
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

DOI : 10.5121/ijcsit.2012.4120 259

VISUAL ANALYSIS OF COST BASED DATABASE

OPTIMIZERS USING PICASSO TOOL

Neeraj Sharma
1
, Kavindra Raghuwanshi

2
, Syed Imran Ali

3
, Banshilal Patidar

4

1
Department of CSE, Trinity Institute of Technology and Research, Bhopal, India

neeraj.bpl83@gmail.com
2
Department of CSE, All Saints College of Technology, Bhopal, India

mtech.kavi@gmail.com
3
Deapartment of CSE, Trinity Institute of Technology and Research, Bhopal, India

er_imranali@yahoo.com
4
Department of IT, Trinity Institute of Technology and Research, Bhopal, India

banshi_patidar@yahoo.com

ABSTRACT

Cost based query optimizers have seen numerous changes and up gradations since their birth in the form

of System R query optimizer. Query Optimization is a process of selecting an optimal Query Execution

Plan from a number of plans available for execution of query and this selection of best plan is very

critical to the performance of a relational database. Picasso is a Query Optimizer analysis tool

developed by the Database lab of Indian Institute of Science, Bangalore [24]. It provides graphical

insights into the Query Optimization Process. With so many Database systems available in the market

and each one having its own secret recipe of Query Optimization it becomes difficult to know what

actually happens during query optimization. Picasso enables users to explore the world of query

optimization. In this paper we briefly introduce the query optimization concept and then describe a

special technique known as Plan Diagram Reduction which improves the efficiency of Query

Optimization Process and makes it more Robust.

KEYWORDS

Query Optimization, Selectivity, Plan Cardinality, Plan Diagrams, Checkpoints, TPCH

1. INTRODUCTION

Structured Query Language (SQL) follows a declarative paradigm which means that the order

of execution of instructions has to be determined by the SQL compiler. For this purpose the

initial SQL query submitted by user is first converted into its equivalent relational algebra

equation and for this expression a canonical query execution tree is generated. From this

canonical tree many query execution plans or QEPs [3] can be generated using multiple

techniques. Each query execution plan specifies a different order of execution of query with

different set of operation. The task of Query optimizer is to search for the best possible query

execution plans out of all these query execution plans. Query Optimizer plays a crucial role in

determining the efficiency of Database systems. If the choice of query execution plans is not

correct then the response time of the query processor will degrade. This increase in response

time can be frustrating for the end user especially when the user is querying a large database in

the likes of data warehouses or databases for decision support systems. Thus finding out the

optimal sequence of execution becomes the overhead of database query optimizers.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

260

Query processing is a multi step process. A simple query written in a declarative language such

as SQL is first converted to an equivalent relational algebra expression and is then converted

into a query tree which is primarily left deep or right deep trees as shown in Fig. 1[22].

Q1: SELECT Lname FROM EMPLOYEE, WORKS_ON, PROJECT WHERE Pname= ’Aquarious’

AND Pnumber=Pno AND Essn=Ssn AND Bdate>’1957-12-31’

Figure 1. Query tree for Q1

Problem in query optimization is that many such Query trees can be constructed by shuffling

the positions of leaf nodes and non leaf nodes or by changing the relational algebra operations

(such as using a hash join instead of nested loop join). Each such query tree corresponds to a

specific query execution plan.

The task of a query optimizer is to analyze all the query execution plans and select the optimal

plan for executing the query. The selection for best plan is done by applying some rules

(heuristics optimization) and by using some cost functions (cost based optimization). The

number of query execution plans for a given plan or the plan cardinality may be huge which

makes it impossible to analyze each and every plan for optimality. If much time is spent in just

searching the best plan, its execution won’t prove to be much beneficial. Thus a tradeoff

between searching time and execution time is necessary. Because of this most query optimizers

put efforts to search for the near optimal QEP instead of searching for the most optimal plan.

Another problem faced by optimizers is the selectivity of base relations. The choice for best

plan is made on the basis of some complex cost functions whose major parameters are the

selectivity of base relation. Since the selectivity keeps on changing frequently the cost

calculation becomes wrong and a sub optimal plan may get selected. Thus a dynamic

calculation of selectivity is required for getting correct value of cost functions. Static

compilation of selectivity is highly prone to errors.

2. Picasso Database Query Optimizer Visualizer

Picasso [24] is a database query optimizer visualizer which generates cubical diagrams

showcasing all the query execution plans that can be used for execution of a query in a

specified selectivity space. Picasso tool is one of the few available Query Optimization

Simulators and is written entirely in Java, is operational on database query optimizers of DB2,

Oracle, SQL Server, Sybase ASE and PostgreSQL. It is already in use in academic and

industrial labs used as query optimization analyzer, debugger, and for redesign aid by system

developers, query optimization test-bed by database researchers, and query optimizer

pedagogical support by database instructors and students.

PROJECT

 EMPLOYEE WORKS_ON

π Lname

σ Pname=’Aquarious’ AND Pnumber=Pno AND

Essn=Ssn AND Bdate >’1957-12-31

 X

 X

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

261

Picasso generates a variety of diagrams that characterize the behavior of the engine's optimizer

over this relational selectivity space. It generates many diagrams of which the important ones

are Plan Diagram, Cost Diagram, Cardinality Diagram and Reduced Plan Diagram. However in

this paper we discuss two of the most important diagrams used that are Plan Diagram and

Reduced Plan Diagram.

2.1 Plan Diagrams

The Plan Diagram is a pictorial enumeration of the execution plan choices made by the

optimizer over a relational selectivity space. The plan diagram assigns a unique color to each

different optimal plan and assigns this color to all occurrences of the plan in the diagram. The

diagram in Fig.2 (a) is a basic Picasso Diagram which shows 109 different plans that can be

used for execution of query Q8 of TPCH Database. Each plan is represented using a different

color. A plan is optimal in the area covered by its color in the plan diagram. The region of the

plan diagram covered by a specific plan corresponds to the selectivities of the two base

relations for which the plan will be optimal.

Figure 2. Plan Diagram and Reduced Plan Diagram for QT8 of TPCH

The Plan Diagram is always 2D, except when the query-template has only 1 dimension (i.e one

PSP), in which case it is 1D. If the query-template has more than 2 dimensions (i.e. ≥ 2 PSPs),

then the plan diagram represents 2D slice where the x and y axes and the constants

corresponding to the rest of the dimensions.

In this paper we discuss one of the main diagrams generated by Picasso known as Reduced Plan

Diagram. Reduced plan diagram shows a reduced number of query execution plans that can be

used for execution of query. This reduced plan diagram can be effectively used for increasing

the performance of Query Optimizer. The plan diagram in Fig. 2(a) shows 109 different plans

to execute QT8 which are reduced to 3 plans in Fig. 2(b). This reduction will help a lot in

increasing the performance of query optimizer by decreasing the searching time for the optimal

plan and decreasing the chances of selection of wrong plan.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

262

3. PROBLEMS IN QUERY OPTIMIZATION

Query optimization is a hard problem [4]. The selection for best execution plan is done by using

many different techniques of which the prominent ones are using heuristics, some cost

formulae, and randomized algorithms or genetic techniques [12]. Most Relational databases use

heuristics combined with some cost formulas [22].

It is very time consuming to calculate cost of each and every execution plan to find the most

optimal plan and is practically not feasible. Another problem faced by optimizers is the

changing selectivity of base relations. The selection of optimal plans is based on the basis of

some complex cost functions whose major parameters are the selectivities of base relations. It

happens frequently that the estimated selectivities change. These wrong estimates of

selectivities will lead to a poor choice of QEP.

3.1. Related Work

System R - A breakthrough work in query optimizers appeared in System R [1]. System R

optimizer was the most rudimentary form of query optimizers. The cost function is based on

parameters like disk access time and frequency, relation cardinality and number of tuples per

page etc. The work on System R optimizer was further elaborated in [2] which discussed how

the access path will be selected for execution of basic queries and for complex queries

involving JOIN operations.

Eddies - The first ever technique for dynamic query optimization was discussed in [6]. The

authors discuss a pure continuous adaptive query processing mechanism named Telegraph

which checks for selectivities during “on the fly” time of query. Telegraph overlaps the

optimization and execution phases. The initial optimal plan selected for executing a query is

based on the cost functions whose parameters are determined from the system catalog. These

parameters are subjected to change during run time of query. When such changes in parameters

are discovered eddies try to reorder the operators used in the execution plan so as to minimize

the execution cost.

Parametric Query Optimization (PQO) - System R’s algorithms were modified to generate

multiple optimal plans for query execution and the process was called Parametric Query

Optimization or PQO [7]. In PQO multiple candidate QEPs are generated for a query, each of

which is optimal for some region of the parameter space. This collection of optimal candidate

plans is known as Parametrically Optimal Set of Plans or POSP. Any one plan out of these

POSP is used as final QEP during run time depending on the run time values of the parameters.

One significant problem with the PQO technique was that while dealing with piecewise linear

functions, the solution proposed is pretty much intrusive. For this the authors of PQO suggests a

modified optimization technique for Non Linear cost functions. This is known as AniPQO

(Almost Non Intrusive PQO) [8].

Dynamic Optimization – Dynamic query optimization is a modern way for optimizing queries.

In [4] a compile time dynamic plan optimization technique is described. Most dynamic

optimization techniques use a dynamic programming model which compares cost of two plans

and ignores the expensive ones. This requires a total ordering of plans. But authors of [4]

suggest a “check plan” operator which maintains a partial ordering of plans.

The main problem of dynamic query optimization as pointed in [5] is the time spent in repeated

collection of run time statistics like selectivities and resource availability and the searching of

substitute plans. Algorithm described in [5] provides specific points in the query execution plan

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

263

and the run time statistics are collected and substitute plans are searched only at these points

thus minimizing optimization time.

The most practical approach in dynamic query optimization occurs in [9] in which a generalized

and practically effective technique for optimization is suggested using CHECK operators.

CHECK operators were placed at specific points in a query execution plan and they check the

input cardinality. If the cardinality is within the specified range the current query execution plan

is retained else the plan is changed during the run time.

CHECKS increase performance but excess of checks increase the execution time. So there is a

risk and opportunity trade off which makes it important to determine how many CHECKS are

to be inserted and where to be inserted. Five different rules for placement of CHECK operators

in the Query Execution Plan were suggested by authors.

4. PLAN DIAGRAMS REDUCTION

The biggest motivation for reducing the number of plans arises after observing the skewed

distribution of plans in the plan diagrams for different queries. The amount of skewed

distribution of plans can be converted into a constant value known as Gini Index [25]. Gini

Index is a standard economic measure of income inequality, based on Lorenz Curve.

A society that scores 0.0 on the Gini scale has perfect equality in income distribution. Higher

the number over 0 higher the inequality, and the score of 1.0 (or 100) indicates total inequality

where only one person corners all the income.

Figure 3. Gini Coefficient in the right panel of Picasso Interface

When plan diagrams are generated with Picasso tool the Gini Index values are also generated

and surprisingly the Gini Index value of most of the plans diagrams was greater than 0.75

substantiating the skewed distribution of plans over the selectivity space. This is shown in table

[1]. Optimizer A, B and C may refer to any of SQL Server, Oracle, DB2, Sybase or PostGre.

The identities of various database systems have been kept secret so as to avoid any sort of

comparison between them.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

264

Table 1. Gini Index values for dense queries

TPC-H

Query

Number

OptA Opt B Opt C
Plan

Card

Gini

Index

Plan

Card

Gini

Index

Plan

Card

Gini

Index

2 22 0.76 14 0.72 35 0.77

5 21 0.81 14 0.74 18 0.81

7 13 0.73 6 0.46 19 0.79

8 31 0.81 25 0.72 38 0.79

9 63 0.88 44 0.70 41 0.83

10 24 0.78 9 0.69 8 0.75

18 5 0.33 13 0.57 5 0.75

21 27 0.74 6 0.80 22 0.81

Avg. 28.7 0.79 24.5 0.72 28.8 0.80

These high values of Gini Index indicate that a big percentage of plans that cover very small

space in the plan diagram need not be considered for execution of query. This is because these

plans are highly vulnerable to poor execution times if the selectivities change even by a small

order during the execution of query. Thus we can ignore or remove these plans to be considered

as a possible candidate for execution of query.

A method used to substitute these plans with other plans which have high plan area coverage is

known as Plan Swallowing [16][17] and process wherein plan swallowing is carried on is

known as plan reduction. It is defined as in [10][11]:

Given an input plan diagram P, and a cost increase threshold λ (λ ≥ 0), find a reduced plan

diagram R that has minimum plan cardinality, and for every plan Pi in P,

1. Pi ∈∈∈∈ R, or

2. ∀∀∀∀ query points q ∈∈∈∈ Pi, ∃∃∃∃ Pj ∈∈∈∈ R, such that

(cj(q)/ci(q)) ≤ (1 + λ)

That is, find the minimum-sized “cover” of plans that is sufficient to recolor P (using only the

colours in LP) without increasing the cost of any re-coloured query point (i.e. whose original

plan is replaced by a sibling plan) by more than cost increase threshold. Obviously, for λ → 0,

the reduced plan diagram will be almost identical to original plan diagram, whereas for λ → ∞,

the reduced plan diagram will be completely covered by a single plan.

The idea is that these smaller plans can be completely swallowed by their larger sibling plans

which will effectively reduce the total number of plan cardinality in the plan diagram. There are

two advantages of this approach. Firstly, it will reduce the searching time as the plan cardinality

reduces and secondly, it will help us select robust plans which have higher plan space coverage

and thus can tolerate higher variations in the plan selectivity. The process of plan swallowing

may increase the cost of execution of a query but this increase in cost is controlled by user. This

is represented as cost increase threshold (λ). Cost increase threshold (λ) of 10 is also sufficient

but as proven in [14], a 20% cost increase (λ) can reduce the number of queries to an anorexic

value which can significantly decrease the searching time of optimizers.

4.1. Algorithms used for Reduction

Finding an optimal solution for plan reduction is an NP Hard problem [14]. Thus the techniques

used for plan reduction are predominantly heuristic in nature. Picasso uses three different

algorithms for reduction. Initially COST GREEDY and AREA GREEDY were introduced in

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

265

Picasso version 1 of which COST GREEDY proved to be more efficient. In Picasso V2 a new

robust plan reduction algorithm SEER (Selectivity Estimate Error Resistance) [18] was

introduced which performed plan reduction and gave robust plans which can withstand run time

changes in the selectivities.

Cost Greedy - This algorithm operates under the assumption that the Cost Domination

Principle holds and therefore only plan swallowing possibilities in the first quadrant are

considered with respect to the plan under consideration. The algorithm processes the query

points starting from the top-right corner (with the Cost Domination assumption, this corner will

have the highest cost of all points) and progressively makes its way to the origin, in the process

using the Greedy Set Cover algorithm to recolor the points.

Cost Greedy ensure that the replacement plans are within the cost-increase-threshold at all

points in the optimality regions of the replaced plans. The complexity of this algorithm is

O(mn) where n is the number of plans in the diagram and m is the number of query points. Cost

Greedy provides the best possible approximation factor with respect to the optimal reduction.

Another attractive feature of Cost Greedy is that a swallowed point is re-colored only once, in

contrast to Area Greedy where a swallowed point can be re-colored multiple times.

SEER - (Selectivity Estimate Error Reduction) – This algorithm is developed for the

production of robust queries which can tolerate the changes in the selectivities of base relations

during run time. These changes in selectivities can even be in orders of magnitude in real

database environments [21], arising due to a variety of reasons, including outdated statistics,

attribute-value independence assumptions and coarse summaries. Due to wrong selectivity

estimates the performance of the replacement plan could be much worse than the replaced plan.

This problem naturally leads to the concept of a robust replacement – that is, a replacement

where the λ-threshold criterion is satisfied at all points in the selectivity space, i.e. the

replacement ensures global safety. For this we use two implementations of SEER:

Corner Cube-SEER - CC-SEER implements a more conservative test for robust plan

replacement applying Abstract-plan-costing operations at the corner hyper-cubes of the

selectivity space and is therefore significantly faster than the original SEER. Moreover, its

performance is resolution independent unlike SEER, and therefore the performance gap

between CC-SEER and SEER increases with higher resolution diagrams. Experimental results

[16] indicate that CC-SEER’s reduction quality is comparable to that of SEER instead of it

being more conservative.

Lite SEER - Lite Seer is a light-weight heuristic-based variant of SEER that makes its

replacement decisions solely based on Abstract-plan-costing operations at the corners of the

hypercube, and is therefore extremely efficient. Lite SEER is optimal in the sense that it incurs

the minimum work (complexity-wise) required by any reduction algorithm. While it does not

guarantee global safety, experimental results [16] indicate that in practice, its safety and

reduction characteristics are quite close to that of SEER and CC-SEER.

5. EXPERIMENTAL ANALYSIS

Test bed Environment:

DATABASE AND QUERY SET

The database was created using the synthetic generator “dbgen” supplied with the TPC-H

decision support benchmark [23]. It represents a commercial manufacturing environment,

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

266

featuring the following relations: REGION, NATION, SUPPLIER, CUSTOMER, PART,

PARTSUPP, ORDERS and LINEITEM. A gigabyte-sized (1 GB) database was created on this

schema, resulting in cardinalities of 5, 25, 10000, 150000, 200000, 800000, 1500000 and

6001215, for the respective relations.

All query templates were based on the TPC-H benchmark, which features a set of 22 queries,

Q1 through Q22. Out of these 22 queries we have taken 17 queries. While plan and cost

diagrams were generated for most of the queries, but to produce substantial results we focused

on queries which generated dense plan diagrams– that is, plan diagrams whose optimal plan set

cardinality is 10 or more. This is because dense plan diagrams reveal many interesting fact for

analysis. For computational tractability, a query grid spacing of 30X30 and 100X100 is used.

RELATIONAL ENGINES

The relational engine used is Microsoft SQL Server 2008. Although any other relational engine

could be used we prefer MS SQL Server because of its ease of availability and easier

functionality.

COMPUTATIONAL PLATFORM

An Intel Core i3 CPU M370 running at 2.4 GHz with 2 GB of main memory and 240 GB of

hard disk, running 64 bit version of Windows 7 Home Basic operating system, was used in our

experiments. The relational engine used is Microsoft SQL Server 2008.Some changes in

settings of MS SQL Server 2008 were required to allow for remote connections.

5.1 Comparison of Reduction Algorithms

We performed experimental analysis of the three algorithms and compared their performance

and plan reduction efficiency. Analysis is performed in two different parts. In the first part we

compare the time taken by the three algorithms for performing the reduction. Then we compare

the reduction efficiency of the three algorithms.

Plan Diagram Generation Time

We first generate the plan diagrams and check the time required for generation. Table 2, 3 and 4

shows the generation time for plan diagrams of 2D queries for plot resolution of 30 and 100,

and 3D queries for plot resolution of 10 and 30 respectively. These time readings were taken

from the log files generated while generating the plan diagrams and are very accurate. The

longest time was taken by 3D queries when executed on a plot resolution of 30. Because of

limitation in the available processing power we could not execute 3D queries on a plot size of

300 as this process would take around 10-12 hours.

Table 2: Time taken for Diagram generation and No. of Plans for 2D queries, Resolution 30

 Query Template Gini Index Resolution No. of Plans Time Taken in Sec.

QT2 0.73 30 23 2 min 24 sec

QT 7 0.67 30 8 2 min 30 sec

QT 8 0.79 30 24 5 min 22 sec

QT 11 0.73 30 13 46 sec

QT 16 0.94 30 27 44 sec

QT 17 0.86 30 13 36 sec

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

267

Figure 4: Comparison of Diagram Generation time for 2D queries, Resolution of 30

Table 3: Time taken for Diagram generation and No. of Plans for 2D queries, Resolution 100
Query Template Gini Index Resolution No. of Plans Time Taken in Sec.

QT2 0.72 100 36 26 min 27 sec

QT 7 0.79 100 39 1 hr 1 min

QT 8 0.73 100 16 8 min 51 sec

QT 11 0.67 100 16 27 min 47 sec

QT 16 0.94 100 31 8 min 35 sec

QT 17 0.86 100 15 6 min 56 sec

Figure 5: Comparison of Diagram Generation time for 2D queries, Resolution of 100

Table 4: Time taken for Diagram generation and No. of Plans for 3D queries, Resolution 10

Query Template Gini Index Resolution No. of Plans Time Taken in Sec.

QT 2 0.89 10 25 2 min 40 sec

QT 3 0.68 10 16 51 sec

QT 5 0.66 10 14 3 min 55 sec

QT 7 0.91 10 18 2 min 52 sec

QT 8 0.81 10 20 5 min 47 sec

QT 19 0.88 10 34 10 min 24 sec

QT 20 0.74 10 14 3 min 55sec

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

268

Figure 6: Comparison of Diagram Generation time for 3D queries, Resolution of 10

Table 5: Time taken for Diagram generation and No. of Plans for 3D queries, Resolution 30

Query Template Gini Index Resolution No. of Plans Time Taken in Sec.

QT 2 0.80 30 65 1 hr 14 min

QT 3 0.69 30 25 23 min

QT 7 0.91 30 25 1 hr 16 min

Figure 7: Comparison of Diagram Generation time for 3D queries, Resolution of 30

5.3 Comparison of Reduction Algorithms

We performed experimental analysis of the three algorithms and compared their performance

and plan reduction efficiency. In the first part we compare the time taken by the three

algorithms for performing the reduction. Then we compare the reduction efficiency of the three

algorithms. The same Queries were used for which readings were taken in section 5.2.

5.3.1 Computation Efficiency

Table 5, 6, 7, and 8 list the time consumed for reduction of plan diagrams by the three

algorithms for 2D queries with plot resolution 30 and 100 and 3D queries with plot resolution

of 10 and 30.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

269

Table 6: Plan Reduction time comparison chart for 2D queries, Resolution 30

Query Template Plan Reduction

Threshold (λ)

Plot

Resolution

Time Taken by Reduction Algorithm

Cost Greedy Lite SEER CC-SEER

QT2 10 30 1 sec 28 sec 30 sec

QT 7 10 30 1 sec. 10 sec 10 sec

QT 8 10 30 1 sec 36 sec 45 sec

QT 11 10 30 1 sec. 16 sec 24 sec

QT 16 10 30 1 sec 30 sec 40 sec

QT 17 10 30 1 sec 14 sec 19 sec

Figure 8: Comparison of Reduction Algo. for Reducing 2D Diagrams, Resolution 30

Table 7: Plan Reduction time comparison chart for 2D queries, Resolution 100

Query Template Plan Reduction

Threshold (λ)

Plot

Resolution

Time Taken by Reduction Algorithm

Cost Greedy Lite SEER CC-SEER

QT2 10 100 1 sec 44 sec 1 min 20 sec

QT 7 10 100 1 sec 19 sec 22 sec

QT 11 10 100 1 sec 19 sec 19 sec

QT 16 10 100 1 sec 34 sec 47 sec

QT 17 10 100 1 sec 16 sec 23 sec

Figure 9: Comparison of Reduction Algo. for Reducing 2D Diagrams, Resolution 100

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

270

Table 8: Plan Reduction time comparison chart for 3D queries, Resolution 10

Query Template Plan Reduction

Threshold (λ)

Plot

Resolution

Time Taken by Reduction Algorithm

Cost Greedy Lite SEER CC-SEER

QT 2 10 10 1 sec 35 sec 2 min 45 sec

QT 3 10 10 1 sec 17 sec 38 sec

QT 5 10 10 1 sec 18 sec 47 sec

QT 7 10 10 1 sec 21 sec 1 min 11sec

QT 8 10 10 1 sec 30 sec 1 min 35 sec

QT 20 10 10 1 sec 20 sec 45 sec

Figure 10: Comparison of Reduction Algo. for Reducing 3D Diagrams, Resolution 10

Table 9: Plan Reduction time comparison chart for 3D queries, Resolution 30

Query Template Plan Reduction

Threshold (λ)

Plot

Resolution

Time Taken by Reduction Algorithm

Cost Greedy Lite SEER CC-SEER

QT 2 10 30 1 sec 1 min 31 sec 4 min 42 sec

QT 3 10 30 1 sec 28 sec 56 sec

QT 7 10 30 1 sec 30 sec 1 min 32 sec

Figure 11: Comparison of Reduction Algo. for Reducing 3D Diagrams, Resolution 30

It is interesting to note that the reduction time taken by Cost Greedy algorithm was almost

constant throughout the analysis for any combination of query and plot resolution. This makes

Cost Greedy the fastest reduction algorithm. Next is LiteSEER which generates second best

timings and then comes CC-SEER with the highest time readings. But an interesting

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

271

observation is that as the plot size increases the gap between the time taken by Lite SEER and

CC SEER decreases. The large amount of time taken by LiteSEER and CC-SEER is due to the

fact that these two algorithms perform extra operations so as to produce robust plans as

discussed in section IV. Therefore, conceptually comparison of SEER variants with Cost

Greedy is not fair. But when simple plan reductions are required, Cost Greedy scores a lot more

than the SEER algorithms.

5.3.2 Reduction Efficiency

Now we check the reduction efficiency by comparing the number of plans retained after

performing reduction. Again this part of analysis is carried in three parts: Table 9 and 10 lists

the number of plans retained for 2D queries with plot resolution of 30 and 100 and Table 11 and

12 lists the number of plans retained for 3D queries with plot resolution of 10 and 30

respectively.

Table 10: Reduction efficiency of Reduction Algorithms for 2D queries, Resolution 30

Query Template Resolution Original No. of

Plans

Reduced No. of Plans

Cost Greedy Lite SEER CC-SEER

QT 2 30 23 6 (P1-P6) 2 (P5, P8) 1 (P8)

QT 7 30 8 2 (P1, P8) 1 (P5) 1 (P8)

QT 8 30 24 1 (P11) 1 (P24) 1 (P9)

QT 11 30 13 1 (P1) 1 (P9) 1 (P4)

QT 16 30 27 22 3 (P6,P15,P24) 2 (P6,P10)

QT 17 30 13 4 1 (P4) 2 (P2, P4)

Figure 12: Reduction efficiency of Reduction Algorithms for 2D queries, Resolution 30

Table 11: Reduction efficiency of Reduction Algorithms for 2D queries, Resolution 100
Query Template Resolution Original No.

of Plans

Reduced No. of Plans

Cost Greedy Lite SEER CC-SEER

QT 2 100 36 7 2 (P5, P15) 3 (P14,P20,P28)

QT 7 100 16 2 (P1, P11) 1 (P8) 1 (P11)

QT 8 100 39 1 (P13) - -

QT 11 100 16 1 (P1) 1 (P8) 1 (P4)

QT 16 100 31 22 5 3

QT 17 100 15 5 1 (P4) 2 (P2, P4)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

272

Figure 13: Reduction efficiency of Reduction Algorithms for 2D queries, Resolution 100

Table 12: Reduction efficiency of Reduction Algorithms for 3D queries, Resolution 10

Query Template Resolution Original No. of

Plans

Reduced No. of Plans

Cost Greedy Lite SEER CC-SEER

QT 2 10 25 3 (P1-P3) 2 (P1, P2) 2 (P1, P2)

QT 3 10 16 8 1 (P1) 14

QT 5 10 14 2 (P1, P2) 1 (P1) 4 (P1-P4)

QT 7 10 18 1 (P1) 1 (P1) 2 (P1, P2)

QT 8 10 20 1 (P1) 1 (P1) 2 (P1, P2)

QT 20 10 14 2 (P1, P2) 1 (P1) 4 (P1-P4)

Figure 14: Reduction efficiency of Reduction Algorithms for 3D queries, Resolution 10

Table 13: Reduction efficiency of Reduction Algorithms for 3D queries, Resolution 30

Query Template Resolution Original No. of

Plans

Reduced No. of Plans

Cost Greedy Lite SEER CC-SEER

QT 2 30 65 6 (P1-P6) 3 (P1 – P3) 8 (P1-P8)

QT 7 30 25 1 (P1) 1 (P1) 5 (P1-P5)

QT 3 30 25 9(P1-P9) 2 (P1, P2) 16 (P1-P16)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

273

Figure 15: Reduction efficiency of Reduction Algorithms for 3D queries, Resolution 30

The observation of these three tables gives a very interesting insight into the reduction

efficiency of three algorithms. The reduction patterns for 2D queries were quite different from

the reduction patterns of 3D queries. The following observations were made:

- In Reduction of 2D queries, the final plans retained were different for each algorithm in most

of the cases. For example, reduction of QT8, QT11. The plans retained in LiteSEER and

CC-SEER were not found in Cost Greedy which proves the quality difference between the

three algorithms. Thus the normal assumption about the three algorithms holds true in case

of 2D queries and CC-SEER gives robust plans which mostly are missing from the output of

Cost Greedy and many times from LiteSEER as well.

- In case of 3D queries the observation was quite opposite. The plans retained in CC-SEER

were also present in the list of plans retained in Cost Greedy and LiteSEER. The most

extreme observation is that CC-SEER retained some plans which were initially not included

in Cost Greedy and LiteSEERs list. This clearly indicates that CC-SEER is not a good

choice for reduction of 3D queries because Cost Greedy and LiteSEER already produced the

same diagrams in very less time.

6. CONCLUSION

Query optimization is a difficult but a critical process for the database optimizers. Picasso

introduces a novice way of plan diagram reduction which decreases the search complexity of

query optimizers and also produces robust plans which improves the performance and

reliability of query optimizers. Three such algorithms were discussed and the performances

were compared. Results proved that Cost Greedy is the best algorithm in terms of execution

time but if reliability was desired then Lite SEER and CC-SEER were better. For 2D queries

CC-SEER must be used in spite of its long execution time but for 3D queries LiteSEER and

Cost Greedy proved better than CC-SEER.

There are many interesting future works to be carried. Cost Greedy and SEER based algorithms

are purely compile-time approach and it can be used in conjunction with run-time techniques

such as adaptive query processing [13] for addressing selectivity errors in the higher nodes of

the plan tree. Another improvisation in the design of these algorithms can be to include the

technique of CHECKS suggested in [9] which can further increase the quality of plans

produced after reduction. Lastly it would be interesting to use these algorithms on the upcoming

TPCE dataset and some other dataset having queries with more than 3 dimensions.

REFERENCES

[1] Astrahan, M. M. et al., “System R: Relational Approach to Database Management”, ACM

Transactions on Database Systems, Vol.1, No. 2, (1976)

[2] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, T. Price, “Access Path Selection in a Relational

Database Management System”, SIGMOD, (1979)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

274

[3] Johan Christoph Freytag, “Basic principles of query optimization in relational database management

systems”, Proceedings of IFIP Congress, (1989)

[4] L. Cole and G. Graefe, “Optimization of dynamic query evaluation plans”, SIGMOD, (1994)

[5] Kabra, N; DeWitt, D. “Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution

Plans”, SIGMOD, (1998)

[6] R Avnur and J. M. Hellerstein, “Eddies: Continuously Adaptive Query Optimization”, SIGMOD

(2000)

[7] Hulgeri, A; Sudarshan S., “Parametric Query Optimization for Linear and Piecewise Linear Cost

Functions”, VLDB, (2002)

[8] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive Parametric Query Optimization, for

Nonlinear Cost Functions”, VLDB (2003)

[9] V. Markl, V. Raman, D. Simmen, G. Loman, H. Pirahesh, M. Cilimdzic, “Robust Query Processing

through Progressive Optimization”, SIGMOD (2004)

[10] Naveen Reddy and Jayant Haritsa, “Analyzing plan diagrams of Database query optimizers”, VLDB

(2005)

[11] Mohammad Aslam, “Picasso: Design and implementation of a Query Optimizer Analyzer”, Master's

Thesis, Dept. of Computer Sci. and Automation, IISc, (2006)

[12] Riham Abdel Kader, Maurice van Keulen, “Overview of query optimization in XML Database

Systems”, university of twente publications, (2007)

[13] Deshpande, A; Ives, Z; Raman, V., “Adaptive Query Processing”, Foundations and Trends in

Databases, Now Publishers, (2007)

[14] Harish D., Pooja Darera and Jayant Haritsa, “On the Production of Anorexic Plan Diagrams”,

VLDB (2007)

[15] Pooja Darera,”Reduction of query optimizer Plan Diagrams”, Master's Thesis, Supercomputer

Education & Research Centre, IISc, (2007)

[16] Harish D., Pooja Darera and Jayant Haritsa, “Robust plans through plan diagram reduction”, VLDB

(2007)

[17] Harish D., Pooja Darera and Jayant Haritsa, “Identifying Robust Plans through Plan Diagram

Reduction”, VLDB (2008)

[18] Harish D, “SIGHT and SEER: Efficient Production and Reduction of Query Optimizer Plan

Diagrams”, Master's Thesis, Dept. of Comp. Sci. and Automation, IISc, July (2008)

[19] Atreyee Dey, Sourjya Bhaumik, Harish D. and Jayant Haritsa, “Efficiently Approximating Query

Optimizer Plan Diagrams”, VLDB (2008)

[20] Jayant Haritsa, “The Picasso Database Query Optimizer Visualizer”, VLDB (2010)

[21] Jayant Haritsa, “Query optimizer plan diagrams: Production, Reduction and Applications”, ICDE

(2011)

[22] Ramez Elmasri, Shamkant B. Navathe. “Fundamentals of Database Systems”, Fifth Edition,

Addison-Wesley, (2008)

[23] Transaction Processing Council, http://www.tpc.org/tpch.

[24] Project Picasso, IISC, http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html.

[25] http://en.wikipedia.org/wiki/Gini_coefficient.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012

275

Authors

NEERAJ SHARMA is Assistant Professor in Computer Science

Department of Trinity Institute of Technology and Research,

Bhopal with profound interest in Database Systems.

KAVINDRA RAGHUWANSHI is Assistant Professor and MTech.

course coordinator in Computer Science Department of All

Saints College of Technology, Bhopal.

BANSHI LAL PATIDAR is Assistant Professor and Head in

Information Technology Department of Trinity Institute of

Technology and Research, Bhopal.

SYED IMRAN ALI is Assistant Professor and Head in Computer

Science Department of Trinity Institute of Technology and

Research, Bhopal.

