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Abstract: Selection of initial seeds greatly affects the quality of the clusters and in k-means type 

algorithms. Most of the seed selection methods result different results in different independent runs. We 

propose a single, optimal, outlier insensitive seed selection algorithm for k-means type algorithms as 

extension to k-means++. The experimental results on synthetic, real and on microarray data sets 

demonstrated that effectiveness of the new algorithm in producing the clustering results 
 

1. Introduction 

K-means is the most popular partitional clustering technique for its efficiency and simplicity in 

clustering large data sets (Forgy 1965; Macqueen 1967; Lloyd 1982, Wu et al., 2008). One of 

the major issues in the application K-Means-type algorithms in cluster analysis is, these are 

sensitive to the initial centroids or seeds. Therefore selecting a good set of initial seeds is very 

important. Many researchers introduce some methods to select good initial centers (Bradley and 

Fayyad, 1998; Deelers and Auwatanamongkol, 2007). Recently, Arthur and Vassilvitskii 

(2007) propose k-means++- a careful seeding for initial cluster centers to improve clustering 

results. Almost all algorithms produce different results in different independent runs. In this 

paper we propose a new seed selection algorithm, Single Pass Seed Selection (SPSS) that 

produces single, optimal solution which is outlier insensitive. The new algorithm is extension to 

k-means ++. K-means++ is a way of initializing k-means by choosing initial seeds with specific 

probabilities. The k-means++ selects first centroid and minimum probable distance that 

separates the centroids at random. Therefore different results are possible in different runs. For 

a good result the k-means++ has to be run number of times. The proposed SPSS algorithm 

selects the highest density point as the first centroid and also calculates minimum distance 

automatically using highest density point, , which is close to more number of other points in the 

data set. The objectives of the proposed SPSS algorithm are 1) to select optimal centroids 2) to 

generate single clustering solution instead most of the algorithms results different solutions in 

different independent runs. The quality of the clustering solution of SPSS is determined using 

various cluster validity measures and error rate is also identified using number of 

misclassifications. The experiments indicate that the SPSS algorithm converge k-means with 

unique solution and also it performs well on synthetic and real data sets.  
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2. Related Work 

Inappropriate choice of number of clusters (Pham et al., 2004) and bad selection of initial seeds 

may yield poor results and may take more number of iterations to   reach   final   solution. In this 

study we are concentrating on selection of initial seeds that greatly affect the quality of the 

clusters. One of the first schemes of centroids initialization was proposed by Ball and Hall 

(1967). Tou and Gonzales have proposed Simple Cluster Seeking (SCS)  and is adopted in the 

FACTCLUS procedure. The SCS and the method suggested by Ball and Hall are sensitive to the 

parameter d and the presentation order of the inputs. Astrahan (1970)
 
  suggested using two 

distance parameters. The approach is very sensitive to the values of distance parameters and 

requires hierarchical clustering. Kaufman  and Rousseeuw (1990)  introduced  a method  that  

estimates  the  density  through  pair wise distance comparison  and  initializes  the  seed  clusters 

using the input samples from the areas with high local density. A notable drawback of the 

method lies in its computational complexity. Given n input samples, at least n(n-1)  distance  

calculation  are  required.  Katsavounidis et al. (1994) suggested a parameter less approach, 

which is called as the KKZ method based on the initials of all the authors. KKZ chooses the first 

centers near the “edge” of the data, by choosing the vector with the highest norm as the first 

center. Then, it chooses the next center to be the point that is farthest from the nearest seed in the 

set chosen so far. This method is very inexpensive (O(kn))  and  is  easy  to implement. It does 

not depend on the order of points and is deterministic by nature as single run suffices to obtain 

the seeds. However, KKZ is sensitive to outliers, since it is selecting farthest point from the 

selected centroids. More recently, Arthur and Vassilvitskii (2007) proposed the k-means++ 

approach, which is similar to the   KKZ (Katsavounidis   et   al., 1994) method. However, 

when choosing the seeds, they do not choose the farthest point from the already chosen 

seeds, but choose a point with a probability proportional to its distance from the already 

chosen seeds. In k-means++, the point will be chosen with the probability proportional to 

the minimum distance of this point from already chosen seeds.  Note that due to the 

random selection of first seed and probabilistic selection of remaining seeds, different runs 

have to be performed to obtain a good clustering. 

3.Methodology: 

The proposed method, Single Pass Seed Selection (SPSS) algorithm is a modification to k-

means++, is a method of initialization to k-means type algorithms. The SPSS initialize first 

seed and the minimum distance that separates the centroids based on highest density point, 

which is close to more number of other points in the data set. To show the modifications 

suggested in k-means++, k-means++ algorithm is presented here for ready reference.  

 

kmeans++ algorithm 
         k-means begins with an arbitrary set of cluster centers. k-means++ is a specific way 

of choosing these centers. The k-means++ is as follows: 

Choose a set C of k initial centers from a point-set (X1, X2,..,Xm): 

 

1. Choose one point uniformly at random from  (X1,X2,..,Xm) and add it to C 

2. For each point Xi, set d(Xi) to be the distance between Xi and the nearest point 

in C 

3. Choose a real number y uniformly at random between 0 and 

d(X1)
2
+d(X2)

2
+...+d(Xm)

2 
 

4. Find the unique integer i so that 
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5. d(X1)
2
+d(X2)

2
+...+d(Xi)

2
> = y > d(X1)

2
+d(X2)

2
+...+d(X(i-1))

2
 

6. Add Xi to C 

7. Repeat steps 2-5 until k centroids are found 
 

Single Pass Seed selection algorithm 
Although the k-means++ is O (log k) competitive on all datasets, it also produce different 

clusters in different runs due to steps 1 and 3 in the algorithm. We propose a method for 

the steps 1, 3 of k-means++ to produce unique solution instead of different solutions, rather 

the proposed method-SPSS algorithm is a single pass algorithm:  

Step 1:  Initialize the first centroid with a point which is close to more number of other 

    points in the data set. 

Step 3:  Assume that m (total number of points) points are distributed uniformly to k                           

(number of clusters) clusters then each cluster is expected to contain m/k             

points. Compute the sum of the distances from the selected point (in step1) to     

first m/k nearest points and assume it as y. 

 

Steps of the algorithm 

Choose a set C of k initial centers from a point-set (X1, X2,.., Xm).  where k is number of 

clusters and m is the number of data points: 

1. Calculate distance matrix Distmxm in which dist(Xi,Xj) represents distance from Xi 

to Xj. 

2. Find Sumv in which Sumv(i) is the sum of the distances from Xi
th

 point to all other 

points. 

3. Find the index,h of minimum value of Sumv and find highest density point Xh . 

4. Add Xh to C as the first centroid. 

5. For  each  point  Xi,  set  d  (Xi)  to  be  the  distance between Xi and the nearest 

point in C. 

6. Find y as the sum of distances of first m/k nearest points from the Xh. 
7. Find the unique integr i so that

 

8. d(X1)
2
+d(X2)

2
+...+d(Xi)

2
> =  y>d(X1)

2
+d(X2)

2
+...+d(X(i-1))

2
 

9. Add Xi to C 

10. Repeat steps 5-8 until k centroids are found 

 

In k-means++ algorithm for selection of y, the number of passes in the worst case will be 

max{d(X1)
2
+d(X2)

2
+...+d(Xn)

2
} whereas it is equal to one in the proposed  SPSS algorithm. 

Therefore the SPSS is a single pass algorithm with unique solution while the k-means++ is 

not. 

4. Experimental Results 

 The performance of SPSS is tested using both simulated and real data. The clustering 

results of SPSS is compared with k-means, k-means++ and fuzzy-k. These are implemented 

with the number of clusters as equal to the number of classes in the ground truth. The quality of 

the solutions of the algorithms is assessed with the Rand, Adjusted Rand, DB, CS and 

Silhouette cluster validity measures. The results of the proposed algorithm are also validated by 

determining the error rate. The error rate is defined as 
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100∗=
m

N
err mis

    , where Nmis  is the number of misclassifications and m is the number of 

elements of data set. 

 

4.1 Experimental Data 

The efficiency of SPSS is evaluated by conducting experiments on five artificial data sets, three 

real datasets down loaded from the web site UCI and two microarray data sets (two yeast data 

sets) downloaded from http://www.cs. washington.edu/homes/kayee/cluster (Yeung 2001).  

The real data sets used:  

1. Iris plants database (n = 150, d = 4, K = 3)  

2. Glass (n = 214, d = 9, K = 6) 

3. Wine (n = 178, d = 13, K = 3) 

 

The real microarray data sets used: 

The yeast cell cycle data (Cho et al., 1998) showed the fluctuation of expression levels of 

approximately 6000 genes over two cell cycles (17 time points).  

1. The first subset (the 5-phase criterion) consists of 384 genes whose expression levels 

peak at different time points corresponding to the five phases of cell cycle (Cho et al., 

1998).  

2. The second subset (the MIPS criterion) consists of 237 genes corresponding to four 

categories in the MIPS database (Mewes et al., 1999). The four categories (DNA 

synthesis and replication, organization of centrosome, nitrogen and sulphur metabolism, 

and ribosomal proteins) were shown to be reflected in clusters from the yeast cell cycle 

data (Tavazoie et al., 1999). 

 

The synthetic data sets: 

The five synthetic data sets from Np(µ, ∑) with specified mean vector and variance covariance 

matrix are as follows.   

1. Number of elements, m=350, number of attributes, n=3, number of clusters, k =2 with  
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2.  The data set with m=400, n=3, clusters=4 with  
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3. m=300, n=2, k=3;  
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5. m=180, n=8, k=3 
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4.2 Presentation of Results 

Since the all existing algorithms produce different results in different individual runs, 

we have taken 40 independent runs of each algorithm. The performance of SPSS in comparison 

with k-means type algorithms is presented in terms of the validation measures Rand (Rand 

1971), Adjusted Rand, DB (Davies and Bouldin 1979), CS (Chou et al. 2004) Silhouette 

metrics values and the error rate. The indices of various validation measures measure for 

different k-means type algorithms are calculated based on 40 independent runs of each 

algorithm and then taking the average, minimum and maximum values of the indices and error 

rate corresponding to the best possible algorithm along with corresponding index are compared 

with those obtained for SPSS algorithm and are tabulated in tables 1,2 and 3. The tables 1,2 and 

3 respectively are meant for presenting the comparative results corresponding to average 

indices, error rate vs those of SPSS; minimum indices, error rate vs SPSS; and maximum vs 

SPSS. The minimum error rate that found and best performance values in 40 independent runs 

of each existing algorithm on each dataset is tabulated in Table2. The maximum error rate and 

the least performance values that found in 40 independent runs of each existing algorithm on 

each dataset is tabulated in Table3. 

Table1. Comparison of SPSS with Mean values of 40 independent runs 

   Cluster Validity Measures Error 

rate 

in % 

Dataset Algorithm k CS ARI RI HI SIL DB erm 

Synthetic1 k-means 2 0.645 0.92 0.96 0.92 0.839 0.467 0.236 

k-means++ 0.567 0.925 0.962 0.925 0.839 0.466 1.914 

fuzk 0.52 0.899 0.95 0.9 0.839 0.468 2.571 

SPSS 0.725 0.932 0.966 0.932 0.839 0.465 1.714 
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Synthetic2 k-means 4 1.178 0.821 0.927 0.854 0.718 0.58 19.1 

k-means++ 1.21 0.883 0.953 0.907 0.776 0.519 7.16 

fuzk 0.931 0.944 0.979 0.957 0.791 0.484 2.2 

SPSS 0.812 0.939 0.977 0.953 0.792 0.527 2.4 

Synthetic3 k-means 3 0.87 0.957 0.98 0.96 0.813 0.509 2.242 

k-means++ 0.92 0.97 0.987 0.974 0.823 0.761 1 

fuzk 0.96 0.97 0.987 0.974 0.823 0.5 1 

SPSS 0.657 0.97 0.987 0.974 0.823 0.507 1 

Synthetic4 k-means 6 0.72 0.816 0.941 0.882 0.82 0.407 51.27 

k-means++ 0.62 0.958 0.988 0.976 0.932 0.222 10.96 

fuzk 0.45 0.98 0.994 0.988 0.953 0.183 8.738 

SPSS 0.723 1 1 1 0.975 0.144 0 

Synthetic5 k-means 3 1.78 0.197 0.62 0.24 0.396 1.176 53.9 

k-means++ 1.678 0.201 0.622 0.244 0.398 1.133 54.42 

fuzk 4.34 0.256 0.65 0.301 0.369 1.301 48.61 

SPSS 1.821 0.183 0.614 0.228 0.392 1.279 52.22 

Iris k-means 3 0.607 0.774 0.892 0.785 0.804 0.463 15.77 

k-means++ 0.712 0.796 0.904 0.807 0.804 0.461 13.37 

fuzk 0.658 0.788 0.899 0.798 0.803 0.46 15.33 

SPSS 1.962 0.44 0.72 0.441 0.799 0.582 50.67 

Wine k-means 3 0.612 0.295 0.675 0.35 0.694 0.569 34.58 

k-means++ 0.678 0.305 0.681 0.362 0.694 0.562 33.54 

fuzk 0.753 0.34 0.7 0.401 0.696 0.566 30.34 

SPSS 0.813 0.337 0.699 0.398 0.696 0.601 30.34 

Glass k-means 6 0.967 0.245 0.691 0.382 0.507 0.901 55.86 

k-means++ 1.523 0.259 0.683 0.365 0.548 0.871 56.1 

fuzk 1.613 0.241 0.72 0.44 0.293 0.998 62.29 

SPSS 1.512 0.252 0.722 0.444 0.382 1.061 45.79 

Yeast1 k-means 4 1.439 0.497 0.765 0.53 0.466 1.5 35.74 

k-means++ 1.678 0.465 0.751 0.503 0.425 1.528 37.49 

fuzk 1.679 0.43 0.734 0.468 0.37 2.012 39.18 

SPSS 1.217 0.508 0.769 0.538 0.464 1.471 35.44 

Yeast2 k-means 5 1.721 0.447 0.803 0.607 0.438 1.307 38.35 

k-means++ 1.521 0.436 0.801 0.603 0.421 1.292 40 

fuzk 1.341 0.421 0.799 0.598 0.379 1.443 35.73 

SPSS 2.567 0.456 0.804 0.608 0.453 1.236 43.23 

 
Table2. Comparison of SPSS with best performance values of 40 independent runs Data Set Algorithm Validity Measure ARI RI HI SIL DB CS mine

r Synthetic1 K-means 0.932 0.966 0.932 0.839 0.465 0.75 1.714 K-means++ 0.932 0.966 0.932 0.839 0.465 0.75 1.714 Fuzzy-k 0.899 0.95 0.9 0.839 0.468 0.732 2.571 SPSS 0.932 0.966 0.034 0.839 0.465 0.725 1.714 Synthetic2 K-means 0.939 0.977 0.953 0.792 0.44 1.821 2.4 K-means++ 0.939 0.977 0.953 0.792 0.44 1.805 2.4 Fuzzy-k 0.944 0.979 0.957 0.791 0.44 0.931 2.2 
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SPSS 0.939 0.977 0.023 0.792 0.527 0.812 2.4 Synthetic3 K-means 0.97 0.987 0.974 0.823 0.474 0.768 1 K-means++ 0.97 0.987 0.974 0.823 0.474 1.701 1 Fuzzy-k 0.97 0.987 0.974 0.823 0.474 0.749 1 SPSS 0.97 0.987 0.013 0.823 0.507 0.657 1 Synthetic4 K-means 1 1 1 0.975 0.139 0.759 0 K-means++ 1 1 1 0.975 0.142 0.403 0 Fuzzy-k 1 1 1 0.975 0.127 0.412 0 SPSS 1 1 0 0.975 0.144 0.723 0 Synthetic5 K-means 0.221 0.63 0.261 0.401 0.99 1.899 51.67 K-means++ 0.221 0.63 0.261 0.401 0.99 1.899 51.67 Fuzzy-k 0.261 0.653 0.305 0.371 1.054 4.83 46.67 SPSS 0.183 0.614 0.386 0.392 1.279 1.821 52.22 Iris K-means 0.886 0.95 0.899 0.806 0.411 0.753 4 K-means++ 0.886 0.95 0.899 0.806 0.411 0.753 4 Fuzzy-k 0.886 0.95 0.899 0.806 0.411 0.769 4 SPSS 0.44 0.72 0.28 0.799 0.582 1.962 50.67 Wine K-means 0.337 0.699 0.398 0.696 0.447 0.939 30.34 K-means++ 0.337 0.699 0.398 0.696 0.447 0.939 30.34 Fuzzy-k 0.347 0.704 0.408 0.696 0.488 0.929 29.78 SPSS 0.337 0.699 0.301 0.696 0.601 0.813 30.34 Glass K-means 0.287 0.728 0.456 0.656 0.744 1.917 44.86 
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K-means++ 0.288 0.725 0.45 0.729 0.522 1.745 46.73 Fuzzy-k 0.263 0.733 0.467 0.317 0.883 3.995 48.13 SPSS 0.252 0.722 0.278 0.382 1.061 1.512 45.79 Yeast1 K-means 0.515 0.773 0.545 0.473 1.307 2.117 35.02 K-means++ 0.515 0.772 0.545 0.473 1.376 2.006 35.02 Fuzzy-k 0.453 0.744 0.489 0.396 1.722 16.91 37.55 SPSS 0.508 0.769 0.231 0.464 1.471 2.012 35.44 Yeast2 K-means 0.491 0.818 0.635 0.455 1.213 1.217 27.08 K-means++ 0.497 0.82 0.64 0.514 1.092 1.666 26.3 Fuzzy-k 0.478 0.812 0.625 0.43 1.296 6.384 27.86 SPSS 0.456 0.804 0.196 0.453 1.236 2.567 43.23 

 

 

 
Table3. Comparison of SPSS with least performance values of 40 independent runs 

Data Set Algorithm Validity Measure 

  ARI RI HI SIL DB CS maxer 

Synthetic1 K-means 0.91 0.955 0.91 0.839 0.467 0.749 2.286 

 K-means++ 0.91 0.955 0.91 0.839 0.467 0.749 2.286 

 Fuzzy-k 0.899 0.95 0.9 0.839 0.468 0.732 2.571 

 SPSS 0.932 0.966 0.034 0.839 0.465 0.725 1.714 

Synthetic2 K-means 0.561 0.82 0.641 0.503 0.904 0.936 67 

 K-means++ 0.566 0.822 0.643 0.507 0.874 0.936 59.8 

 Fuzzy-k 0.944 0.979 0.957 0.791 0.528 0.93 2.2 

 SPSS 0.939 0.977 0.023 0.792 0.527 0.812 2.4 

Synthetic3 K-means 0.97 0.987 0.974 0.823 0.507 0.749 1 

 K-means++ 0.432 0.718 0.436 0.44 0.962 0.749 50.67 

 Fuzzy-k 0.97 0.987 0.974 0.823 0.507 0.731 1 

 SPSS 0.97 0.987 0.013 0.823 0.507 0.657 1 

Synthetic4 K-means 0.574 0.851 0.703 0.504 0.727 0.233 0 

 K-means++ 0.832 0.951 0.902 0.791 0.523 0.233 92.63 

 Fuzzy-k 0.836 0.952 0.904 0.786 0.503 0.233 94.5 

 SPSS 1 1 0 0.975 0.144 0.723 0 

Synthetic5 K-means 0.18 0.612 0.224 0.39 1.285 1.742 56.11 

 K-means++ 0.18 0.612 0.224 0.39 1.285 1.742 56.11 

 Fuzzy-k 0.23 0.636 0.272 0.317 1.477 2.137 48.89 

 SPSS 0.183 0.614 0.386 0.392 1.279 1.821 52.22 
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Iris K-means 0.44 0.72 0.441 0.798 0.582 0.607 51.33 

 K-means++ 0.44 0.72 0.441 0.798 0.582 0.607 51.33 

 Fuzzy-k 0.45 0.725 0.449 0.792 0.576 0.603 56 

 SPSS 0.44 0.72 0.28 0.799 0.582 1.962 50.67 

Wine K-means 0.217 0.628 0.256 0.692 0.608 0.78 42.7 

 K-means++ 0.217 0.628 0.256 0.687 0.608 0.774 42.7 

 Fuzzy-k 0.332 0.696 0.392 0.695 0.601 0.914 30.9 

 SPSS 0.337 0.699 0.301 0.696 0.601 0.813 30.34 

Glass K-means 0.152 0.666 0.333 0.207 1.168 0.966 67.29 

 K-means++ 0.189 0.626 0.252 0.356 1.023 0.722 64.95 

 Fuzzy-k 0.207 0.707 0.415 0.243 1.178 1.85 66.82 

 SPSS 0.252 0.722 0.278 0.382 1.061 1.512 45.79 

Yeast1 K-means 0.246 0.658 0.315 0.184 1.757 1.509 80.17 

 K-means++ 0.43 0.735 0.47 0.399 2.007 1.509 42.62 

 Fuzzy-k 0.394 0.721 0.441 0.343 2.239 6.311 80.59 

 SPSS 0.508 0.769 0.231 0.464 1.471 1.217 35.44 

Yeast2 K-means 0.361 0.784 0.568 0.339 1.489 1.53 57.03 

 K-means++ 0.367 0.786 0.572 0.364 1.354 1.21 57.03 

 Fuzzy-k 0.369 0.769 0.538 0.319 1.819 2.201 53.65 

 SPSS 0.456 0.804 0.196 0.453 1.236 2.567 43.23 

 

 

 

 

 

 

 

 

 

 

 

                                                                     

                     

                          (a)                                                    (b) 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Clusters identified by SPSS, obtained centroids are marked with 

black circles and original centroids are marked with red triangles 

(a)synthetic1 (b) synthetic2 (c) synthetic3 (d)synthetic4 

(a) (b) 

(c) (d) 
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Similarity matrix is a tool to judge a clustering visually. The clustering solutions of 

SPSS on the selected datasets have presented in the figure Figure2. 

 

 

 

 

 

 

 

 

 

 

 

 
Table4. SPSS performance in finding optimal Centroids 
Data set Orignal 

Centroids 

Obtained Centroids by SPSS 

Synthetic1 7  6  9 

2  3  4 

7.1742    6.1103    9.2479 

 2.0975    2.9432    4.0614 

Synthetic2 -6  4 

2    2 

-1  -1 

-3   -3 

-5.9234    4.0052 

  2.0717    2.0794 

 -0.8052   -0.9848 

 -2.7743    2.9544 

Synthetic3 -3  3 

-1  -1 

2  2 

-3.1467    2.9636 

-1.0250   -1.0338 

 2.0025    1.8169 

Synthetic4 -8 14 

10  12 

14  -14 

-1   -1 

-3  6 

-8  -6 

   -8.0344   14.0421 

   10.0285   12.0065 

   13.9763  -13.9768 

   -1.1876   -0.9205 

   -2.9580    6.0961 

   -7.9217   -5.9519 

 

 
Figure3. Error rates of Glass dataset in 40 independent runs of kmeans, kmeans++ with SPSS 
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Figure2. Similarity matrix plots of SPSS on (a)Synthetic dataset1 (b)Synthetic dataset2, (c) 
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Figure4. Error rates of Yeast dataset in 40 independent runs of kmeans, kmeans++ with SPSS 

 

 

 

 

 

 

 

 

 

 

 

Comments on the results of SPSS 
• In the case of synthetic4 data set the SPSS outputs true clusters with error rate zero, and 

produced the value 1 for ARI,RI, HI indices where as the mean error rates are 51.67, 

10.96 and 8.738 respectively for k-means, k-means++ and fuzzy-k. 

• SPSS results 45.79 error rate for real data set Glass where as the k-means, k-means++, 

and fuzzy-k resulting the mean error rates as 55.86, 56.1, 62.29. 

• For micro array data set yeast1, the existing algorithms are find clusters with mean 

error rates 37.49, 39.18, 35.44 but for the same the SPSS produced clusters with 35.44 

error rate. 

• In case of synthetic1, synthetic2, synthetic3, synthetic5, wine and yeast2 the SPSS 

equally performs with the means of other algorithms. 

• In case of iris the SPSS resulting clusters with 50.67 error rate where others are 

determining with around 14 mean error rate. 

• From the tables1 2, and 3 we can deduce that SPSS converged solution in least error 

rate which ever observed as the best value in 40 runs in the case of other algorithms. A 

comparison of SPSS with minimum error rates in 40 independent runs of other 

algorithms are summarized as follows. 

Table 4 Comparative statement of error rates of existing algorithms with SPSS. 

Data set Minimum error rates in 40 independent runs SPSS Error rate   

Synthetic1 1.714 1.714 

Synthetic2 2.2 2.4 

Synthetic3 1 1 

Synthetic4 0 0 

Synthetic5 51.67 52.2 

Wine 29.8 30.3 

glass 44.9 45.7 

Yeast1 35.2 35.4 

 

• For iris the minimum error rate from the existing algorithms is 4, but the SPSS 

resulting as 50.67 

• The error rate of SPSS for yeast2 is 43.23 where as the minimum error rate observed 

from the table 5.3.8 is 26.3. 
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(b) 

 

 

 

 
 

(c ) 

Figure5.  a. coexpressed gene profile plots  b. Means profile plots  c. Heatmaps of yeast1 

 

• In the case of iris and yeast2 the SPSS is resulting poor clusters, but the error rates are 

not higher than the maximum error rates that found in 40 independent runs of other 

algorithms which are tabulated in the table3.  

• The quality of SPSS is 82.58% in terms of Rand measure. 

• The average improvement in terms of error rate over k-means is 10%, over k-means++ 

is 3% and over fuzzy-k is 2.8%. On an average there is nearly 5% improvement with 

robust solution in a single pass. 

 

Evaluation of Microarray data set clusters 

The clustering solutions of the microarray data sets of the proposed algorithm are 

visualized using the cluster profile plots (in parallel coordinates (Keim and Kriegel 1996) 

and the heatmap (Eisen et al. 1998) plots in the figures Figure 5 to Figure6. The expression 

profiles of coexpressed genes produce similar color patterns in heatmaps (Eisen et al. 

1998). The similar color patterns of following figures Figure5 and 6 have demonstrated 

that the clustering solution of SPSS  contain coexpressed gene groups i.e. the genes that are 

biologically similar.  
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Finding meaningful clusters from FatiGo 

The evaluation criteria that help biologists to find the most valuable clusters from 

microarray data sets is different from the evaluation criteria in other clustering applications. 

The evaluation criteria of gene expressed profiles needs to be able to identify whether the 

genes in the same cluster have the similar biological function. We use Gene Ontology 

(GO) and P value to evaluate the clustering results. The FatiGO is a project (Al-Shahrour 

et al. (2004), http://www.fatigo.org), that determines the biological significance in terms of 

biological processes, molecular functions, and cellular components of the submitted 

clusters (Suresh et al. 2009). The results of the SPSS are submitted to the FatiGO to 

identify the gene enrichment of the clusters. The tool computes P value using hyper 

geometric distribution to determine the statistical significance of the association of a 

particular GO term with a group of genes in a cluster and evaluates whether the clusters 

have significant enrichment in one or more function groups. The P value is as follows: 

P=1-∑
=


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 where, n= total number of genes in a cluster, k = the number of 

genes annotated to a specific GO term in a cluster, g=the number of genes in a whole 

genome, f= the number of genes annotated to a specific GO term in a whole genome and P 

is the probability of k genes annotated to a GO term among n genes of a cluster.  P value is 

used to measure the gene enrichment of a microarray data cluster. If the majority of genes 

in a cluster biologically related, the P value of the category will be small. That is, the closer 

the P values to zero, the more the significance that the particular GO is term associated 

with the group of genes. We found that many P values are small, as shown in Figure 3 to 

Figure 5. Thus the proposed SPSS can find clusters with coexpressed genes. FatiGO 

produce the GO term for a given cluster of genes and a reference set of genes. The FatiGO 

Figure6 a. Cluster profile plots b. mean profile plots c. heatmaps of yeast2 
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computes various statistics for the given cluster of genes. It is observed that the percentage 

of genes in the cluster is considerably different from that of the reference cluster in almost 

all the functionalities. This implies that the correct genes are selected to remain in the same 

cluster. A sample of  FatiGO results (GO terms) of a cluster of yeast1 as determined by 

SPSS is shown in the figures from Figure 7 to Figure 9, which are self explanatory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Cluster2 cellular component by SPSS 

 

Figure 7 Cluster2 molecular function by SPSS 
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Comments on the Microarray visualization results 

 
• The similar color patterns of heat maps of the microarray cluster profiles of SPSS have 

demonstrated that the expression profiles of the genes of a cluster are similar to each 

other. 

• As determined by FatiGO (a web tool to evaluate micro array clusters using GO), the 

proposed algorithms increased the enrichment of genes of similar function within the 

cluster. 

• The smaller P values (nearer to zero) in the FatiGO results indicates that the majority of 

genes in a cluster belong to one category and a particular GO term is associated with 

the group of genes 

 

 

 

Figure 9 Biological process of Cluster 2 generated from SPSS 
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Conclusion 

k-means++ is a careful seeding for k-means. However, for good clustering results it has to 

repeat number of times and produces different results in different independent runs. The 

proposed SPSS algorithm is a single pass algorithm yielding unique solution with consistent 

clustering results compared to k-means++. Being the high density point is the first seed, the 

SPSS avoids different results that occur from random selection of initial seeds and the 

algorithm is insensitive to outliers in seed selection.     
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