and high. The

categorical data can be binned into meta-classes like regions instead of cities. Equal-width

binning is not suggested, since outliers will cause most of the data to concentrate in a few bins,

sometimes a single bin. As a result, the discriminating power of the algorithms will be

significantly reduced

 We suppose the problem of learning the popularity of items that is considered to be a priori

unidentified but have to be learned from the observed user’s selection of items. Especially, we

consider systems in which each user is presented with a list of items called suggested items and

the user selects a set of favored items that can contain either suggested items or any other items

preferred by the user. The inventory of suggested items would naturally contain only a small

subset of popular items. The goal of any inventory system is to efficiently learn the popularity

of items and suggest popular items to users. The items are suggested to users to make easy tasks

such as browsing or tagging of the content.

 Items could be search query keywords, files and any items selected by users from short lists of

popular items. A precise application is that of tagging of the content where items are tags

applied by users to content such as books details for their later retrieval or personal information

management. The basic idea of social tagging is that the user can select any set of tags for an

information object according to her/his preference. In the majority existing social tagging

applications, users are offered with tag suggestions that are made based on the history of tag

selections. The process of learning of item popularity is complicated by the suggesting of items

to users. In reality, we expect that users would be inclined to select suggested items more

frequently. There are various reasons for this could happen. For example, “least effort “ where

users select suggested items, as it is easier than thinking of alternatives. Wherever humans may

be likely to conform to choices of other users that are reflected in the suggestion set presenting

a few popular items. Actually, we find indications that such popularity prejudice may happen. If

the process of suggesting popular items seems to be difficult due to potential popularity

disorder, why can’t we make suggestions in the first place? There are several reasons for this.

For example, sometimes suggestions may help to remember what candidate items are. A fasten

to avoid popularity slant would be to suggest all candidate items and not restrict to a small list

of few popular items. But this is often impractical for the reasons such as limited user interface

space, user’s capability to process smaller sets easier, and the triviality of less popular items.

Consequently, the number of suggestion items in the item set is limited to a small number.

 In this paper, our goal is to propose Naïve Bayes algorithm for popular items to users in a way

that enables learning of the users’ true preference over items. The factual first choice refers to

the preference over items that would be pragmatic from the user’s selections over items without

revelation to any suggestions. A simple scheme for ranking and suggesting popular items (that

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

149

appears in common use in practice) presents a fixed number of the most popular items as

observed from the past item selections. We illustrate an analysis that suggests a simple system

with a security device to lock down to a set of items that are not the truest popular items if the

popularity prejudice is sufficiently large, and may vague learning the true predilection over

items.

 In this paper, we propose Naïve Bayes algorithm designed to avoid such fortifications and

offer strict performance analysis of the ranking boundary points and popularity of the suggested

items.

 The probability in Naive Bayes algorithm is calculated by dividing the percentage of pair-wise

occurrences by the percentage of singleton occurrences. If the percentages that are calculated

are very small for a known predictor, they probably will not contribute to the effectiveness of

the model. The occurrences below a certain threshold value can usually be disregarded. The

Naive Bayes algorithm provides a fast, highly scalable model. The algorithm scales linearly

with the number of predictors and rows. The put up process for Naive Bayes is parallelized. It

means that scoring can be parallelized irrespective of the algorithm.

Both binary and multiclass classification problems use Naïve Bayes Algorithm.

 According to the definition of conditional probability: [1] P(B|A) = P(A and B)/P(A)

Bayes' Theorem is used to solve for the inverse conditional probability, P(A|B). By definition,

[2] P(A|B) = P(A and B)/P(B) Solving [1] for P(A and B) and substituting into[2] gives

 Bayes'Theorem:

P(A|B) = [P(B|A)][P(A)]/P(B)

Using Bayes'Theorem,

P(A|B) = [P(B|A)][P(A)]/P(B)

Example 1 for Bayes theorem:-

event description probability

A Drawer A has two gold coins 0.5

B Person chooses a gold coin out of the four coins 0.75

B|A
 Conditional probability of choosing a gold coin from A if it has two gold

coins
1.0

Using Bayes' Theorem,we have

P(A|B) = [P(B|A)][P(A)]/P(B) = [1.0][0.5]/[0.75] = 2/3

Example 2 for Bayes theorem:-

event description probability

A Someone has kidney cancer 0.000002

B Someone has microscopic hematuria 0.10

B|A Conditional probability of having hematuria given kidney cancer 1.0

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

150

Using Bayes'Theorem,we have

P(A|B) = [P(B|A)][P(A)]/P(B) = [1.0][0.000002]/[0.1] = .00002

That is, you still have a very low probability of kidney cancer.

Prob (B given A) = Prob(A and B)/Prob(A)

2. Previous work

 We consider the problem of learning the popularity of items based on user

feedback. In particular, we consider a system where each user is presented with a

set of items (”suggested items”), and the user can then select her set of preferred

items either choosing items from the suggestion set, or by choosing any other item.

Here we are interested in the situation where the set of suggested items contains only

a small subset of all possible items. The goal is to design an algorithm for ranking and

suggesting items such that system can quickly learn the true popularity of individual

items. The problem of how to rank and suggest items to users arises in several

applications including social tagging appli- cations, browsing components of some

web application (e.g. del.icio.us’ ”tags to watch” list containing a list of tags and

”popular” page containing a list of urls), and search en- gines. In the context of

social tagging applications, items to be ranked and suggested correspond to the

tags (key- words) that users attach to information objects such as pho- tos (e.g.

Flickr), videos (e.g. YouTube), or web pages to users a set of suggested tags based on

the tagging history of a given itemThe difficulty that arises in the above problem is

that sug- gesting items to users can reinforce the popularity of items, and possibly

distort the resulting ranking. This will hap- pen if users are likely to choose items

from the suggestion set. This behavior can be seen as a ”bandwagon problem”, i.e.

user’s choice is swayed toward items from the sugges- tion sets due to a tendency

to conform to the choice of users that already made their selections, or just because

it takes less (cognitive) effort to choose from the presented set of items. That the

bandwagon problem indeed arises in so- cial tagging scenarios is suggested by the

work of Sen et al [20] In our analysis, we show that ”bandwagoning” can indeed

be a problem by considering an algorithm for suggesting items (that appears to be in

com- mon use in practise) which presents to users a fixed number of the top most

popular items as observed from the past user selections. We show that if the

bandwagoning is sufficiently large, then this scheme (TOP) can lock down to a set of

items that does not correspond to the set of the most popular items. Motivated by

this observation, we then consider several algorithms for ranking and suggesting of

popular items with the goal to (a) learn the true popularity ranking of items, (b)

suggest popular items, and (c) identify the popular items quickly. In particular, we

propose and study the performance of three randomized update rules for making item

suggestions based on the history of the item selections. Two of our proposed

algorithms are lightweight in their computational and storage requirements.Our

proposed schemes enable dis- playing a larger set of popular items over time than can

be accommodated into a single suggestion set, which may be of interest in

application scenarios where the size of the sug- gestion size is limited and is desired

to display a larger set of popular items than can fit into a single suggestion set.

User Model: Part of our analysis is based on a user model that is summarized as

follows. Each user selects an item according to her true pref- erence over items either

from the entire set of items or from the suggestion set of items. We call the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

151

probability with which the latter case happens, the ”imitation probability” and

evaluate the robustness in learning the true popularity of items with respect to this

parameter of the suggestion set size and the true popularity ranks of items. This

result enables us to estimate the threshold im- itation probability for given true

popularity ranks of items. We have done this using the inferred popularity rank scores

of the tags from our dataset where we find that the median imitation probability over

the bookmarks in the dataset is around 0.1 for the suggestion set sizes ranging from

1 to 10 tags. This result suggests that in real-world scenarios using the simple

scheme TOP may result in failing to learn the true popularity of items already at a

small level of imitation. We next discuss the three randomized algorithms that we

consider in this paper. First, we consider a randomized algorithm(PROP) that suggests to

each user a random set of items S sampled with the probability proportional to the sum of the

current item popularity rank scores.

 We call this algorithm PROP (frequency pro-portional sampling). Sampling the

suggestion set of items proportional to the sum of the item popularity rank scores

appears a natural randomisation strategy that one would consider to avoid the

popularity ranking skew, letting each item appearing recurrently in the suggestion set.

We show, however, that this is guaranteed only if the imitation prob- ability is

smaller than a threshold and fully specify this threshold. Another issue with

PROP is that the frequency proportional sampling can be computationally

demanding. In the sequel, we present two algorithms that are computa- tionally

lightweight.We second consider a randomized, recursive update rule for the

suggestion set of items described as follows. When- ever a user selects an item that is

in the suggestion set pre- sented to this user, nothing happens. Otherwise, the item

replaces a randomly evicted item from the suggestion set.We call this algorithm

M2S, alluding to the apparent ”move to set” feature of the algorithm. The reader

may note that the algorithm biases to showing recently used items; for the special case

of the suggestion set size equal to 1 item, the algorithm corresponds to showing the

last used item. It is worth noting that the M2S does not require using the coun- ters

for the number of per-item selections. We will see that this rule tends to sampling the

suggestion set of items pro- portional to the product of the item true popularity

rank scores. We show that M2S combined with ranking the pop-ularity of items with

respect to the number of per-item se- lections guarantees to learn the true popularity

ranking, for any imitation probability < 1. This is a very interesting roperty

suggesting robustness of the M2S update rule to the users’ imitation. Note that

under algorithm M2S, any item selected by a user that was not suggested to this

user, replaces an item in the suggestion set. Hence, any item that is recurrently

selected by users (no matter how small the fre- quency of selection is) appears

recurrently in the suggestion set. We next consider an algorithm that tends to

displaying only sufficiently popular items, which may be preferred in some

applications.

 We third consider the randomized algorithm FM2S (”fre-quency move-to-set”) described as

follows.At a high level,FM2S replaces an item in the suggestion set with a new item only if

this new item is (likely to be) more popular than at least one item already in the suggestion

set.The algorithm can be seen as TOP but with the rank scores redefined to the number

of per-item selections updated only when an item is selected and was not suggested.

This is done to mitigate the positive reinforcement of the item popularity due to ex-

posure in the suggestion set. We show that FM2S tends to displaying a subset of

sufficiently popular items with respect to the true popularity and fully determine this

set in terms of the suggestion set size and the true popularity rank scores of items. The

ranking of these items can be inferred from their frequency of appearance in the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

152

suggestion set. This algorithm proposal can be seen as a relaxation of TOP that

avoids locking down to suggesting a set of items that are not the true most popular. It

enables displaying a larger set of true most popular items than it can be

accommodated into a single suggestion set, which may be of interest in practise. As a

final point, we present numerical results obtained by evaluating our analytical results using the

popularity rank scores of tags for bookmarks derived from a month-long crawl of the social

bookmarking application delectable.

We consider user selection over C > 1 items and denote this set as C := {1, 2, . . . ,

C }. Let us consider r = (r1 , r2 , ..., rC) be the user’s true preference over the set

of items C, and call r the true popularity rank scores. For an item i, we interpret

ri as the portion of users that would select item i if suggestions were not made.

We assume that the true popularity rank scores r are such that (a) ri is strictly

pos- itive for each item i, (b) items are enumerated such that r1 ≥ r2 ≥ · · · ≥

rC , and (c) r is normalized such that it is a probability distribution, i.e. r1 + r2 +

· · · + rC = 1. An algorithm is specified by (a) ranking rule: the rule that specifies how to

update the ranking scores of items, denoted as ρ = (ρ1 , . . . , ρC) and (b) suggestion rule: this

rule specifies that, what subset of items to suggest to a particular user. We suppose that the

size of the suggestion set is fixed to s, a positive integer that is a system configuration

parameter.

The design objective to learn the true popularity ranking if items means that the

ranking order induced by ρ(t) is the same as that induced by the true popularity ranking

scores r, as the number of users t tends to be large. In other words, we want that for any

two items i and j, ri ≥ rj implies ρi (t) ≥ ρj (t), for sufficiently large t. The

design objectives are also to suggest true popular items and to identify quickly the

true popular items (ideally, we would like that the ranking order induced by ρ(t)

conforms to that induced by r, after a small number if item selections). Let s be the

size of the set S. Let v be the smallest positive integer s ≤ v < C such that rs = ·

· · = rv < rv+1(if r(s) = · · · = rC , then set v = C). If item s is strictly more

popular than item s + 1, then v = s.

User’s choice model: the user selects an item over a set of 8 items and

is suggested the set of items S = {2, 4, 5, 7}.With probability 1 − pS , the user selects an item

by sampling from the distribution r over the entire set of items, else, the same but confined to

the items in the set S.is thus by a fixed multiplicative factor greater than one We then have

the imitation probability pS := [(α − 1)rS]/[1 + (α − 1)rS] where rS :=
P

j€S rj

.Note that given the suggestion set of items, the user’s item selection is

stochastically independent of the past item selections. This may not hold if we

consider items selected.ere 1A = 1 if A holds, and 1A = 0 else. In other words,

prec(S) is the fraction of most popular items 1, 2, . . . , v that are in the set S. This is

a standard information-retrieval measure of precision [18, 21] defining the set of

relevant items as the most popular items 1, 2, . . . , v.

2.1 User’s choice model :- We introduce a user’s choice model defined as

follows. Suppose a user is presented a set S of suggested items. The user selects an item

from the entire set of items by sampling using the true item popularity distribution r, with

probabil- ity 1 − pS .Otherwise, the user does the same but confines her choice to

items in the suggestion set S. In other words,

2.2 A Naïve A lgorithm

We first introduce the simple algorithm TOP which consists ranking and a suggestion

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

153

P
j S

rule as defined below.

TOP (Top popular)

Init: Vi = 0 for each item i

At the t-th user selection:

If item i selected:

Vi ← Vi + 1

S ← a set of s items with largest V counts

Fig:1 TOP Algorithm.

The ranking rule is to set the rank score of an item equal to the number of selections of this

item in the past. For this algorithms and the algorithms introduced later, we initialize Vi = 0 for

each item i. The implicit assumption is that we assume no prior information about the

popularity of items, and hence, initially assume that all items are equally popular.

The s u gg e s t i o n rule sets the suggestion set to a set

= (1 − pS)ri + pS -2

 the top s most popular items with respect to the current popularity rank scores.We

admitted this simple and intuitive model in order to facilitate analysis under a

model of user’s choice that bi- ases to items in the suggestion set. The user’s choice

model accommodates two special cases:

Case 1: L e t u s c onsider a dichotomous user population where a fraction 1 − p of

users sample an item from the distribution r over the entire set of items and the

remaining fraction of users, p, imitate by sampling an item from their preference

distribution r confined to the presented suggestion set. We then have that Eq. (2)

holds with pS ≡ p.

Case 2: Suppose that suggesting an item boosts its proba-bility of selection in the

following particular way. Each user selects an item i with probability proportional to

αri where α > 1 if item i is suggested and α = 1 if item i is suggested. The

boost of items presented in the suggestion set

We will later identify cases when this simple algorithm can get locked down to a

ranking ρ that induces different ranking than that induced by the true popularity

ranking r, and thus, may fail to learn the true popularity of items. To overcome this

problem, we consider in the following alterna- tive ranking and suggestion rules.

2.3 Ranking Rules

In this subsection, we define two ranking rules called rank rule 1 and rank rule 2.

Rank Rule 1. A simple ranking rule is the one that we already encountered in the

algorithm TOP, where the rank

 In practise, one may use prior information about item pop- ularity. For example, in

social bookmarking applications, in- formation from the keywords meta-data and

content of web pages can be used to bias the initial tag popularities.

score for an item i is incremented by 1 whenever a user selects this item.

Init: Vi = 0 for each item i

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

154

s

At the t-th user selection:

We will see that this ranking may fail to discover the rank- ing order of the true

popularity when combined with a sug- gestion rule that reinforces candidates that

were selected early on, as it is the case under the algorithm TOP.

Rank Rule 2. We have noted that the rank rule 1 might fail to determine the

ranking order of the true popularity of items. To come out this problem, w e may change

the ranking rules(scores) in the following in the following way.

Now, the rank scores ρ are updated only for an item that is selected by a user and was

not suggested to this user. The ranking score ρi for an item i can be interpreted as the

rate of user selections of item i over users that were not suggested item i. We have the

following result:

Lemma 1. Let us consider any suggestion rule combined with the rank rule 2 under

the only assumption that each item exits the suggestion set infinitely often. Then,

under the user’s choice model which is rational to the sum of the current rank scores

of items. The algorithm is described in more detail below:

PROP (Frequency proportional)

At the t-th user selection:

Sample a set S of s items with probability

Fig 2: PROP Algorithm.

We will later show analysis suggesting that this suggestion rule combined with rank

rule 1 is more robust to imitation than TOP, but there still may exist cases when it fails

to learn the true popularity of items. Note also that the algorithm is computationally

demanding when the number of items C and suggestion set size s are non small; it

requires sampling on a set of C elements. Our next algorithm is computationally

very simple.

M2S (Move-to-set)

At the t-th user selection with item i selected:

If item i not in the suggestion set S

Remove a random item from S Add i to S

Fig:3 M2S Algorithm.

The algorithm M2S is a randomized iterative update rule of the suggestion set of true

popular i t e m s . The given sugges t i on s e t is updated only when a user selects an item

that is not in the suggestion set presented to the user. Make a note of that for the

suggestion set size of one item,M2S suggests the last used item, a recommendation rule

used by many user interface designs. For the suggestion set size greater than one

item, M2S is different from suggesting the last s distinct used items due to the

random eviction of items from the suggestion set, but note that the rule does bias

to presenting recently used items. We will present how exactly this update rule

tends to bias the sampling of the suggestion set with respect to true popularity rank

scores of items. Note also that M2S relates to the self-organized sorting of items

known as move-to-front heuristic .Lim t→+∞ (t) = r.It follows from the description

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

155

of the suggestion rule M2S that any item would recurrently appear in the

suggestion.The result tells us that under the user’s choice model, the rank rule 2

combined with a suggestion rule from broad set guarantees to learn the true

popularity ranking of items, where this set comprises all suggestion rules for which

each item exists the set with a probability that is lower bounded by a positive (but

possibly very small) constant. The rank rule 2 might have a slow rate of convergence

as the rank scores are updated only over a subsequence of item selections when they

were not suggested. For this reason, we will focus in the following on rank rule 1.

2.4 SuggestioRules

 We introduce three different suggestion rules: (a) Fre- quency Proportional

(PROP), (b) Move-to-Set (M2S), and (c) Frequency Move-to-Set (FM2S).PROP is a

randomized algorithm that for each user presents a suggestion set of items, sampled

with probability propor- tional to the sum of the current rank scores of items.

Having rank rule 1 conforming to the true popularity rank- ing means that the true

popularity ranking of items can be inferred from the resulting item selections made

by users. This may be of interest in practise, as one does not need additional

information besides a sample of item selections to infer the popularity ranking of

items.t, provided only that it is recurrently selected by users with some positive

probability (no matter how small). We call this new algorithm FM2S (frequency move-

to-set) for the reasons that we discuss shortly; the algorithm is defined by:

FM2S (Frequency move-to-set)

Init: Vi = 0 for each item i

At the t-th user selection with item i selected:

 If item i not in the suggestion set S Vi ← Vi + 1

E = {j € S: VJ < Vi}

If E is nonempty

Remove a random item from S that is in E

Add i to S

Fig:4 FM2S Algorithm.

 For every item,FM2S algorithm uses a counter variable for representing the number of users who

have selected the particular items,which were not suggested in the item list. Furthermore, a

selected item that was not suggested does not immediately qualify for entry in the

suggestion set (as with M2S) but only if its counter exceeds the item that is already

in the suggestion set.

 In this section let us consider how the user select’s items. User selects an item from the entire

set of items by sampling, using the true item popularity distribution r. Where

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

156

Fig 5: The Proposed Suggestion Set to the user

3. Present Work

 3.1 PROPOSED ALGORITHM

 In this paper we propose Naive Bayes algorithm for constructing a decision tree. We would

like to give ranking for popular items based on a decision tree. If a learning algorithm produces

accurate class probability estimates, it certainly produces an accurate ranking. But the opposite

is not true. For example, assume that E+ and E¡ are a positive and a negative example

respectively,and that the actual class probabilities are p(+jE+) = 0:9 and p(+jE¡) = 0:4. An

algorithm that gives class probability estimates: ^p(+jE+) = 0:5 and ^p(+jE¡) =0:45, gives a

correct order of E+ and E¡ in the ranking, although the probability estimates are poor. In the

ranking problem, an algorithm tolerates the error of probability estimates to some extent, which

is similar to that in classifcation.Recall that a classifcation algorithm gives the correct

classifcation on an ex-ample, as long as the class with the maximum posterior probability

estimate is identical to the actual class.Naive Bayes is easy to construct and has surprisingly

good performance in classifcation, even though the conditional independence assumption is

rarely true in real-world applications. On the other hand, naive Bayes is found to produce poor

probability estimates .

TRAINMULTINOMIALNB(C,D)

 1 V←ExtractVocabulary(D)

2 N←CountDocs(D)

3 for each c ЄC

4 do Nc←CountDocsInClass(D,c)

5 prior[c] ←Nc/N

6 textc←ConcatenateTextOfAllDocsInClass(D,c)

7 for each t Є V

8 do Td←COUNTTOKENOFTERM(textc,t)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

157

9 for each t Є V

10 do condprob[t][c] ←Tct+1/∑dt Tdt+1

11 return V,prior,condprob

Fig 6:Ranking Popular Items using TRAINMULTINOMIALNB

ApplyMultinomialNB(C,V,prior,condprob,d)

1 for each W ExtractTokensFromDoc(V, d)

2 for each c Є C

3 do score[c] ←log prior[c]

4 for each t Є W

5 do score[c]+=log condprob[t][c]

6 return arg max score[c]

 Fig: 7 Ranking Popular Items using ApplyMultinomialNB (Code for Ranking Popular Items

using Naïve Bayes theory)

 C is a fixed set of classes and it is given as C = {c1, c2, . . . , cJ} . A training set D of labeled

documents with each labeled Document (d, c) Є X x C Using a learning method or learning

algorithm, we then wish to learn a classifier that maps documents to classes: : X → C

4. DESIGN & IMPLEMENTATION

 In this paper the proposed and studied Naïve Bayes algorithm was used to design a framework

for ranking and suggesting popular items for the users. Initially to add item sets into the

framework we used the pseudo code in Fig.9 .And when the user wants to view the item sets a

pseudo code is proposed in Fig. 10. And when we want to update the popular item sets a pseudo

code is proposed in Fig. 6.And when the item sets those are not utilized can be deleted using the

pseudo code is proposed in Fig. 7.

Fig: 8 Home Page

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

158

Fig 9 : Registration Form.

Fig 10 : Login Page

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

159

Fig 11: Items in the Iemset

Fig 12: Items in the Itemset.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

160

Fig 13 : Items in the Itemset.

Fig 14: Items in the Itemset.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

161

Fig 15: Items in the Iemset.

5. CONCLUSION

 In this paper we analyzed randomized algorithms like naive, PROP, M2S, FM2S and

proposed Naïve Bayes algorithm to suggest the popular items based on ranking and popularity

of items. We have considered the problem of ranking and suggesting popular items in systems

where users can select any subset of items and the users’ selection of items can be swayed to

the suggested items. In this paper we are proposing Naïve Bayes algorithm for ranking popular

items based on probabilistic theory using Bayes theory concepts . The problem studied in this

paper appears to differ from previous studies and may be worth exploring further We identified

the limit ranking of the items which are provided by the algorithms and how they are related to

the true popularity ranking and assessed the quality of suggestions as measured by the true

popularity of suggested items.

Acknowledgments

We extremely thank our Principal and the management for their continuous support in Research

and Development. We are also very grateful to our faculty members for their valuable

suggestions and their ever ending support. Especially, we thank our college Principal and

management for their financial support for receiving the sponsorship.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

162

References

[1] S. Brams and P. Fishburn, Approval Voting. Birkhauser, 1983.

[2] J. Cho, S. Roy, and R.E. Adams, “Page Quality:In Search of an Unbiased Web Ranking,”

Proc. ACM SIGMOD ’05, 2005.

[3] S. Golder and B.A. Huberman, “The Structure of Collaborative Tagging Systems,” J.

Information Science, vol. 32, no. 2, pp. 198-208, 2006.

[4] J. Kleinberg and M. Sandler, “Using Mixture Models for Collaborative Filtering,” Proc.

36th Ann. ACM Symp. Theory of Computing (STOC), 2004.

[5] R. Kumar, P. Rajagopalan, and A. Tomkins, “Recommendation Systems: A Probabilistic

Analysis,” Proc. 39th Ann. Symp. Foundations of Computer Science (FOCS), 1998.

[6]T.L.Lai and H.Robbins,“Asymptotically Efficient Adaptive Allocation Rules,”Advances in

AppliedMath., vol. 6, pp. 4-25, 1985.

[7] R.M. Phatarfod, “On the Matrix Occurring in a Linear Search Problem,” J. Applied

Probability, vol. 18, pp. 336-346, 1991.

[8] G. Salton and M.J. McGill, Introduction to Modern Information Retrieval. McGraw-Hill

Education, 1983.

[9] S. Sen, S.K. Lam, A.-M. Rashid, D. Cosley, D. Frankowski, J. Osterhouse, F.M. Harper,

and J. Riedl, “Tagging, Communities, Vocabulary, Evolution,” Proc. 2006 20th Anniversary

Conf. Computer Supported CooperativeWork (CSCW), 2006.

[10] F. Suchanek, M. Vojnovi_c, and D. Gunawardena, “Social Tagging: Meaning and

Suggestions,” Proc. 17th ACM Conf. Information and Knowledge Management (CIKM), Oct.

2008.

[11] Z. Xu, Y. Fu, J. Mao, and D. Su,“Towards the Semantic Web: Collaborative Tag

Suggestions,” Proc. Workshop Collaborative Web Tagging Workshop at the WWW 2006, May

2006.

[12] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically Efficient Allocation Rules

for the Multiarmed Bandit Problem with Multiple Plays—Part i: i.i.d. Rewards,” IEEE Trans.

Automatic Control, vol. 32, no. 11, pp. 968-976, Nov. 1987.

[13] J.R. Anderson, “The Adaptive Nature of Human Categorization,” Psychological Rev., vol.

98, no. 3, pp. 409-429, 1991.

[14] A.L. Baraba´si and R. Albert,“Emergence of Scaling in Random Networks,” Science, vol.

286, pp. 509-512, 1999.

[15] S. Brams and P. Fishburn, Approval Voting. Birkhauser, 1983.

[16] S. Chakrabarti, A. Frieze, and J.Vera, “The Influence of Search Engines on Preferential

Attachment,” Proc. Symp. Discrete Algorithms (SODA), 2005.

[17] J. Cho, S. Roy, and R.E. Adams, “Page Quality: In Search of an Unbiased Web Ranking,”

Proc. ACM SIGMOD ’05, 2005.

 [18] Linden, G.; Smith, B.; York, J.; "Amazon.com recommendations: item-to-item

collaborative filtering",Internet Computing, IEEE ,Volume: 7 Issue:1-On page(s): 76 - 80

[19] Junqiang Liu,Yunhe Pan"Mining frequent item sets by opportunistic projection",ISBN:1-

58113-567-X doi>10.1145/775047.775081

[20] Shilad Sen,Jesse Vig,John Riedl,"Tagommenders: connecting users to items through

tags",WWW '09 Proceedings of the 18th international conference on World wide web.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

163

[21] S Goldwasser,S Micali,C Rackoff,"The knowledge complexity of interactive proof-

systems",ISBN:0-89791-151-2 doi>10.1145/22145.22178

[22] Dwayne Bowman"Identifying the items most relevant to a current query based on items”.

[23] T. M. Liggett. Interacting particle systems. Springer, 2 edition, 2006.

[24] S. Pandey, S. Roy, C. Olston, J. Cho, and S. Chakrabarti. Shuffling stacked deck:

The case for partially randomized ranking of search engine results. In Proc. of VLDB

’05, Trondheim, Norway, 2005.

[25] F. Radlinski and T. Joachims. Active exploration for learning rankings from

clickthrough data. In Proc. of ACM KDD’07, San Jose, California, USA, 2007.

[26] M. Vojnovi ć, J. Cruise, D. Gunawardena, and P. Marbach. Ranking and

suggesting tags in collaborative tagging applications. Technical Report MSR-TR-2007-

06, Microsoft Research, February 2007.

[27] http://www.scribd.com/doc/47655582/Ranking-and-Suggesting-Popular-Items

[28] http://www.arnoldkling.com/apstats/bayes.html

[29] http://arnoldkling.com/apstats/chapter6.html

[30] http://www.slideshare.net/Tommy96/oracle-data-mining-concepts

[31] http://download.oracle.com/docs/cd/E11882_01/datamine.112/e16808/algo_nb.htm

First Author: ShiramShetty Gouthami is presently working as Asst.Prof in Computer Science

Engineering Department at Jayamukhi Institute of Technological Sciences; Warangal for the past 5

years. She received her M.Tech Degree from JNTU Hyderabad,(A.P, India) in 2011.

Second Author: G.Jose Mary is presently working as Asst.Prof in Computer Science Engineering

Department at Jayamukhi Institute of Technological Sciences; Warangal for the past 7 years. She

received his M.Tech Degree in 2011.

Third Author: Pulluri Srinivas Rao is presently working as Head for the department of Information

Technology at Jayamukhi Institute of Technological Sciences, Warangal.A.P (INDIA).Presently he is a

research scholar at RU(A.P,India). His research areas include Data mining and Network Security.

