
International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

DOI : 10.5121/ijcsit.2011.3406 71

COMPREHENSIVE MEASUREMENT FRAMEWORK

FOR ENTERPRISE ARCHITECTURES

Mahesh R. Dube
1
 and Shantanu K. Dixit

2

1
Department of Computer Engineering, VIT, Pune, India

mrdube@rediffmail.com
2
Department of Electronics and Telecommunications, WIT, Solapur, India

dixitsk1@yahoo.com

ABSTRACT

Enterprise Architecture defines the overall form and function of systems across an enterprise involving

the stakeholders and providing a framework, standards and guidelines for project-specific architectures.

Project-specific Architecture defines the form and function of the systems in a project or program, within

the context of the enterprise as a whole with broad scope and business alignments. Application-specific

Architecture defines the form and function of the applications that will be developed to realize

functionality of the system with narrow scope and technical alignments. Because of the magnitude and

complexity of any enterprise integration project, a major engineering and operations planning effort

must be accomplished prior to any actual integration work. As the needs and the requirements vary

depending on their volume, the entire enterprise problem can be broken into chunks of manageable

pieces. These pieces can be implemented and tested individually with high integration effort. Therefore it

becomes essential to analyze the economic and technical feasibility of realizable enterprise solution. It is

difficult to migrate from one technological and business aspect to other as the enterprise evolves.

The existing process models in system engineering emphasize on life-cycle management and low-level

activity coordination with milestone verification. Many organizations are developing enterprise

architecture to provide a clear vision of how systems will support and enable their business. The paper

proposes an approach for selection of suitable enterprise architecture depending on the measurement

framework. The framework consists of unique combination of higher order goals, non-functional

requirement support and inputs-outcomes pair evaluation. The earlier efforts in this regard were

concerned about only custom scales indicating the availability of a parameter in a range.

KEYWORDS

Architecture, Enterprise Architecture, Views, Viewpoints, TOGAF, MDA, Measurement Scales

1. INTRODUCTION

American National Standards Institute/Institute of Electrical and Electronics Engineers (ANSI/

IEEE) standard 1471-2000 describes architecture as the fundamental organization of a system,

embodied in its components, their relationships to each other and the environment, and the

principles governing its design and evolution. Enterprise architecture is the set of

representations required to describe a system or enterprise regarding its construction,

maintenance and evolution. Enterprise architecture aims at creating an environment suitable for

mapping the organizational assets to business processes which can identify relevance and realm

of business strategy adopted. An Enterprise architecture framework typically consists of

business architecture, information architecture, application system architecture, and infra-

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

72

structure technology architecture.
Architecture frameworks are evaluated on the basis of scope, architecture process, verification

support, standards compliance and overall complexity of the architecture. Enterprise

architectures should support the business processes and indicate the benefits earned by its

application. Feature extraction and enhancement are the major issues while dealing with

architecture flexibility and scalability. Productivity, cost-effectiveness and optimization in

terms of services are the other broad parameters affecting deployment of enterprise

architectures.

It is necessary to observe the pattern of migration from platform-independent and platform-

specific elements in Enterprise architecture evolution. In this paper, we are limiting the scope of

views and its correspondence to The Open Group Architecture Framework (TOGAF),

Generalized Enterprise Reference Architecture and Methodology (GERAM), IEEE Std 1471-

2000 IEEE Recommended Practice for Architectural Description, Model-Driven Architecture

(MDA) and ISO RM-ODP.

2. RELATED WORK

John Zachman developed a framework in 1987 which was based on plan-driven approach and

best practices adoption that can be deployed within the development organizations to address

enterprise engineering problems. It was based on maintaining information profile of function

aspects as well as the management required to accomplish the development activities. The

prime issue addressed by Zachman’s framework was architecture integration and

implementation with a well-designed organization structure. Cap Gemini Ernst & Young

developed an approach for analysis and development of enterprise and project-level

architectures known as the Integrated Architecture Framework (IAF). IAF was the first

implementation of enterprise engineering solutions which was widely accepted by technical

community. Similar to Zachman’s framework, IAF also aims at partitioning the problem in to

manageable pieces based on the area of concern. IAF starts at Business Management aspect

primarily dealing with business process and taskforce management. It maps the technology

problem to information as knowledge-base, Information System used for traceability, and

Technology Infrastructure, with special emphasis on Security aspects and Governance.

Enterprise Architecture Planning (EAP) defines a process that emphasizes techniques for

organizing and directing enterprise architecture projects, obtaining stakeholder commitment,

presenting the plan to stakeholders, and leading the organization through the transition from

planning to implementation [1].

Federal Enterprise Architecture Framework (FEAF) was developed in 1998 with the vision of

integrating federal architectural segments. The FEAF was based on knowledge and asset

management across the organization with a uniform terminology used for architectural

integration. The business-driven aspect of FEAF was designed in view of accommodating the

current as well as future business needs. The business information was later used in planning

and implementation business operations in order to realize the Enterprise Architecture. FEAF

emphasized on Architecture Evolution management with the help of transitional and

transformational processes [8].

The Open Group Architecture Framework (TOGAF) was based on Application Lifecycle

Management which largely covered the areas of governance as applicable to related areas of

problems spanning from data to security. TOGAF is considered to be as a major contribution

for enterprise architecture development because of the flexibility offered as well as verification-

validation support provided. The Open Group is a vendor-neutral and technology-neutral

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

73

consortium seeking to enable access to integrated information, within and among enterprises,

based on open standards and global interoperability [2].

The IFAC/IFIP Task Force on Architectures for Enterprise Integration developed an overall

definition of a generalized architecture which focused on modeling and tools that can be used

for enterprise development. Generalised Enterprise Reference Architecture and Methodology

(GERAM) addressed the issue of single enterprise development as well as networked enterprise

development through various views which can be used at various levels of details depending on

area of specialization of the enterprise. GERAM was based on Entity oriented strategy used for

enterprise development [12].

The Object Management Group (OMG) introduced the Model-Driven Architecture (MDA)

initiative as an approach for system development based on specification and interoperability

expressed in terms of formal models. In MDA, Platform-Independent Models (PIMs) are used

to represent the target system analysis and design expressed in a general-purpose modeling

language, such as Unified Modeling Language (UML). The platform-independent model can be

mapped to a Platform-Specific Model (PSM) by mapping the PIM to some implementation

language using set of transformational rules. The MDA considers Metamodeling as a key

concept for artifact generation at all stages evolution. MDA support evolution with the help of

consistent mapping of resources at source to target with the help of metamodel at the two ends

as well as transformation rules along with model merging [13].

The OMG MDA comprises CWM, UML, MOF and XMI as standards for model-driven

development. The Common Warehouse Metamodel (CWM) defines a metamodel representing

both the business and technical metadata which can be found in the data warehousing and

business analysis domains. It is used as the basis for interchanging instances of metadata

between heterogeneous, multi-vendor software systems. UML, which is a general purpose

modelling language provides support for modelling structural and behavioural properties of the

system and is part of CWM. UML is an integrated effort of three object-oriented methods

(Booch, OMT, and OOSE). UML has extensive support for modelling generic systems. UML

2.0 is widely used in reactive systems behaviour analysis. The Meta Object Facility (MOF) is

an OMG standard defining a common, abstract language for the specification of metamodels. It

defines the four-level structure used to represent the details of how the notation repository can

be made available to the modeller on model space. MOF semantics defines metadata repository

that support model construction. It has the support for applying the transformations based on

metamodel level selected. XML Metadata Interchange (XMI) defines XML tags that can be

used to represent objects and their associations [3] [4].

3. ZACHMAN FRAMEWORK

The Zachman Framework for Enterprise Architecture is a widely used and accepted approach

for developing or documenting an enterprise-wide architecture. It is based on Information

System Architecture (ISA) and typically used in a development environment which supports

organization structures and practices [5]. It is considered to be the basis for the emergence of

other eminent enterprise architectures. ZF’s key goals are for enterprise architecture analysis

and modelling and it is concerned with perspectives of constructing an information system.

The Zachman Framework organized as a table as indicated in Table 1.

The rows are as follows:

− Scope: It is an executive summary for a planner.

− Business model: It indicates the business process engineering efforts and activities

planned in order to achieve business goals.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

74

− System model: It indicates data elements and software functions that represent the

business model.

− Technology model: It describes the constraints of tools, technology, and materials.

− Components: It indicates smallest pieces of system that can found to be functional,

tested and verified according to specification.

− Working system: It depicts the operational system.

The columns are as follows:

− Who: Represents the individuals who have enactment of fulfilment of some service.

− When: Represents achievement of explicitly stated goals or objectives by the

individuals on a time line indicating activity arrival and exit.

− Why: Describes the motivations of the enterprise.

− What: Describes the activities involved in corresponding area of the enterprise.

− How: Shows the functions within each perspective.

− Where: Shows locations and interconnections within the enterprise

Table 1: Zachman Framework

 Data

(what)

Function

(how)

Network

(where)

People

(who)

Time

(when)

Motivation

(why)

Scope

(Planner)

List of

things

important

to

business

List of

processes

the business

performs

List of

locations

where

business

operates

List of

organisation

s / agents

that are

important

List of

significant

events

List of

business

goals /

strategies

Enterprise

Model

(Owner)

Semantic

Model

Business

Process

Model

Business

Logistic

System

Work Flow

Model

Master

Schedule

Business

Plan

System Model

(Designer)

Logical

Data

Model

Application

Architecture

Distributed

System

Architecture

Human

Interface

Architecture

Processin

g

Structure

Business

Rules

Technology

Model

(Builder)

Physical

Data

Model

Systems

Design

Technology

Architecture

Presentation

Architecture

Control

Structure

Rule Design

Components

(Subcontractor

)

Data

Definition

Program Network

Architecture

Security

Architecture

Timing

Definition

Rule

Specificatio

n

4. ISO RM-ODP

The Reference Model of Open Distributed Processing (ISO-RM-ODP) provides a framework

for the development of systems that supports processing under heterogeneous platforms [6]. To

model distributed systems, Object-modeling approach is used in RM-ODP. RM-ODP is a joint

effort by the International Organization for Standardization (ISO), the International

Electrotechnical Commission (IEC) and the Telecommunication Standardization Sector (ITU-

T).

The problem-solution pairing can be done by the “viewpoints” which provide a way of

describing the system; and the “transparencies” that identify specific problems unique to

distributed systems as indicated in Figure 1. [7].

RM-ODP consists of four basic International Standards:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

75

• Overview: It describes the overview of the ODP, Scope and terminology involved in

overall architecture development.

• Foundations: It describes the significant issues and factors which should be considered

for distributed processing functions and systems. .

• Architecture: It represents the characteristics possessed by distributed processing

system under constraints mentioned in specification. It also recommends the use of

viewpoints that can be used for logical grouping of related areas of the enterprise.

• Architectural Semantics: It focuses on the modelling with the help of formal

specification techniques with adequate details of each concerned area.

The viewpoints in RM-ODP are:

• Enterprise viewpoint: It deals with the strategy that can be used to accomplish the

business goals and needs as identified in the preliminary phase of problem

investigation.

• Information viewpoint: It focuses on information structure, information flow, logical

and physical organization of information with information change tracking.

• Computational viewpoint: It focuses on structural elements of the system and their

dynamics guided by protocols represented by interfaces and functionality by objects.

• Engineering viewpoint: It indicates overall organization of the objects identified and

their participation in various interaction patterns to satisfy a service.

• Technology viewpoint: It indicates hardware and software components that formulate

the system.

Figure 1: Viewpoints in RM-ODP

5. FEDERAL ENTERPRISE ARCHITECTURE FRAMEWORK (FEAF)

The goal of FEA is to improve interoperability within U.S. government agencies by creating

single enterprise architecture for the entire federal government [8].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

76

Figure 2: FEAF Reference Models

The intent of the FEAF is to enable the federal government to define and align its business

functions and supporting IT systems through a common set of reference models. Figure 2

indicates FEAF Reference Models which are defined as follows:

� Performance Reference Model (PRM): The PRM is a standardized framework to

measure the economics of investments and adherence to program portfolios in future

based on performance.

� Business Reference Model (BRM): The BRM is a function-driven framework for

describing business operations of the federal government independent of the agencies

that perform them.

� Service Component Reference Model (SRM): The SRM is a framework which supports

enactment of service-component relationship on the basis of performance objectives.

� Data Reference Model (DRM): The DRM is a generic model which describes the

information necessary to trace operation level details.

� Technical Reference Model (TRM): The TRM is a technical framework which verifies

and validates the components capabilities in relation to the specification stated and

acceptable performance with reference to standards agreed upon.

Figure 3: Simplified FEAF structure.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

77

The major components of the FEAF are (Figure 3):

• Architecture Drivers: It indicates the factors and conditions due to which the business

scenario or target design can change over a time period.

• Strategic Direction: It consists of the vision and strategic information regarding

objectives to be achieved by the target architecture. The strategic direction becomes

necessary to have a pilot estimate of operational effort required to realize the enterprise

solution.

• Current Architecture: It defines the "as is" scenario of the enterprise architecture and

consists of existing solutions to the problem identified. It describes the capabilities

needed to be addressed in accordance with the limitations of the existing solution.

• Target Architecture: It defines the "to-be-built" scenario of the enterprise architecture

and consists of improved architecture and performance. It indicates the changed

business needs which are required to be fulfilled in accordance with the technology

migration. The target architecture can be assessed by using performance metrics

indicating adherence to specification.

• Transitional Processes: It supports the migration from the current to the target

architecture.

• Architectural Segments: It consists of focused architecture efforts on major cross-

cutting business areas.

• Architectural Models: It indicates both strategic and technical models that guide the

enterprise solution which is feasible with formal representations.

• Standards: It refers to all standards, guidelines, and best practices.

6. IEEE1471-2000 STANDARD

The IEEE Recommended Practice for Architectural Description of Software-Intensive Systems

(IEEE Std 1471-2000 aka ANSI/IEEE Std 1471-2000) introduces a conceptual model that inte-

grates mission, environment, system architecture, architecture description, rationale, stakehold-

ers, concerns, viewpoints, library viewpoint, views, and architectural models facilitating the

expression, communication, evaluation, and comparison of architectures in a consistent manner

[9].

Stakeholders are the one who are materially benefited from the solution development. The

stakeholders have specific concerns and roles which should be carefully accounted while

initiating and terminating the development activities. The customers or users may not have a

complete view of acceptability of the solution. Therefore it is crucial to identify the stakeholder

needs before the development can commence. A view indicates group of concerns as

identified through partitioning of the system. A viewpoint defines a specific case of view

related to a key aspect. A viewpoint indicates possible alternatives that can be considered while

analyzing and designing the system rationally using appropriate modelling techniques [10]. The

conceptual framework of IEEE 1471 is shown in Figure 4 and described as follows:

• A system has architecture.

• Architecture is described by one or more architecture descriptions.

• An architecture description is composed of one or more of stakeholders, concerns,

viewpoints, views, and models.

• A stakeholder has one or more concerns.

• A concern has one or more stakeholders.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

78

• A viewpoint indicates possible alternatives for relevant stakeholders.

• A view conforms to one viewpoint.

• A viewpoint defines the reason for existence of the model.

• A view can have collective representations guiding more than one view.

• A viewpoint library is composed of viewpoints.

Figure 4: Conceptual framework of IEEE 1471

7. THE OPEN GROUP ARCHITECTURE FRAMEWORK (TOGAF)

TOGAF enables corporate architects and stakeholders to design, evaluate, and build flexible

enterprise architecture for the organization. The initial versions of TOGAF were based on the

Technical Architecture Framework for Information Management (TAFIM), developed by the

U.S. Department of Defense (DoD) [11].

There are four types of architectures that are commonly accepted as subsets of overall

enterprise architecture, all of which TOGAF is designed to support:

• Business (or business process) architecture: It defines the organization structure,

business processes as well as governance.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

79

• Applications architecture: It indicates the base architecture which includes architectural

segments along with their interrelationships that conforms to business processes of the

organization.

• Data architecture: It describes the data management capabilities grouped to logical as

well as physical assets supporting application realization.

• Technology architecture: It is concerned with the infrastructural capabilities which

should be considered while implementing and deploying the enterprise solution. As

platform independence is a prime issue to be dealt in service composition and

availability, it describes the technological alternatives available to male system

resources available.

TOGAF has following views and viewpoints for development of enterprise. As mentioned

previously, this may be regarded as taxonomy of viewpoints by those organizations that have

adopted ANSI/IEEE Std 1471-2000.

• Business Architecture Views, which address the concerns of the users of the system,

and describe the flows of business information between people and business processes

• Data Architecture Views, which address the concerns of database designers and

database administrators, while identifying and normalizing the database entities of the

system.

• Applications Architecture Views, which address the concerns of system and integration

engineers responsible for developing and integrating the software components of the

system.

• Technology Architecture Views, which address the concerns of acquiring the

commercial off-the-shelf (COTS) components that may reduce the cost of software

development. The amendments to the components falls into white-box and black-box

modifications made to the components. It depends on the suitability of the existing

components to identified services to be realized.

8. GENERALIZED ENTERPRISE REFERENCE ARCHITECTURE &

METHODOLOGY (GERAM)

Previous research, carried out by the AMICE Consortium on CIMOSA, by the GRAI

Laboratory on GRAI and GIM, and by the Purdue Consortium on PERA, has produced

reference architectures which were meant to be organizing all enterprise integration knowledge

and serve as a guide in enterprise integration programs. The IFIP/IFAC Task Force concluded

that the architecture derivation should have unique purpose and satisfy the service demands and

business needs with a possibility of retainment of service capabilities of previous reference

architectures. The recognition of the need to define a generalized architecture is the outcome of

the work of the Task Force [12].

The GERA life-cycle for any enterprise consists of different life-cycle phases that define types

of activities that are pertinent during the life of the entity. Life-cycle activities encompass

activities that span from identification to realization of the enterprise or entity. The activities

can be broken into lower level tasks in order to manage the operational effort. Traditional life-

cycle management is evident in GERAM methodology with a shift from process components to

entities.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

80

• Entity Identification: It describes the entities that constitute the enterprise problem and

their limits with possible interactions within the system as well as the external

environment. This can be treated as scoping of entities identified..

• Entity Concept: It deals with entity’s mission, vision, values, strategies, objectives,

operational concepts, policies, business plans which can be used to create entity’s

knowledge base for further development processes initiation.

• Entity Requirement: The activities needed to develop descriptions of operational

requirements of the enterprise entity, its relevant processes and the collection of all their

functional, behavioral, informational and capability needs.

• Entity Design: It indicates the process of solution structure and specification of individual

components that conforms to the requirements specified.

• Entity Implementation: It describes the effort needed to implement the components

identified during the Entity Design step. Reusable components can also be used in concern

with cost of modification. If cost of modification of components is higher, components

from scratch can be implemented.

• Entity Operation: It deals with deployment of product or service at the customer end. It

deals with transition of the solution from source environment to target environment with

identification of problems at customer end while using product or services.

• Entity Decommissioning: These activities are needed for future issues like refactoring,

reengineering problems associated with the product or services. It emphasizes on the new

demands raised to reconsider the problem due to training or design issues.

8.1 Modeling Framework of GERA
GERA provides an analysis and modeling framework which is based on the life-cycle approach

and indicates following dimensions for defining the scope and content of enterprise modeling.

• Life-Cycle Dimension: providing for the controlled modeling process of enterprise

entities according to the life-cycle activities.

• Genericity Dimension: providing for the controlled particularization (instantiation)

process from generic and partial to particular.

• View Dimension: providing for the controlled visualization of specific views of the

enterprise entity.

8.1.1 Entity Model Content Views
Four different model content views define for the user oriented process representation of the

enterprise entity descriptions

The Function View represents the functions contained in individual business processes and the

control applied to each one of them at operational level.

The Information View formulates the knowledge base about the entities and the objects

identified so as to address the mission and objectives of the enterprise.

The Resource View represents hardware, software and human resources required to realize the

enterprise solution.

The Organization View represents the roles and responsibilities of the people concerned with

enterprise development. It also deals with the accountability of human resources in the

organization.

8.1.2 Entity Purpose Views

• The Customer Service and Product View represents the contents relevant to the

enterprise entity’s operation and to the operation results.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

81

• The Management and Control View represents the contents relevant to management

and control functions necessary to control that part of the enterprise entity that

produces products or delivers services for the customer.

 8.1.3 Entity Implementation View

• The Human Activities View represents the set of tasks that are required to be achieved

in order to realize the entities identified along with clear description of responsibilities.

• Automated Activities View is an indicator of automation effort required to be estimated

and delivered to address the technological aspects. This view indicates the tasks that

can be automated so as to reduce the manual processing overheads.

8.1.4 Entity Physical Manifestation Views

• The Software View represents all information resources capable of controlling the

execution of the operational tasks in the enterprise

• The Hardware View represents the physical resources that are needed to achieve the

product functionalities or services at the source and target environments of the

enterprise.

9. MODEL DRIVEN ARCHITECTURE (MDA)

Model Driven Architecture was introduced by Object Management Group to allow long-term

flexibility of implementation, integration, and testing of products and services. Interoperability

and platform independence were the two major concerns addressed by MDA. MDA was

significantly different approach for specification-based modeling of systems which

concentrated on models as a prime issue than objects as in case of object oriented

methodologies. MDA introduced model composition and transformation from three levels of

models i.e. from Computation-Independent Model (CIM) to Platform-Independent Model

(PIM) to Platform-Dependent Model (PSM) based on mapping rules [13]. The core

technologies of the OMG MDA are the UML modeling language, the Meta Object Facility

(MOF) Error! Reference source not found. and the Common Warehouse Metamodel

(CWM). Organization of a software system can be represented by structural elements or classes

with their interfaces that comprise or form a system and behavior represented by collaboration

among these elements. UML is not associated to a process model since it supports the

engineering activities ranging from requirements to realization. MOF provides the basis for

defining metamodels and model repositories. CWM provides the baseline for data warehousing

and data integration. Models are formal specifications of system. A formal specification is

consists of syntax, semantics for constructs formulation and usage [14]. The models of the

system fall into following categories:

• The conceptual model that captures the system in terms of the domain entities that exist

and their association with other system environments.

• The logical view of a system that captures the abstractions indicating the logical

separation and boundaries of each identified entity in the conceptual model. It also

describes the mechanism through which these entities will interact and form realizable

behaviour.

• The physical model of a system describes the software and hardware components that

form the system solution space conforming to the specification.

A model can exhibit static structure and defines the universe of discourse. It requires concept

mapping from the application domain to a well-formed structure. The analysis classes are

transformed to design classes and later to software classes with implementation details of

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

82

interaction pattern amongst the objects [15]. Dynamic behaviour can be modelled as the life

history of one object as it interacts with the rest of the world; the other is the communication

patterns of a set of connected objects as they interact to implement behaviour or as the view of

an object in isolation is a state machine, a view of an object as it responds to events based on its

current state, performs actions as part of its response, and transitions to a new state. Following

are the views of “4+1” view architecture:

• Use Case view: It focuses on scenarios indicating the functional requirements which

will be used by external entities. This view incorporates analysis level information that

dictates static behaviour of the system along with further decomposition of the

functionalities.

• Design view: It represents the logical structures which support the requirements

expressed in the case view described in terms of classes (and objects) and their

behaviour (including interactions between them). It encompasses classes, interfaces,

and collaborations that define the vocabulary of a system and supports functional

requirements of the system.

• Implementation view: It incorporates physical components that can be grouped into

packages indicating realized entities. The basis for these components is analysis and

design level classes. The class hierarchy and interaction profile are preserved in this

view.

• Process view: It deals with dynamic interaction profile of object including concurrency,

time and flow of control. Process view is important in case of real-time applications

where synchronization is an important dimension.

• Deployment view: It consists of executables in the form of nodes. Deployment view

indicates the resources of system in implementation environment.

The Model-Driven Architecture consists of CIM, PIM, and PSM indicating how they should be

used in context of system generation. A viewpoint indicates an aspect or concern of the system

which is identified using abstraction principles. A viewpoint model or view of a system is a

representation of the domain or partition under consideration. The details of a view can help

organize the system elements into realizable components. A platform is a set of functionalities

relevant to technology indicating availability of usable services and resources. The platform

independence can be achieved by hiding the details of service profiles at software architecture

level from the application level by introducing interfaces which can make the resource

available from one platform to the other.

• Computation Independent Viewpoint: The computation independent viewpoint focuses

on requirements of the system and its structure with environmental needs. It indicates

customer, user and stakeholder’s perspectives and expectations from system.

• Platform Independent Viewpoint: The platform independent viewpoint focuses on

analysis and design models of the system which incorporates the system elements

identified and their explicit relationships without adherence to implementation details.

• Platform Specific Viewpoint: The platform specific viewpoint indicates

implementation level details of the system elements specific to a particular platform.

This can be accomplished by using mapping and transformation rules for migrating

from PIM to PSM.

10. MEASUREMENT PROCESS

Measurement is the process of describing entities in terms of numbers or symbols. It also

indicates the uniqueness property that should be preserved by each identified entity [Fenton

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

83

95]. Thus, measurement requires entities (objects of interest), attributes (characteristics of

entities) and rules (and scales) for assigning values to the attributes. Measures and metrics are

based on measurement scales which can be derived from the rules that we use for assigning

values to attributes. Different rules lead to different scales. An ordinal scale permits measured

results to be placed in ascending (or descending) order. However, distances between locations

on the scale have no meaning. We have used ordinal scale having score values ranging from 0

to 5 as indicated in Figure 5.

Figure 5: Measurement Scale

10.1 COMPARISON BY HIGHER ORDER GOALS

Enterprise integration begins with identification of mission and objectives that directs the

business needs of the customer. The enterprise problem then broken into domains that can be

implemented and integrated so as to form the enterprise segments [16] [17]. The success of

enterprise acceptance depends on customer needs realization and its fulfillment. All enterprises

follow a life cycle from their initial concept through a series of stages or phases comprising

their development, design, construction, operation and maintenance, refurbishment or

obsolescence, and final disposal. Table 2 indicates comparison by higher order goals [18].

Following list indicates higher order goals for Enterprise Architecture:

• Architecture Definition and Understanding – it describes the terminology and

guidelines that must be used to define the architecture framework conforming to the

needs as stated by the stakeholders identified.

• Architecture Process – it the set of activities performed to attain architecture

construction.

• Architecture Evolution Support – it maintains traceability and change profile of system

evolution.

• Architecture Analysis – it is a process used to determine the aspects, view and

viewpoints that makes up basis of architecture segments.

• Architecture Models – it represents the system in terms of analysis and design models

that conforms to standards and specification that guides the development plan.

• Architecture Knowledge Base – it maintains the information base of significant design

decisions that directs the enterprise architecture rationale.

• Abstraction – it is an approach to classify the system elements based on similarities and

differences. It leads to identification of unique entities of the system.

• Application Architecture – it describes the logical entities and components along with

their interaction pattern conforming to identified business needs.

• Architecture Continuum – it is an information base that keeps records of identified

architectural segments with appropriate and adequate details so as to realize the

architecture. It also encompasses strategies and reference model dictating adoption of

architectural styles.

• Architecture Governance – it is the set of processes that guides management and

control of the enterprise architectures and other issues related to enterprise-wide level

development.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

84

• Architecture Landscape–it deals with identification and management of enterprise

assets in accordance with stakeholder needs. It indicates the processes and plans which

incorporates strategic and operational profile of the enterprise conforming to

stakeholder needs.

• Architecture Verifiability – it provides the set of properties and characteristics that can

be checked in order to review the service or product functions.

• Baseline – it is a specification indicating agreed upon properties and characteristics of

system that can be examined with current deliverables to estimate its performance. It

also serves as important dimension in addressing the changes to be incorporated and its

control.

• Business Governance – it indicates the business processes, policies and regulations that

need to be practiced while developing the enterprise.

• Capability Architecture – it indicates specification of architectural components with

detailed implementation and compositional semantics.

• Data Architecture – it describes the data resources grouped into logical and physical

compartments guiding organizational assets.

• Design Tradeoffs – it offers the alternatives for selecting rational design from available

choices in order to address the diverse business and technical needs.

• Design Rationale – it indicates the proof of statements for verification and review

decisions.

• Data Governance – it indicates the verification mechanisms used to ensure that the data

properties and structure has adequate support for transformation and migration.

• Enterprise Continuum – it describes the process of classification of architecture

segments and components that makes up the enterprise. It also maintains the catalogue

of reference models used; foundation architectures referred leading to custom

architectures.

• Environment Management – it indicates the source and target environment in which the

system will be operational. It describes the set of resources, facilities and information

base that should be made available to deploy enterprise solution.

• Foundation Architecture – it is an architecture of generic services and functions that

provides a base for construction of architectural components in question.

• Gap Analysis – it is an indicator of differences between two representations. It is

performed to estimate acceptance level of enterprise architecture designed and the

baseline considered.

• Metamodel – it is model about model. It specifies the detailed structure and semantics

of architectural properties specifications.

• Performance Management– it indicates the post-development activities that needed to

be followed to keep track of application performance after deployment.

• Standardization – it indicates whether the determined and accepted standards are met or

not.

Table 2: Comparison by higher order goals

Comparison Parameter ZF RM-

ODP

FEAF TOGAF IEEE

1471

MDA GERAM

Architecture Definition &

Understanding

3 5 5 5 5 5 5

Architecture Process

0 0 5 5 5 5 5

Architecture Evolution

Support

0 3 5 5 5 5 5

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

85

Architecture Analysis

5 5 5 5 5 5 5

Architecture Models

5 5 5 5 5 5 5

Architecture Knowledge Base

0 5 5 5 5 5 5

Abstraction 4 3 4 4 3 4 5

Application Architecture

3 2 3 3 3 4 4

Architecture Continuum

4 4 4 4 3 4 4

Architecture Governance

3 3 4 4 3 4 3

Architecture Landscape

3 3 3 3 3 4 3

Architecture Verifiability

0 3 0 5 5 5 5

Baseline

4 2 3 4 4 3 3

Business Governance

4 3 3 5 3 4 4

Capability Architecture

3 4 3 4 3 4 3

Data Architecture

3 2 4 4 2 3 3

Design Tradeoffs

3 3 4 3 4 3 3

Design Rationale

3 5 4 5 5 5 5

Data Governance

3 2 4 4 2 3 3

Enterprise Continuum

3 4 4 5 3 4 4

Environment Management

4 3 3 4 3 4 3

Foundation Architecture

1 3 2 5 4 4 4

Gap Analysis

3 3 3 5 4 3 4

Metamodel 3 2 2 5 4 4 4

Performance Management

2 2 2 4 2 4 4

Standardization

0 5 3 5 5 5 5

Total 69 84 92 115 98 108 106

Table 3: Architecture Definition and Understanding

Score Factors indicating Degree of influence

0 Enterprise Scope and focus is not defined.

1 The extent of enterprise and architectural effort required to attain the same is defined.

2 A complete architecture domain description consisting domain information with

resource and time constraints is specified.

3 The level of detail of architecture and architecture effort is determined.

4 Timing considerations for Architecture Vision realization are indicated.

5 Target Architecture and Transition Architecture alternatives are defined in order to

address the stakeholder objectives in order with increments.

Table 4: Architecture Process

Score Factors indicating Degree of influence

0 Organizational context for conducting enterprise architecture is not defined.

1 Organizational context for conducting enterprise architecture is defined and reviewed.

2 The sponsor stakeholder(s) and other major stakeholders impacted by the business

directive are identified to create enterprise architecture and determine their

requirements and priorities.

3 The elements of the enterprise organizations affected by the business directive are

identified and scoped with constraints and assumptions.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

86

4 The framework and detailed methodologies to be used for developing enterprise

architectures in the organization concerned are defined.

5 Target Architecture, infrastructure and supporting tools are selected and implemented.

Table 5: Architecture Analysis
Score Factors indicating Degree of influence

0 The life cycle management principles and commitments are not defined; hence

realistic schedule of architecture development is absent.

1 Preliminary phases of life cycle are defined and the overall realm of architecture

framework is defined and formally stated

2 The Key Process Areas (KPA) as well as the Key Performance Indicators (KPI) are

defined with adherence to the corresponding business processes and drivers .

3 The Baseline Architecture effort with the relevant stakeholders, and their concerns

and objectives is defined.

4 The development schedule and performance metrics to meet are developed.

5 Formal approval plan and impact analysis of development cycle is established.

Table 6: Architecture Verifiability

Score Factors indicating Degree of influence

0 No Architecture Verification iteration exists.

1 Architecture Context iterations indicating architecture approach, principles, scope,

and vision is established.

2 The iterations required to establish correct and stable architectural information base is

established and revised with relevant technical drivers.

3 Transition Planning iterations supporting formal change adoptions for a defined

architecture is established.

4 Architecture Governance iterations supporting governance of change activity

progressing towards a defined Target Architecture is established.

5 The opportunities and migration planning are traced.

Table 7: Architecture Governance

Score Factors indicating Degree of influence

0 Governance principles are not established and hence no architecture verification can

exist.

1 All the stakeholders of the enterprise development have agreed upon the processes

and deliverables as stated by the stakeholders and recorded by the organization.

2 All actions implemented and their decision support is available for inspection by

authorized organization and provider parties.

3 All processes, decision-making, and mechanisms used are established so as to

minimize or avoid potential conflicts of interest.

4 Performance metrics and practices to be followed to ensure the architecture enactment

policies are determined and monitored.

5 Stakeholder participation and interaction is determined to monitor progress and

performance of architecture development. It principally yields the client and

development organization neutral scenario to deploy architectural solution

successfully.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

87

Table 8: Business Governance

Score Factors indicating Degree of influence

0 No description of the Baseline Business Architecture.

1 Major domain areas and architectural elements are identified formulating the product-

level functions and services. Target architecture scope and applicability in

corresponding environment are determined.

2 Reviews of Target Business Architectures and baselines are conducted and examined.

3 Architecture views and viewpoints are established in accordance with the stakeholder

needs and concerns in order to reveal stable architecture segments.

4 Organization, Goals, Role and Business Service catalogue is developed and standards

for each building block from reference model are selected.

5 Cross check of overall architecture and Architecture Repository mapping is

performed.

Table 9: Standardization

Score Factors indicating Degree of influence

0 Enterprise architecture program is not defined.

1 The enterprise architecture processes and standards are derived by ad hoc means and

are not formal enough to guide the business strategies.

2 The vision and mission of target enterprise architecture is established with stable and

explicit business strategies.

3 The architecture is well defined and communicated to human resources and

management with operation details and responsibilities assigned. It also covers the

initial investments to be made along with procurement processes and control.

4 Enterprise architecture documentation is maintained so as to control and trace the

changes incorporated in ongoing development cycle.

5 Metrics and measures are established and practiced to verify the architecture process.

The areas for improvement and optimization of business processes are identified.

Table 3 to Table 9 indicates the selection criteria on the measurement scale 0 to 5. Architecture

Governance, Business Governance and Standardization are the key parameters which determine

the applicability of the enterprise architectures depending on the business domain and context

identified. Architecture Process and Verification are the other parameters which can be useful

in adjudging suitability of the enterprise architecture at the construction and deployment stages.

Architecture Analysis depends on baselines and Key Performance Indicators (KPIs).

10.2. COMPARISON BY NFR SUPPORT

Requirements are a specification of functions or services that should be accomplished by the

system. The requirements are the properties and characteristics possessed by the system along

with satisfaction of constraints on them. Requirements vary in intent and in the kinds of

properties they represent in terms of product parameters and process parameters. Product

parameters are can be further classified as functional requirements (FR) which indicate what

the system should do and affects the performance of the system directly whereas non-functional

requirements (NFR) indicate what the system should do and affects the performance of the

system indirectly [19] [20].

NFRs are particularly difficult to handle and tend to vary significantly if the goals are expressed

ambiguously. Many non-functional requirements have emergent properties. Such requirements

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

88

cannot be addressed by a single component, but depends for their satisfaction on how all the

system components inter-operate. Correctness, consistency, traceability and requirement

interaction management are the prime issues to be dealt [21]. Unfortunately, non-functional

requirements may be difficult to verify. Non-functional requirements should be quantified. If a

non-functional requirement is only expressed qualitatively, it should be further analyzed until it

is possible to express it quantitatively. The non-functional requirements mentioned below are

quantified on the scale as indicated in the measurement process. Table 10 indicates the

comparison by NFR support. Following are the NFRs considered:

• Cohesiveness – It is the degree to which each module in a system does one task and

does it well. Cohesion refers to the uniqueness of purpose of the system elements.

• Conceptuality – It represents the concepts in the domain under study. With a

conceptual perspective, developers may conceive of what the customer requires, not

how. The conceptual level is more abstract than the implementation level, in which the

details of how the requirement is to be met are manifested in the code itself.

• Configurability – It describes the ability to organize and control elements of the

software configuration. A system's software configuration is defined as the items that

comprise all information produced as part of the software process.

• Consistency – It describes two aspects of a system's design and development.

Consistency may refer to the use of approaches and techniques describing the system

specifications which leads to uniform representations of the system.

• Coupling – It describes the degree to which the modules and components of a given

system rely on and interact with other modules and components of that system.

• Diversity – It describes the degree of difference between a system's components and

modules. It refers to the degree of difference between data structures and data types

throughout a program.

• Extensibility – It involves extending both the design of the system and the software

system itself. It describes the degree to which architectural, data, or procedural design

can be extended by adding variations to an already stated theme.

• Standardizability – It indicates acceptability and conformance of deliverables against

standards. The process standard defines the procedures or operations used in making or

achieving a product; the product standard defines what constitutes completeness and

acceptability of items that are produced as a result of a process.

• Adaptability – It is defined by the rate at which the software solution can adapt to a

new requirement. Adaptability also refers to the degree to which a system may be

changed based on a pre-existing system or an unalterable constraint.

• Dependability – It describes the degree to which software performs expected functions

and services without failure and acceptable precision.

• Flexibility – It describes the effort required to modify an operational program or

system. A software system may be required to be flexible if there will be known a

change in its operating environment after it has been deployed and is in normal

operation.

• Maintainability – It describes the effort required to locate and fix an error in a program.

It the ease with which a program can be corrected if an error is encountered, adapted if

its environment changes, or enhanced if the customer desires a change in requirements.

• Maturity – It describes the degree to which a software system is mature. A system is

said to be mature when it has attained a final, desired state of full development.

• Portability – It describes the ease with which the software can be transposed from one

environment to another.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

89

• Scalability – It refers to the ease with which a system may be made smaller or larger,

although most of the time, increasing the system's size is the concern, not reducing it.

• Robustness – It describes the degree to which a program or system can recover

gracefully whenever a failure occurs. It also describes the time it takes the system to

restart after experiencing system failure.

• Security – It describes the mechanisms that detect the possible threats to programs and

data. It may also refer to the probability that the attack of a specific type will be

repelled.

• Compatibility – It describes the ability of two or more systems to exchange

information. When a system is being deployed to replace an earlier version of that

system, it is imperative that it be compatible with everything that it is replacing is

compatible with.

• Inter-operability – It is defined as the ability of the systems to exchange the services

with agreed protocols and architectural support at both the ends.

• Usability – It describes the effort required to learn and handle the services or product

functions over a period of time.

Table 10: Comparison by NFR support

Comparison Parameter ZF RM-

ODP

FEAF TOGAF IEEE

1471

MDA GERAM

Adaptability 4 4 3 5 4 5 4

Compatibility 3 4 3 5 3 4 4

Cohesiveness 3 3 4 4 4 4 4

Conceptuality 4 4 4 5 4 4 4

Configurability 2 4 4 4 4 4 4

Consistency 3 3 4 5 4 4 4

Coupling 3 3 4 5 4 4 4

Diversity 3 3 3 5 3 5 3

Dependability 3 4 4 4 4 4 4

Extensibility 3 3 4 4 3 4 4

Flexibility 3 4 3 5 4 4 4

Inter-operability 3 3 3 5 3 5 3

Maintainability 3 4 4 4 3 4 3

Maturity 3 3 3 4 4 4 4

Portability 2 4 3 4 3 4 3

Robustness 3 4 4 4 3 4 4

Scalability 3 3 4 4 4 4 4

Security 2 3 4 4 3 4 3

Standardizability 3 3 4 5 4 4 3

Usability 4 3 3 5 3 4 3

Total 60 69 72 90 71 83 73

10.3. COMPARISON BY INPUTS AND OUTCOMES

Business drivers, Technology inputs, and Business requirements focus on the problem issues in

view of the stakeholders. The context and relevance of the problem scenario can be further

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

90

broken into various model supports as indicated in Table 11. The process enablers as well as

process measures are key areas determining sustainability and stability of the enterprise

solution.

Table 11: Comparison by Inputs and Outcomes

Comparison Parameter ZF RM-

ODP

FEAF TOGAF IEEE

1471

MDA GERAM

Business Drivers 3 3 5 5 3 5 3

Technology Inputs 0 3 5 5 5 5 4

Business Requirements 5 5 5 5 3 5 3

Information System

Environment

3 5 5 5 5 4 4

Existing Architecture

Evaluation

3 5 5 5 5 4 5

Business Model Support 5 5 5 5 3 5 3

System Model Support 5 5 5 5 5 5 4

Information Model Support 5 5 5 5 5 4 4

Computation Model Support 5 5 5 5 5 5 4

Software Configuration

Management

0 3 0 5 4 4 4

Software Process Incorporation 4 4 4 5 3 4 3

Implementation Model 3 4 4 4 3 4 4

Platform 4 5 4 4 3 5 4

Total 45 57 57 63 52 59 49

Figure 6 indicates the consolidated chart representing the enterprise architecture suitability

depending on higher order goals, NFR support and input-outcomes.

Figure 6: Consolidated Comparison Chart

11. CONCLUSIONS

The paper covers a broad discussion of major enterprise architecture methodologies. The

enterprises can be categorized into small-sized, medium-sized and large-sized enterprises

depending on the range of problem issues, business requirements, and organization portfolio. It

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

91

is significantly difficult to decide on selecting a specific enterprise architecture methodology

due to the changes that drives the enhancement scenario for these methodologies. Every

system development effort is constrained by the time, scope and cost triplet. The

relationship between scope and performance has to be established at the time of system

conceptualization so that realistic solution with required fitness criteria can be

developed.

The paper proposed an ordinal scale based measurement process for measuring enterprise

architecture methodologies in terms of higher order goals, NFR support and input-outcomes. It

can be observed that TOGAF and MDA are the most successful methodologies in addressing

the issues indicated due to incorporation of views and viewpoints. Business, Architecture,

Technology and Data governance are also the key areas which indicate the rationale and

applicability of the methodologies. However, the fundamental methodology proposed by

Zachman Framework is nearly adopted and considered by every descendant

methodology development effort.

The paper focused on the criticality of addressing NFR issues. NFR properties are the

abilities that the system should possess that ensure required quality and performance

has been met at product or service level. We have considered major NFRs that can

impact the selection of enterprise architecture methodologies. It can be observed that

TOGAF, MDA, GERAM and IEEE 1472-2000 are in a comparable range in this

context. The paper also suggests that there cannot be a radical shift from one

methodology to the other since methodology mapping must be discovered before doing

so. Finally, the selection of any enterprise architecture methodology will depend on

organization culture, mission, principal investment at the initial phase and adherence to

the architecture principles.

REFERENCES

[1]. L. Bass, P. Clements & R. Kazman, (1997) Software Architecture in Practice, Addison-Wesley,

Reading, MA.

[2]. Bachmann F., Bass L., Klein M. & Shelton C., (2005) Designing software architectures to achieve

quality attribute requirements, IEE Proceedings – Software 152 (4), 153–165.

[3]. D. Chen & F. Vernadat, (2004) “Standards on enterprise integration and engineering—state of the

art,” International Journal of CIM, Vol. 17, No. 3, pp. 235–253.

[4]. Jeff A. Estefan, (2007) Survey of Model-Based Systems Engineering (MBSE) Methodologies,

INCOSE MBSE Focus Group, pp 1-47

[5]. J. A. Zachman, (1987) “A framework for information systems architecture,” IBM System

Journal, vol. 26, no. 3, pp. 276–292.

[6]. ISO/ITU-T (1997), Reference Model for Open Distributed Processing (ISO/ITU-T 10746 Part 1 -

4), Information Standards Organization.

[7]. K. Farooqui, L. Logrippo, and J. de Meer, “Introduction into the ODP Reference Model,” 2/14/96,

Department of Computer Science, University of Ottawa, Ottawa K1N 6N5, Canada; Research

Institute for Open Communication Systems Berlin (GMD-FOKUS), D10623 Berlin,

Hardenbergplatz 2, Germany

[8]. CIO-Council, (1999) Federal Enterprise Architecture Framework version 1.1, URL

http://www.cio.gov/archive/fedarch1.pdf, Accessed 21 December 2010.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

92

[9]. P. Clements, (2005) “1471 (IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems),” CMU/SEI-2005-TN-017, Software Architecture Technology

Initiative, Carnegie-Mellon Software Engineering Institute

[10]. IEEE Architecture Working Group, (2000) “IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems, IEEE Std 1471-2000,” IEEE, Tech. Rep.

[11]. The Open Group, (2003) The Open Group Architecture Framework (ver 8.1 Enterprise Edition),

URL http://www.opengroup.org/architecture/togaf/#download, Accessed 21 December 2010.

[12]. IFIP-IFAC Task Force, (1999) “GERAM: Generalized Enterprise Reference Architecture &

Methodology,” IFIP-IFAC Task Force on Architectures for Enterprise Integration, Tech. Rep.

[13]. Reda Bendraou, Philippe Desfray, Marie-Pierre Gervais & Alexis Muller, (2008) MDA Tool

Components: a proposal for packaging know-how in model driven development, Journal of

Software and System Model Vol3: pp 329–343, Springer-Verlag.

[14]. Kruchten P, (1995) The 4+1 View Model of Architecture, IEEE Software, 12, 6 pp 42-50.

[15]. Jacobson I., Booch G. & Rumbaugh J., (1999) The Unified Software Development Process,

Addison-Wesley.

[16]. Dobrica L. & Niemela E., (2002) A survey on software architecture analysis methods, IEEE

Transactions on Software Engineering 28 (7).

[17]. Nelly Condori-Fernández & Oscar Pastor, (2008) Analyzing the Influence of Certain Factors on

the Acceptance of a Model-based Measurement Procedure in Practice: An Empirical Study,

MODELS`08 Workshop ESMDE, pp 61-70

[18]. Benoit Vanderose & Naji Habra, (2008) Towards a generic framework for empirical studies of

Model-Driven Engineering, MODELS`08 Workshop ESMDE, pp 71-80

[19]. Chung L. & Nixon B., (1995) Dealing with Non functional Requirements: Three Experimental

Studies of a Process-Oriented Approach, Proceedings of the 17th International Conference on

Software Engineering, pp. 24–28.

[20]. Cysneiros L. & Leite J., (2004) Non functional Requirements: From Elicitation to Conceptual

Models, IEEE Transactions on Software Engineering 30 (5), 328–350.

[21]. Sadana V. & Liu X., (2007) Analysis of conflicts among non-functional requirements using

integrated analysis of functional and non-functional requirements. Computer Software and

Applications Conference, COMPSAC.

Authors

Mahesh. R. Dube (mrdube@rediffmail.com) has completed ME in Computer Science

and Engineering from Vishwakarma Institute of Technology, Pune, India in 2006.

Currently, he is working as Assistant Professor at Department of Computer

Engineering, Vishwakarma Institute of Technology, Pune. He is perusing his Ph.D.

from Solapur University, Maharashtra, India, in integrated modeling and design. His

areas of interest are Software Engineering, Modeling and Design, Software Testing

and Design Patterns.

Shantanu K. Dixit (dixitsk1@yahoo.com) has received Ph.D. in Electronics from

Shivaji University, Kolhapur in 2002. Currently, he is working as Professor and Head,

Department of Electronics and Telecommunication at Walchand Institute of

Technology, Solapur, Maharashtra, India. His research areas are Robotics, Modeling

and Simulation, Communication Engineering and Microcontroller based design.

