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ABSTRACT 

The recent technological progress in acquisition, modeling and processing of 3D data leads to the 

proliferation of a large number of 3D objects databases. Consequently, the techniques used for content 

based 3D retrieval has become necessary. In this paper, we introduce a new method for 3D objects 

recognition and retrieval by using a set of binary images CLI (Characteristic level images). We propose a 

3D indexing and search approach based on the similarity between characteristic level images using  Hu 

moments for it indexing. To measure the similarity between 3D objects we compute the Hausdorff 

distance between a vectors descriptor. The performance of this new approach is evaluated at set of 3D 

object of well known database, is NTU (National Taiwan University) database. 
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1. INTRODUCTION 

A number of 3D shape retrieval methods have been proposed. The reader can refer to [1][2]  for 

a survey of methods. Several methods have been used to characterize the intrinsic attributes, 

such as the distances to the center [3][4][5], and the curvature [6] of 3D shapes, and to project 

them onto a sphere to form spherical functions. The spherical harmonics are first introduced in 

the 3D model retrieval by Vranic et al. in [3] [5].  Tony Tung et al [7] introduce the technique 

relies upon matching graph representations of 3D-objects, the multiresolutional Reeb graph 

(MRG) is introduced and used for representing 3D-mesh models and used as a descriptor for 3D 

object. Vandeborre et al. [8] propose to use full three-dimensional information, the 3D objects 

are represented as mesh surfaces and 3D shape descriptors are used, the results obtained show 

the limitation of the approach when the mesh is not regular.  

Recent investigations [9] [10][11] illustrate that view-based methods with pose normalization 

preprocessing get better performance in retrieving rigid models than other approaches and more 

importantly. 2D view-based methods [12] [13] consider the 3D shape as a collection of 2D 

projections taken from canonical viewpoints. Each projection is then described by standard 2D 

image descriptors like Fourier descriptors [13] or Zernike moments [12]. Chen et al. [14][15] 

defend the intuitive idea that two 3D models are similar if they also look similar from different 

angles. Therefore, they use 100 orthogonal projections of an object and encode them by Zernike 

moments and Fourier descriptors. They also point out that they obtain better results than other 

well-known descriptors as the MPEG-7 3D Shape Descriptor.  Filali et al.  [16] proposed a 

framework for 3D models indexing based on 2D views. The goal of their framework is to 

provide a method for optimal selection of 2D views from a 3D model, and a probabilistic 

Bayesian method for 3D models indexing from these views. 

In the present paper, inspired by the work presented in [9][16][17][18], we introduce a new 

descriptor for 3D shape. We generate a set of images given by the intersection of the paralleled, 

specific plans and the 3D shape. We first normalize this shape to guarantee  the invariance of 

affine transformations, then we extract a number of images called LI (Level Images), after using 
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the K-means method, the number of images is reduced to CLI  set (characteristic level images). 

Each image has been indexed with Hu moments descriptor. The similarity measure between 3D 

objects returns to measure the similarity between the set of CLI. We will compare the proposed 

descriptor to two well known descriptors named 3D Zernike moments and 3D surface moments 

invariants. Then, we will analyze the performance of the proposed descriptor. 

This paper is organized as follow: section 2 presents two descriptors with them we will compare 

our descriptor. The proposed descriptor is presented in the section 3. In section 4, we will see 

the experimental results. Finally, conclusion summarizes the whole ideas of the present work.  

 

2.  3D ZERNIKE MOMENT AND 3D SURFACES MOMENT INVARIANTS  

2.1 3D Zernike moment descriptor 

The 3D Zernike functions   are written in Cartesian coordinates [19] using the harmonic 

polynomials : 

             (1) 

While restricting   so that    and    be an even number, . And the 

coefficients  are determined to guarantee the orthonormality. We are now able to define the 

3D Zernike moments of a 3D object defined by f as 

 

Not that the coefficients  can be written in a more compact form as a linear combination of 

monomials of order up to n 

 

 

Finally, the 3D Zernike moments  of an object can be written as a linear combination of 

geometrical moments of order up to n: 

 
Where  denotes the geometrical moment of the object scaled to fit in the unit ball: 

 

Where  denotes the vector . The collect of the moments into (2l +1)-

dimensional vectors  define the 3D Zernike descriptors   as 

norms of vectors           
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2.2 3D Surface moment invariants descriptor 

Dong Xu and Hua Li [21] had used a 3-D surface moment invariants as shape descriptors for the 

representation of free-form surfaces. We consider a 3D surface triangulation  

consisting of triangles , . The  order 3D surface moments   of 

are the accumulated surface moments   of the associated triangles i.e 

 

For a general triangle the surface moments are 

 

with a surface density function ρ. Using a surface parameterization 

  in ,  is definition domain of  in  .The moment 

(8) can be rewritten as  

 

Where  and    are the 

coefficients of the first fundamental form. 

The centroid of the 3-D surface can be determined from the zero and the first-order moments by  

, ,  , then central moment are defined as  

 

So the central surface moments are invariant under translation. Then, we normalize the surface 

moments by , they also became invariant under scaling and can be defined as          

 . To construct the surface moments invariant under rotation, D. Xu [21] use 

four geometric primitives for constructing six invariants consist of 3 fourth order, 2 third order 

and 1 mixed order surface moment invariants.  

3. PROPOSED METHOD 

We normalize the 3D shape into a canonical coordinate frame, and characterize the shape by a 

set of characteristic level images noted CLI set. Each one of the CLI set was described by Hu’s 

moments [20]. The final set of moment invariants are used to be the feature vector.  

3.1  Pose normalization  

A 3D object is generally given in arbitrary orientation, scale and position in the 3D space. As 

most of the 2D/3D shape descriptors do not satisfy the geometrical invariance, pose 

normalization is then necessary before the 3D object feature extraction. To secure translation, 

rotation and scale invariance of descriptors, 3D-mesh models are normalized [13][22]. Each 

triangle mesh model is transformed into a canonical coordinate frame by translating (the center 

of gravity becomes the origin), rotating (using the Continuous Principal Analysis - CPCA), 

scaling (the average distance of a point on the surface of the model to the origin becomes 1). 
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Complete analytical expressions for transforming a mesh model into canonical coordinates are 

given in [22]. The CPCA is rather efficient and effective for most categories of 3D-objects. 

The covariance matrix is calculated, the first eigenvector of this covariance matrix 

corresponding to the largest eigenvalue points to the direction of the largest variance along 

which the rotation is applied. When this step has been done, the model is rotated so that the X-

axis maps to the eigenvector with the biggest eigenvalue, the Y-axis maps to the eigenvector 

with the second biggest eigenvalue and the Z-axis maps to the eigenvector with the smallest 

eigenvalue.  

3.2 Feature extraction  

The method consists on the characterization of 3D objects by a CLI set. Initially, the object 3D 

has an arbitrary position in the space Figure 1(a), and then has been translated so that its center 

of mass coincides with the origin, as shown in Figure 1(b), then it is scaled to unit sphere and 

rotated with the CPCA method Figure 1(c), to alleviate the problem of rotation invariance. 

 

 

 
 

Figure 1. Shape normalization using CCPA 

 

The shape is aligned, Figure 2. (a) (b), so we take 300  perpendicular plan to X-axis, the images 

generated by the intersection of the shape and this set of plan construct the LI  (Level Images) 

set for a model  of the collection. Denote by  to LI set. Each binary 

image  of the model  is generated by the intersection of the shape and the one of  

perpendicular plane of the X-axes. These plans are equally spaced. For extracting the vector 

descriptor, among the set of LI, we have to select those that characterize effectively the three-

dimensional model to avoid the redundancy problem and to reduce the program complexity. 

Therefore, we have been applying the K-means technique, so the set   had been reduced to 

the set   that represents the CLI set, Figure 2 (c)(d).  

There are two important remarks: 

• For each 3D model  the number of  characteristic level images is fixed in 40 as it shows 

the Figure 2 (c) (d), the obtained results indicated a promising performance. 

• Secondly, the images size varied from on object to the other one, this problem is 

resolved by using descriptor invariants for 2D binary image. 

 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 5, Oct 2011 

93 

 

 

 

 

Figure 2. The characteristics level images: (a) and (b) the 3D objects, (c)and (d) their CLI 

For each 3D model which are corresponding a number of CLI, the united features of these 

images also represent the features of the 3D model. The descriptor of the 2D image must be 

invariant to translation, scaling and rotation. To solve this problem, we use the moments 

invariant presented by Hu [20]. It is a kind of feature based on region. The 7 moment invariants 

keep changeless to the translation, rotation and scaling of the object in the images. We can form 

a feature vector of an image using these 7 moment invariants. The different moments invariants 

represent different physical meanings. 

3.2 Similarity measure 

In order to measure how similar two objects are, it is necessary to compute distances between 

pairs of descriptors using a dissimilarity measure. Although the term similarity is often used, 

dissimilarity corresponds to the notion of distance: small distances means small dissimilarity, 

and large similarity. A dissimilarity measure can be formalized by a function defined on pairs of 

descriptors indicating the degree of their resemblance. 

Formally speaking, a dissimilarity measure  on a set   is a non-negative valued function: 

 

 

Given two shapes represented by two sets of points:   and                       

, as the number of points of the two set  and  is not correspondent. The 

Housdorf distance is commonly used. It is defined as: 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 5, Oct 2011 

94 

 

 

 

 

Where denote the Euclidean distance, is defined as: 

 

Where,  and  two vectors in .    

Each model  of the database is characterized by a vector , where   

denote to the vector descriptor of the image  of the model , it is defined as                  

, where denote to the j
ème

 Hu moment. 

Let  and  two model of the database, the similarity between them is measured as follow: 

 

Where     

 denote to the set of indices of the CLI set of the model . And  

 

4. EXPERIMENTS AND RESULTS 

4.1 Test database   

Our experiments were performed on a NTU (National Taiwan University) 3D Model Database 

provides 3D models for research purpose in 3D model retrieval, matching, recognition, 

classification, clustering and analysis. The database containing 10911 3D models, which are 

free downloaded from the Internet at [23]. All 3D models are converted into Objet File Format 

(.off) in the database. In order to evaluate the methods described in this paper, out of these 

models, 321 were semantically classified into 25 classes, some example of these classes 

representative are shown in Figure 3.  

 

Figure 3. The representatives of some classes  of the test database 
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4.2 Results and performance 

In order to evaluate the performance of the shape similarity measure, we design experiments 

performing 3D model retrieval on the test database. Figure 4 shows some of the retrieval 

examples. We randomly select a model in the database as the query, and then our system returns 

a list of outputs ranking on the degree of similarity to the input (because the query model in 

each retrieval test is still from the same test database). We can find that the first several models 

in the retrieval list are really shape-like to the query model in most cases. 

 

Figure 4.  Some retrieval examples. 

In order to evaluate the measurement of retrieval performance we examine Recall-Precision 

diagram for the shape descriptor of 3D objects. “Precision” measures that the ability of the 

system to retrieve only models that are relevant while “recall” measures the ability of the system 

to retrieve all models that are relevant. They are defined as: 

 

 

We compared the classification performance of the proposed method with two well known 

methods, Zernike moments descriptor [19] and surface moments invariants descriptor by using a 

six invariants [21]. For each one of the chosen shape categories, we have calculated the average 

Recall-Precision graph by using all shapes of the test database as a query object Figure 5. We 

can see that the proposed shape descriptors perform better than the 3D Zernike descriptor and 

surface moments invariants descriptor. 
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Figure 5. Overall precision-recall graph for all three descriptors 

 

5. CONCLUSIONS 

In this paper, we have presented a new method for 3D-shape indexing and retrieval, it is based 

on the 2D view-based approach using 2D images for indexing the 3D models. We use a set of 

binary images called Characteristic Level images CLI extracted from the model by the 

intersection with set of parallel plans. These images are indexed with the 2D images descriptor 

(we used Hu moments). The similarity between models is calculated by using the Hausdorff. 

The obtained results show that the proposed descriptor is robust and the comparison with the 

two will known methods as mentioned above explain good performance.   
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