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ABSTRACT 

Cost based query optimizers have seen numerous changes and up gradations since their birth in the form 

of System R query optimizer. Query Optimization is a process of selecting an optimal Query Execution 

Plan from a number of plans available for execution of query and this selection of best plan is very 

critical to the performance of a relational database. Picasso is a Query Optimizer analysis tool 

developed by the Database lab of Indian Institute of Science, Bangalore [24]. It provides graphical 

insights into the Query Optimization Process. With so many Database systems available in the market 

and each one having its own secret recipe of Query Optimization it becomes difficult to know what 

actually happens during query optimization. Picasso enables users to explore the world of query 

optimization. In this paper we briefly introduce the query optimization concept and then describe a 

special technique known as Plan Diagram Reduction which improves the efficiency of Query 

Optimization Process and makes it more Robust. 
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1. INTRODUCTION 

Structured Query Language (SQL) follows a declarative paradigm which means that the order 

of execution of instructions has to be determined by the SQL compiler. For this purpose the 

initial SQL query submitted by user is first converted into its equivalent relational algebra 

equation and for this expression a canonical query execution tree is generated. From this 

canonical tree many query execution plans or QEPs [3] can be generated using multiple 

techniques. Each query execution plan specifies a different order of execution of query with 

different set of operation. The task of Query optimizer is to search for the best possible query 

execution plans out of all these query execution plans. Query Optimizer plays a crucial role in 

determining the efficiency of Database systems. If the choice of query execution plans is not 

correct then the response time of the query processor will degrade. This increase in response 

time can be frustrating for the end user especially when the user is querying a large database in 

the likes of data warehouses or databases for decision support systems. Thus finding out the 

optimal sequence of execution becomes the overhead of database query optimizers. 
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Query processing is a multi step process. A simple query written in a declarative language such 

as SQL is first converted to an equivalent relational algebra expression and is then converted 

into a query tree which is primarily left deep or right deep trees as shown in Fig. 1[22]. 
 

Q1: SELECT Lname FROM EMPLOYEE, WORKS_ON, PROJECT WHERE Pname= ’Aquarious’ 

AND Pnumber=Pno AND Essn=Ssn  AND Bdate>’1957-12-31’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Query tree for Q1 
 

Problem in query optimization is that many such Query trees can be constructed by shuffling 

the positions of leaf nodes and non leaf nodes or by changing the relational algebra operations 

(such as using a hash join instead of nested loop join). Each such query tree corresponds to a 

specific query execution plan. 

 

The task of a query optimizer is to analyze all the query execution plans and select the optimal 

plan for executing the query. The selection for best plan is done by applying some rules 

(heuristics optimization) and by using some cost functions (cost based optimization). The 

number of query execution plans for a given plan or the plan cardinality may be huge which 

makes it impossible to analyze each and every plan for optimality. If much time is spent in just 

searching the best plan, its execution won’t prove to be much beneficial. Thus a tradeoff 

between searching time and execution time is necessary. Because of this most query optimizers 

put efforts to search for the near optimal QEP instead of searching for the most optimal plan. 

 

Another problem faced by optimizers is the selectivity of base relations. The choice for best 

plan is made on the basis of some complex cost functions whose major parameters are the 

selectivity of base relation. Since the selectivity keeps on changing frequently the cost 

calculation becomes wrong and a sub optimal plan may get selected. Thus a dynamic 

calculation of selectivity is required for getting correct value of cost functions. Static 

compilation of selectivity is highly prone to errors. 

 

2. Picasso Database Query Optimizer Visualizer 

Picasso [24] is a database query optimizer visualizer which generates cubical diagrams 

showcasing all the query execution plans that can be used for execution of a query in a 

specified selectivity space. Picasso tool is one of the few available Query Optimization 

Simulators and is written entirely in Java, is operational on database query optimizers of DB2, 

Oracle, SQL Server, Sybase ASE and PostgreSQL. It is already in use in academic and 

industrial labs used as query optimization analyzer, debugger, and for redesign aid by system 

developers, query optimization test-bed by database researchers, and query optimizer 

pedagogical support by database instructors and students. 

 

PROJECT 

 EMPLOYEE  WORKS_ON 

π Lname 

 
σ Pname=’Aquarious’ AND Pnumber=Pno AND 

Essn=Ssn AND Bdate >’1957-12-31 

  X 

  X 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012 

261 

 

 

 

Picasso generates a variety of diagrams that characterize the behavior of the engine's optimizer 

over this relational selectivity space. It generates many diagrams of which the important ones 

are Plan Diagram, Cost Diagram, Cardinality Diagram and Reduced Plan Diagram. However in 

this paper we discuss two of the most important diagrams used that are Plan Diagram and 

Reduced Plan Diagram. 

 

2.1 Plan Diagrams 

The Plan Diagram is a pictorial enumeration of the execution plan choices made by the 

optimizer over a relational selectivity space. The plan diagram assigns a unique color to each 

different optimal plan and assigns this color to all occurrences of the plan in the diagram. The 

diagram in Fig.2 (a) is a basic Picasso Diagram which shows 109 different plans that can be 

used for execution of query Q8 of TPCH Database. Each plan is represented using a different 

color. A plan is optimal in the area covered by its color in the plan diagram. The region of the 

plan diagram covered by a specific plan corresponds to the selectivities of the two base 

relations for which the plan will be optimal. 

 

 

 

Figure 2. Plan Diagram and Reduced Plan Diagram for QT8 of TPCH 

The Plan Diagram is always 2D, except when the query-template has only 1 dimension (i.e one 

PSP), in which case it is 1D. If the query-template has more than 2 dimensions (i.e. ≥ 2 PSPs), 

then the plan diagram represents 2D slice where the x and y axes and the constants 

corresponding to the rest of the dimensions. 

 

In this paper we discuss one of the main diagrams generated by Picasso known as Reduced Plan 

Diagram. Reduced plan diagram shows a reduced number of query execution plans that can be 

used for execution of query. This reduced plan diagram can be effectively used for increasing 

the performance of Query Optimizer. The plan diagram in Fig. 2(a) shows 109 different plans 

to execute QT8 which are reduced to 3 plans in Fig. 2(b). This reduction will help a lot in 

increasing the performance of query optimizer by decreasing the searching time for the optimal 

plan and decreasing the chances of selection of wrong plan. 

 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 1, Feb 2012 

262 

 

 

 

3. PROBLEMS IN QUERY OPTIMIZATION 

Query optimization is a hard problem [4]. The selection for best execution plan is done by using 

many different techniques of which the prominent ones are using heuristics, some cost 

formulae, and randomized algorithms or genetic techniques [12]. Most Relational databases use 

heuristics combined with some cost formulas [22]. 

It is very time consuming to calculate cost of each and every execution plan to find the most 

optimal plan and is practically not feasible. Another problem faced by optimizers is the 

changing selectivity of base relations. The selection of optimal plans is based on the basis of 

some complex cost functions whose major parameters are the selectivities of base relations. It 

happens frequently that the estimated selectivities change. These wrong estimates of 

selectivities will lead to a poor choice of QEP. 

3.1. Related Work 

System R - A breakthrough work in query optimizers appeared in System R [1]. System R 

optimizer was the most rudimentary form of query optimizers. The cost function is based on 

parameters like disk access time and frequency, relation cardinality and number of tuples per 

page etc. The work on System R optimizer was further elaborated in [2] which discussed how 

the access path will be selected for execution of basic queries and for complex queries 

involving JOIN operations.  

 
Eddies - The first ever technique for dynamic query optimization was discussed in [6]. The 

authors discuss a pure continuous adaptive query processing mechanism named Telegraph 

which checks for selectivities during “on the fly” time of query. Telegraph overlaps the 

optimization and execution phases. The initial optimal plan selected for executing a query is 

based on the cost functions whose parameters are determined from the system catalog. These 

parameters are subjected to change during run time of query. When such changes in parameters 

are discovered eddies try to reorder the operators used in the execution plan so as to minimize 

the execution cost. 

 

Parametric Query Optimization (PQO) - System R’s algorithms were modified to generate 

multiple optimal plans for query execution and the process was called Parametric Query 

Optimization or PQO [7]. In PQO multiple candidate QEPs are generated for a query, each of 

which is optimal for some region of the parameter space. This collection of optimal candidate 

plans is known as Parametrically Optimal Set of Plans or POSP. Any one plan out of these 

POSP is used as final QEP during run time depending on the run time values of the parameters. 

One significant problem with the PQO technique was that while dealing with piecewise linear 

functions, the solution proposed is pretty much intrusive. For this the authors of PQO suggests a 

modified optimization technique for Non Linear cost functions. This is known as AniPQO 

(Almost Non Intrusive PQO) [8].  

 
Dynamic Optimization – Dynamic query optimization is a modern way for optimizing queries. 

In [4] a compile time dynamic plan optimization technique is described. Most dynamic 

optimization techniques use a dynamic programming model which compares cost of two plans 

and ignores the expensive ones. This requires a total ordering of plans. But authors of [4] 

suggest a “check plan” operator which maintains a partial ordering of plans. 

 

The main problem of dynamic query optimization as pointed in [5] is the time spent in repeated 

collection of run time statistics like selectivities and resource availability and the searching of 

substitute plans. Algorithm described in [5] provides specific points in the query execution plan 
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and the run time statistics are collected and substitute plans are searched only at these points 

thus minimizing optimization time. 

 

The most practical approach in dynamic query optimization occurs in [9] in which a generalized 

and practically effective technique for optimization is suggested using CHECK operators. 

CHECK operators were placed at specific points in a query execution plan and they check the 

input cardinality. If the cardinality is within the specified range the current query execution plan 

is retained else the plan is changed during the run time. 

 

CHECKS increase performance but excess of checks increase the execution time. So there is a 

risk and opportunity trade off which makes it important to determine how many CHECKS are 

to be inserted and where to be inserted. Five different rules for placement of CHECK operators 

in the Query Execution Plan were suggested by authors. 

 

4. PLAN DIAGRAMS REDUCTION 

The biggest motivation for reducing the number of plans arises after observing the skewed 

distribution of plans in the plan diagrams for different queries. The amount of skewed 

distribution of plans can be converted into a constant value known as Gini Index [25]. Gini 

Index is a standard economic measure of income inequality, based on Lorenz Curve. 

A society that scores 0.0 on the Gini scale has perfect equality in income distribution. Higher 

the number over 0 higher the inequality, and the score of 1.0 (or 100) indicates total inequality 

where only one person corners all the income. 

 

 

 

 
Figure 3. Gini Coefficient in the right panel of Picasso Interface 

 

When plan diagrams are generated with Picasso tool the Gini Index values are also generated 

and surprisingly the Gini Index value of most of the plans diagrams was greater than 0.75 

substantiating the skewed distribution of plans over the selectivity space. This is shown in table 

[1]. Optimizer A, B and C may refer to any of SQL Server, Oracle, DB2, Sybase or PostGre. 

The identities of various database systems have been kept secret so as to avoid any sort of 

comparison between them. 
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Table 1. Gini Index values for dense queries 

TPC-H 

Query 

Number 

OptA Opt B Opt C 
Plan 

Card 

Gini 

Index 

Plan 

Card 

Gini 

Index 

Plan 

Card 

Gini 

Index 

2 22 0.76 14 0.72 35 0.77 

5 21 0.81 14 0.74 18 0.81 

7 13 0.73 6 0.46 19 0.79 

8 31 0.81 25 0.72 38 0.79 

9 63 0.88 44 0.70 41 0.83 

10 24 0.78 9 0.69 8 0.75 

18 5 0.33 13 0.57 5 0.75 

21 27 0.74 6 0.80 22 0.81 

Avg. 28.7 0.79 24.5 0.72 28.8 0.80 

 

These high values of Gini Index indicate that a big percentage of plans that cover very small 

space in the plan diagram need not be considered for execution of query. This is because these 

plans are highly vulnerable to poor execution times if the selectivities change even by a small 

order during the execution of query. Thus we can ignore or remove these plans to be considered 

as a possible candidate for execution of query. 

 

A method used to substitute these plans with other plans which have high plan area coverage is 

known as Plan Swallowing [16][17] and process wherein plan swallowing is carried on is 

known as plan reduction. It is defined as in [10][11]: 

Given an input plan diagram P, and a cost increase threshold λ (λ ≥ 0), find a reduced plan 

diagram R that has minimum plan cardinality, and for every plan Pi in P, 

1. Pi ∈∈∈∈  R, or 

2. ∀∀∀∀  query points q ∈∈∈∈  Pi, ∃∃∃∃  Pj ∈∈∈∈ R, such that 

(cj(q)/ci(q)) ≤ (1 + λ) 

 

That is, find the minimum-sized “cover” of plans that is sufficient to recolor P (using only the 

colours in LP) without increasing the cost of any re-coloured query point (i.e. whose original 

plan is replaced by a sibling plan) by more than cost increase threshold. Obviously, for λ → 0, 

the reduced plan diagram will be almost identical to original plan diagram, whereas for λ → ∞, 

the reduced plan diagram will be completely covered by a single plan. 

 

The idea is that these smaller plans can be completely swallowed by their larger sibling plans 

which will effectively reduce the total number of plan cardinality in the plan diagram. There are 

two advantages of this approach. Firstly, it will reduce the searching time as the plan cardinality 

reduces and secondly, it will help us select robust plans which have higher plan space coverage 

and thus can tolerate higher variations in the plan selectivity. The process of plan swallowing 

may increase the cost of execution of a query but this increase in cost is controlled by user. This 

is represented as cost increase threshold (λ). Cost increase threshold (λ) of 10 is also sufficient 

but as proven in [14], a 20% cost increase (λ) can reduce the number of queries to an anorexic 

value which can significantly decrease the searching time of optimizers. 

 

4.1. Algorithms used for Reduction 

Finding an optimal solution for plan reduction is an NP Hard problem [14]. Thus the techniques 

used for plan reduction are predominantly heuristic in nature. Picasso uses three different 

algorithms for reduction.  Initially COST GREEDY and AREA GREEDY were introduced in 
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Picasso version 1 of which COST GREEDY proved to be more efficient. In Picasso V2 a new 

robust plan reduction algorithm SEER (Selectivity Estimate Error Resistance) [18] was 

introduced which performed plan reduction and gave robust plans which can withstand run time 

changes in the selectivities. 

 
Cost Greedy - This algorithm operates under the assumption that the Cost Domination 

Principle holds and therefore only plan swallowing possibilities in the first quadrant are 

considered with respect to the plan under consideration. The algorithm processes the query 

points starting from the top-right corner (with the Cost Domination assumption, this corner will 

have the highest cost of all points) and progressively makes its way to the origin, in the process 

using the Greedy Set Cover algorithm to recolor the points. 

 

Cost Greedy ensure that the replacement plans are within the cost-increase-threshold at all 

points in the optimality regions of the replaced plans. The complexity of this algorithm is 

O(mn) where n is the number of plans in the diagram and m is the number of query points. Cost 

Greedy provides the best possible approximation factor with respect to the optimal reduction. 

Another attractive feature of Cost Greedy is that a swallowed point is re-colored only once, in 

contrast to Area Greedy where a swallowed point can be re-colored multiple times. 

 

SEER - (Selectivity Estimate Error Reduction) – This algorithm is developed for the 

production of robust queries which can tolerate the changes in the selectivities of base relations 

during run time. These changes in selectivities can even be in orders of magnitude in real 

database environments [21], arising due to a variety of reasons, including outdated statistics, 

attribute-value independence assumptions and coarse summaries. Due to wrong selectivity 

estimates the performance of the replacement plan could be much worse than the replaced plan. 

This problem naturally leads to the concept of a robust replacement – that is, a replacement 

where the λ-threshold criterion is satisfied at all points in the selectivity space, i.e. the 

replacement ensures global safety. For this we use two implementations of SEER: 

 

Corner Cube-SEER - CC-SEER implements a more conservative test for robust plan 

replacement applying Abstract-plan-costing operations at the corner hyper-cubes of the 

selectivity space and is therefore significantly faster than the original SEER. Moreover, its 

performance is resolution independent unlike SEER, and therefore the performance gap 

between CC-SEER and SEER increases with higher resolution diagrams. Experimental results 

[16] indicate that CC-SEER’s reduction quality is comparable to that of SEER instead of it 

being more conservative. 

 
Lite SEER - Lite Seer is a light-weight heuristic-based variant of SEER that makes its 

replacement decisions solely based on Abstract-plan-costing operations at the corners of the 

hypercube, and is therefore extremely efficient. Lite SEER is optimal in the sense that it incurs 

the minimum work (complexity-wise) required by any reduction algorithm. While it does not 

guarantee global safety, experimental results [16] indicate that in practice, its safety and 

reduction characteristics are quite close to that of SEER and CC-SEER. 

 

5. EXPERIMENTAL ANALYSIS 

Test bed Environment: 

DATABASE AND QUERY SET 

The database was created using the synthetic generator “dbgen” supplied with the TPC-H 

decision support benchmark [23]. It represents a commercial manufacturing environment, 
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featuring the following relations: REGION, NATION, SUPPLIER, CUSTOMER, PART, 

PARTSUPP, ORDERS and LINEITEM. A gigabyte-sized (1 GB) database was created on this 

schema, resulting in cardinalities of 5, 25, 10000, 150000, 200000, 800000, 1500000 and 

6001215, for the respective relations. 

 

All query templates were based on the TPC-H benchmark, which features a set of 22 queries, 

Q1 through Q22. Out of these 22 queries we have taken 17 queries. While plan and cost 

diagrams were generated for most of the queries, but to produce substantial results we focused 

on queries which generated dense plan diagrams– that is, plan diagrams whose optimal plan set 

cardinality is 10 or more. This is because dense plan diagrams reveal many interesting fact for 

analysis. For computational tractability, a query grid spacing of 30X30 and 100X100 is used. 

 

RELATIONAL ENGINES 

The relational engine used is Microsoft SQL Server 2008. Although any other relational engine 

could be used we prefer MS SQL Server because of its ease of availability and easier 

functionality. 

COMPUTATIONAL PLATFORM 

An Intel Core i3 CPU M370 running at 2.4 GHz with 2 GB of main memory and 240 GB of 

hard disk, running 64 bit version of Windows 7 Home Basic operating system, was used in our 

experiments. The relational engine used is Microsoft SQL Server 2008.Some changes in 

settings of MS SQL Server 2008 were required to allow for remote connections. 

 

5.1 Comparison of Reduction Algorithms 

We performed experimental analysis of the three algorithms and compared their performance 

and plan reduction efficiency. Analysis is performed in two different parts. In the first part we 

compare the time taken by the three algorithms for performing the reduction. Then we compare 

the reduction efficiency of the three algorithms. 

 

Plan Diagram Generation Time 

We first generate the plan diagrams and check the time required for generation. Table 2, 3 and 4 

shows the generation time for plan diagrams of 2D queries for plot resolution of 30 and 100, 

and 3D queries for plot resolution of 10 and 30 respectively. These time readings were taken 

from the log files generated while generating the plan diagrams and are very accurate. The 

longest time was taken by 3D queries when executed on a plot resolution of 30. Because of 

limitation in the available processing power we could not execute 3D queries on a plot size of 

300 as this process would take around 10-12 hours. 
 

Table 2: Time taken for Diagram generation and No. of Plans for 2D queries, Resolution 30 

  Query Template Gini Index  Resolution No. of Plans Time Taken in Sec. 

QT2 0.73 30 23 2 min 24 sec 

QT 7 0.67 30 8 2 min 30 sec 

QT 8 0.79 30 24 5 min 22 sec 

QT 11 0.73 30 13 46 sec 

QT 16 0.94 30 27 44 sec 

QT 17 0.86 30 13 36 sec 
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Figure 4: Comparison of Diagram Generation time for 2D queries, Resolution of 30 

Table 3: Time taken for Diagram generation and No. of Plans for 2D queries, Resolution 100 
Query Template Gini Index Resolution No. of Plans Time Taken in Sec. 

QT2 0.72 100 36 26 min 27 sec 

QT 7 0.79 100 39 1 hr 1 min 

QT 8 0.73 100 16 8 min 51 sec 

QT 11 0.67 100 16 27 min 47 sec 

QT 16 0.94 100 31 8 min 35 sec 

QT 17 0.86 100 15 6 min 56 sec 

 

 

Figure 5: Comparison of Diagram Generation time for 2D queries, Resolution of 100 

 
Table 4: Time taken for Diagram generation and No. of Plans for 3D queries, Resolution 10 

Query Template Gini Index Resolution No. of Plans Time Taken in Sec. 

QT 2 0.89 10 25 2 min 40 sec 

QT 3 0.68 10 16 51 sec 

QT 5 0.66 10 14 3 min 55 sec 

QT 7 0.91 10 18 2 min 52 sec 

QT 8 0.81 10 20 5 min 47 sec 

QT 19 0.88 10 34 10 min 24 sec 

QT 20 0.74 10 14 3 min 55sec 
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Figure 6: Comparison of Diagram Generation time for 3D queries, Resolution of 10 
 

Table 5: Time taken for Diagram generation and No. of Plans for 3D queries, Resolution 30 

Query Template Gini Index  Resolution No. of Plans Time Taken in Sec. 

QT 2 0.80 30 65 1 hr 14 min 

QT 3 0.69 30 25 23 min 

QT 7 0.91 30 25 1 hr 16 min 

 

 

Figure 7: Comparison of Diagram Generation time for 3D queries, Resolution of 30 
 

5.3 Comparison of Reduction Algorithms 

We performed experimental analysis of the three algorithms and compared their performance 

and plan reduction efficiency. In the first part we compare the time taken by the three 

algorithms for performing the reduction. Then we compare the reduction efficiency of the three 

algorithms. The same Queries were used for which readings were taken in section 5.2. 
 

5.3.1 Computation Efficiency 

Table 5, 6, 7, and 8 list the time consumed for reduction of plan diagrams by the three 

algorithms for 2D queries with plot resolution 30 and 100 and 3D queries with plot resolution 

of 10 and 30. 
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Table 6: Plan Reduction time comparison chart for 2D queries, Resolution 30 

Query Template Plan Reduction 

Threshold (λ) 

Plot 

Resolution 

Time Taken by Reduction Algorithm 

Cost Greedy Lite SEER CC-SEER 

QT2 10 30 1 sec 28 sec 30 sec 

QT 7 10 30 1 sec. 10 sec 10 sec 

QT 8 10 30 1 sec 36 sec 45 sec 

QT 11 10 30 1 sec. 16 sec 24 sec 

QT 16 10 30 1 sec 30 sec 40 sec 

QT 17 10 30 1 sec 14 sec 19 sec 

 

 

Figure 8: Comparison of Reduction Algo. for Reducing 2D Diagrams, Resolution 30 

 
Table 7: Plan Reduction time comparison chart for 2D queries, Resolution 100 

Query Template Plan Reduction 

Threshold (λ) 

Plot 

Resolution 

Time Taken by Reduction Algorithm 

Cost Greedy Lite SEER CC-SEER 

QT2 10 100 1 sec 44 sec 1 min 20 sec 

QT 7 10 100 1 sec 19 sec 22 sec 

QT 11 10 100 1 sec 19 sec 19 sec 

QT 16 10 100 1 sec 34 sec 47 sec 

QT 17 10 100 1 sec 16 sec 23 sec 

 

 

Figure 9: Comparison of Reduction Algo. for Reducing 2D Diagrams, Resolution 100 
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Table 8: Plan Reduction time comparison chart for 3D queries, Resolution 10 

Query Template Plan Reduction 

Threshold (λ) 

Plot 

Resolution 

Time Taken by Reduction Algorithm 

Cost Greedy Lite SEER CC-SEER 

QT 2 10 10 1 sec 35 sec 2 min 45 sec 

QT 3 10 10 1 sec 17 sec 38 sec 

QT 5 10 10 1 sec 18 sec 47 sec 

QT 7 10 10 1 sec 21 sec 1 min 11sec 

QT 8 10 10 1 sec 30 sec 1 min 35 sec 

QT 20 10 10 1 sec 20 sec 45 sec 

 

 

Figure 10: Comparison of Reduction Algo. for Reducing 3D Diagrams, Resolution 10 

 
Table 9: Plan Reduction time comparison chart for 3D queries, Resolution 30 

Query Template Plan Reduction 

Threshold (λ) 

Plot 

Resolution 

Time Taken by Reduction Algorithm 

Cost Greedy Lite SEER CC-SEER 

QT 2 10 30 1 sec 1 min 31 sec 4 min 42 sec 

QT 3 10 30 1 sec 28 sec 56 sec 

QT 7 10 30 1 sec 30 sec 1 min 32 sec 

 

 

Figure 11: Comparison of Reduction Algo. for Reducing 3D Diagrams, Resolution 30 

It is interesting to note that the reduction time taken by Cost Greedy algorithm was almost 

constant throughout the analysis for any combination of query and plot resolution. This makes 

Cost Greedy the fastest reduction algorithm. Next is LiteSEER which generates second best 

timings and then comes CC-SEER with the highest time readings. But an interesting 
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observation is that as the plot size increases the gap between the time taken by Lite SEER and 

CC SEER decreases. The large amount of time taken by LiteSEER and CC-SEER is due to the 

fact that these two algorithms perform extra operations so as to produce robust plans as 

discussed in section IV. Therefore, conceptually comparison of SEER variants with Cost 

Greedy is not fair. But when simple plan reductions are required, Cost Greedy scores a lot more 

than the SEER algorithms. 

 
5.3.2 Reduction Efficiency 

Now we check the reduction efficiency by comparing the number of plans retained after 

performing reduction. Again this part of analysis is carried in three parts: Table 9 and 10 lists 

the number of plans retained for 2D queries with plot resolution of 30 and 100 and Table 11 and 

12 lists the number of plans retained for 3D queries with plot resolution of 10 and 30 

respectively. 

 

Table 10: Reduction efficiency of Reduction Algorithms for 2D queries, Resolution 30 

Query Template Resolution Original No.  of 

Plans 

Reduced No. of Plans 

Cost Greedy Lite SEER CC-SEER 

QT 2 30 23 6 (P1-P6)  2 (P5, P8) 1 (P8) 

QT 7 30 8 2 (P1, P8)  1 (P5) 1 (P8) 

QT 8 30 24 1 (P11)  1 (P24) 1 (P9) 

QT 11 30 13 1 (P1)  1 (P9) 1 (P4) 

QT 16 30 27 22  3 (P6,P15,P24) 2 (P6,P10) 

QT 17 30 13 4  1 (P4) 2 (P2, P4) 
 

 
Figure 12: Reduction efficiency of Reduction Algorithms for 2D queries, Resolution 30 

 

Table 11: Reduction efficiency of Reduction Algorithms for 2D queries, Resolution 100 
Query Template Resolution Original No.  

of Plans 

Reduced No. of Plans 

Cost Greedy Lite SEER CC-SEER 

QT 2 100 36 7 2 (P5, P15) 3 (P14,P20,P28) 

QT 7 100 16 2 (P1, P11) 1 (P8) 1 (P11) 

QT 8 100 39 1 (P13) - - 

QT 11 100 16 1 (P1) 1 (P8) 1 (P4) 

QT 16 100 31 22 5 3 

QT 17 100 15 5 1 (P4) 2 (P2, P4) 
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Figure 13: Reduction efficiency of Reduction Algorithms for 2D queries, Resolution 100 

 
Table 12: Reduction efficiency of Reduction Algorithms for 3D queries, Resolution 10 

Query Template Resolution Original No.  of 

Plans 

Reduced No. of Plans 

Cost Greedy Lite SEER CC-SEER 

QT 2 10 25 3 (P1-P3) 2 (P1, P2) 2 (P1, P2) 

QT 3 10 16 8 1 (P1) 14 

QT 5 10 14 2 (P1, P2) 1 (P1) 4 (P1-P4) 

QT 7 10 18 1 (P1) 1 (P1) 2 (P1, P2) 

QT 8 10 20 1 (P1) 1 (P1) 2 (P1, P2) 

QT 20 10 14 2 (P1, P2) 1 (P1) 4 (P1-P4) 

 

 

 

 
Figure 14: Reduction efficiency of Reduction Algorithms for 3D queries, Resolution 10 

 

Table 13: Reduction efficiency of Reduction Algorithms for 3D queries, Resolution 30 

Query Template Resolution Original No.  of 

Plans 

Reduced No. of Plans 

Cost Greedy Lite SEER CC-SEER 

QT 2 30 65 6 (P1-P6) 3 (P1 – P3) 8 (P1-P8) 

QT 7 30 25 1 (P1) 1 (P1) 5 (P1-P5) 

QT 3 30 25 9(P1-P9) 2 (P1, P2) 16 (P1-P16) 
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Figure 15: Reduction efficiency of Reduction Algorithms for 3D queries, Resolution 30 

 

The observation of these three tables gives a very interesting insight into the reduction 

efficiency of three algorithms. The reduction patterns for 2D queries were quite different from 

the reduction patterns of 3D queries. The following observations were made: 

- In Reduction of 2D queries, the final plans retained were different for each algorithm in most 

of the cases. For example, reduction of QT8, QT11. The plans retained in LiteSEER and 

CC-SEER were not found in Cost Greedy which proves the quality difference between the 

three algorithms. Thus the normal assumption about the three algorithms holds true in case 

of 2D queries and CC-SEER gives robust plans which mostly are missing from the output of 

Cost Greedy and many times from LiteSEER as well. 

- In case of 3D queries the observation was quite opposite. The plans retained in CC-SEER 

were also present in the list of plans retained in Cost Greedy and LiteSEER. The most 

extreme observation is that CC-SEER retained some plans which were initially not included 

in Cost Greedy and LiteSEERs list. This clearly indicates that CC-SEER is not a good 

choice for reduction of 3D queries because Cost Greedy and LiteSEER already produced the 

same diagrams in very less time. 

6. CONCLUSION 

Query optimization is a difficult but a critical process for the database optimizers. Picasso 

introduces a novice way of plan diagram reduction which decreases the search complexity of 

query optimizers and also produces robust plans which improves the performance and 

reliability of query optimizers. Three such algorithms were discussed and the performances 

were compared. Results proved that Cost Greedy is the best algorithm in terms of execution 

time but if reliability was desired then Lite SEER and CC-SEER were better. For 2D queries 

CC-SEER must be used in spite of its long execution time but for 3D queries LiteSEER and 

Cost Greedy proved better than CC-SEER. 

 

There are many interesting future works to be carried. Cost Greedy and SEER based algorithms 

are purely compile-time approach and it can be used in conjunction with run-time techniques 

such as adaptive query processing [13] for addressing selectivity errors in the higher nodes of 

the plan tree. Another improvisation in the design of these algorithms can be to include the 

technique of CHECKS suggested in [9] which can further increase the quality of plans 

produced after reduction. Lastly it would be interesting to use these algorithms on the upcoming 

TPCE dataset and some other dataset having queries with more than 3 dimensions. 
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