
International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011 

DOI : 10.5121/ijcsit.2011.3415                                                                                                                 189 
 
 

 

A Fuzzy Approach for Clustering Gene 

Expression Time Series Data 

  

 

 

 

 

Abstract: Identifying groups of genes that manifest similar expression patterns is crucial in the analysis 

of gene expression time series data. Choosing a similarity measure to determine the similarity or 

distance between profiles is an important task. Time series expression experiments are used to study a 

wide range of biological systems. More than 80% of all time series expression datasets are short (8 time 

points or fewer). These datasets present unique challenges. On account of the large number of genes 

profiled (often tens of thousands) and the small number of time points many patterns are expected to 

arise at random. Most clustering algorithms are unable to distinguish between real and random patterns. 

However, the  shortness  of gene expression  time-series  data  limits the  use of conventional  statistical 

models and  techniques  for time-series  analysis.    To  address  this  problem, this paper proposes the 

Fuzzy clustering  algorithm based on short time-series, which  is able  to  cluster profiles based  on the  

similarity  of their  relative  change of expression  level and  the  corresponding  temporal  in- formation.   

One of the major advantages of fuzzy clustering is that genes can belong to more than one group, 

revealing distinctive features of each gene’s function and regulation. 

Keywords: Fuzzy Clustering, Short time series, Gene expression 

1. INTRODUCTION 

Microarrays revolutionise the traditional way of one gene per  experiment in molecular  
biology (Brown  and  Botstein, 1999). With  microarray  experiments it is possible to  
measure  simultaneously and  over  time  the  activity levels of thousands of genes.  An 
appropriate clustering of gene expression data can lead to meaningful classification  of 
diseases, identification of co-expressed  function- ally related genes, logical descriptions  of 
gene regulation, etc. Time course measurements are becoming a common type of 
experiment in the use of microrarrays. The particularity of time-series,  which has  to be 
considered  in the clustering  analysis, is the temporal  information:  the measurements 
ordered  in time  and  sampled  at  specific intervals.    An  appropriate similarity  measure  
for gene expression  time-series  should  be able  to  identify  similar  shapes  which are  
formed  by the  relative  change  of expressions  and the temporal  information. 

Time series gene expression experiments are an increasingly popular method for studying a 
wide range of biological processes. Examples include response to temperature changes and 
other stress conditions [4], immune response [5], developmental studies [1], and various 
systems in the cell [8]. While there have been time series experiments with as many as 80 time 
points [1], almost all time series are much shorter. There are a number of reasons why short 
time series datasets are so common. Time series experiments require multiple arrays (and in 
many cases each point is repeated at least once) making them very expensive. While microarray 
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technology have greatly improved over the last five years, its cost is still high at around $300-
1000 per microarray which is a limiting factor for many researchers. Even if prices go down 
short time series experiments would remain prevalent since in many studies it is prohibitive to 
obtain large quantities of biological material. As an example consider a clinical study in which 
blood needs to be drawn from patients at various points in time. Due to the large number of 
genes that are being profiled, most papers presenting short time series datasets use one of 
several clustering methods to analyze their data. Hierarchical clustering [5] along with other 
standard clustering methods (such as k-means and self-organizing maps [9]) are often used for 
this task. While these clustering algorithms yielded many biological insights, they are not 
designed for time series data. Specically, all these methods assume that data at each time point 
is collected independently of each other, ignoring the sequential nature of time series data. 
More recently, a number of clustering algorithms speciacally designed for time series 
expression data were suggested. These algorithms include clustering based on the dynamics of 
the expression patterns [6], clustering using the continuous representation of the profile [2], and 
clustering using a Hidden Markov Model [7]. While these algorithms work well for relatively 
long time series dataset (10 points or more) they are not appropriate for shorter time series.  

2. Related work 

Recently, several papers have focused on modeling and analyzing the temporal aspects of gene 
expression data. In Holter et al [13] a time translational matrix is used to model the temporal 
relationships between different modes of the Singular Value Decomposition (SVD). Unlike our 
work, this method focuses on the SVD modes and not on specific genes. In addition, only 
relationships between time points that are sampled at the lowest common frequencies can be 
studied. Thus, not all available expression data can be used. In Zhao et al [17] a statistical 
model is fit to all genes in order to find those that are cell cycle regulated. This method uses a 
custom tailored model, relying on the periodicity of the specific dataset analyzed, and is thus 
less general than our approach. Several papers have used simple interpolation techniques to 
estimate missing values for gene expression data. Aach et al [10] use linear interpolation to 
estimate gene expression levels for unobserved time-points. D’haeseleer [12] use spline 
interpolation on individual genes to interpolate missing time-points. In Troyanskaya et al [16] 
several techniques for missing value estimations were explored. However, none of the 
suggested techniques take into account the actual times the points correspond to, and thus time 
series data is treated in the same way as static data. As a consequence, their techniques cannot 
estimate values for time-points between those measured in the original experiments. There is a 
considerable statistical literature that deals with the problem of analyzing non-uniformly 
sampled data. These models, known as mixed-effect models [11] use spline estimation methods 
to construct a common class profile for their input data. Recently, James and Hastie [14] 
presented a reduced rank mixed effects model that was used for classifying medical time-series 
data. In this paper we extend these methods to gene expression data. Unlike the above papers, 
we focus on the gene specific aspects rather than the common class profile. In addition, we 
present a method that is able to deal with cases in which class membership is not given. 
Another difference between this work and [14] is that we do not use a reduced rank approach, 
since gene expression datasets contain information about thousands of genes. Many clustering 
algorithms have been suggested for gene expression analysis (see [15]). However, as far as we 
are aware, all these algorithms treat their input as a vector of data points, and do not take into 
account the actual times at which these points were sampled.  
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3. ALGORITHM AND IMPLEMENTATION 

This section presents a measure of similarity for microarray time-series data. The proposed 
similarity measure is driven by the concept of similarity and the particular characteristics of the 
time-series generated with microarray experiments. First, there is no clear definition of what 
“similar” time-series are in a biological context. However, it is generally understood that 
similar expression profiles correspond to similar shapes of expression. Therefore, it is a 
common practice to use lines between time points rather than isolated points for aiding a visual 
comparison. Second, these series have two main properties given by the nature of the 
experiments generating them: they are short and usually unevenly sampled. When the time-
series are short, traditional statistical analyses are not always suitable. For example, in the case 
of an autoregressive model [6], the order of the model is very restricted by the low number of 
time points available in gene expression time-series. In [11] the authors identified that 
conventional techniques for time-series analysis, such as Fourier analysis or autoregressive or 
moving-average modelling are not suitable for the small number of data points as in most gene 
expression time-series data. As an alternative, 

the authors proposed to model the time-series with linear splines. The problem of short time-
series has being identified in other fields and has been treated with a particular focus on shape 
comparisons [13], that is, using the idea of up-down patterns. The objective here is to define a 
similarity measure that can capture the temporal information to evaluate the similarity of 
temporal gene expression profiles. We approach the problem by considering the time-series as 
piecewise linear functions and measuring the difference of slopes between them. In [14], the 
expression level at each time point and the slopes between time points are included in the 
comparison of profiles. However, the slopes were calculated based on a reduced time interval 
of one, not taking into account the variable time intervals. By measuring the difference of the 
true slopes, we are able to include in a meaningful way the length of sampling intervals, while 
considering the shape (i.e. up-down patterns) of the series. The length of sampling interval can 
be understood as a weight; the farther apart in time the expressions are, the less weight they 
have in the comparison. Considering a gene expression profile x = [x1, x2, . . . , xnt ], where nt is 
the number of sampling time points, the linear function x(t) between two successive time points 

tk and t(k+1) can be defined as where 

and 

and 

 The proposed STS 
distance corresponds to the square root of the sum of the squared differences of the slopes 
obtained by considering time-series as linear functions between measurements. The STS 
distance between two time-series x and v is thus defines as  

 

The Fuzzy Clustering Algorithm 

The wide variety of clustering algorithms available from various disciplines are distinguished 
by the way in which they measure distances between objects and the way they group the objects 
based upon the measured distances [15]. In the previous section we already discussed the way 
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in which we desire the “distance” between objects to be measured; hence, in this section, we 
focus 

on grouping the objects based upon the measured distance. For this purpose we select the fuzzy 
clustering scheme as a template for our development, since fuzzy sets are a more realistic 
approach to address the concept of similarity than classical sets. A classical set has a crisp or 
hard boundary where the constituting elements have only two possible values of membership. 
In contrast, a fuzzy set has fuzzy boundaries where each element is given a degree of 
membership providing information about the influence of a given gene for the overall 
characteristics of the cluster. In addition, a fuzzy approach inherently accounts for noise in the 
data because it extracts trends, not precise values. Fuzzy clustering is a partitioning-
optimisation technique [16–18]. The objective function that measures the desirability of 
partitions is described by, 

 

where nc is the number of clusters, ng is the number of vectors to cluster, uij is the value of the 
membership degree of the vector xj to the cluster i, d2(xj , vi) is the squared distance between 
vector xj and prototype vi, and w is a parameter (usually set between 1.25 and 2), which 
determines the degree of overlap of fuzzy clusters. The minimisation of the fuzzy objective 
function is a nonlinear optimization problem that can be solved using various methods. The 
most common method is the Picard Iteration through the first-order conditions for stationary 
points of the function. Figure 2 illustrates the iterative procedure of the fuzzy c-means 
algorithm, the most well known fuzzy clustering algorithm. Considering other fuzzy extensions, 
the convergence is independent of the change in the distance function if the distances are all 
positive and the prototypes are calculated accordingly to the minimisation of the objective 
function. A full review of the minimisation and convergence of the FCM objective function can 
be found in [19]. 

 

Fig. 2. Diagram of the iterative procedures for the FCM clustering algorithm. Considering the 
partition of a set X = [x1, x2, . . . , xng ], into 2 <= nc < ng clusters, the fuzzy clustering 
partition is represented by a matrix U = [uik], whose elements are the values of the membership 
degree of the object xk to the cluster i, ui(xk) = uik.In order to integrate the STS distance into 
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the conventional fuzzy clustering scheme, it is necessary to obtain the value of the prototype vi 
that minimizes (2), when (1) is used as the distance. Substituting (1) into (2) we obtain 

 

 

 

 

Equation (5) yields an underdetermined system of equations. We know the relations of the 
prototype values among the time points, but not the absolute value at each time point. That is, 
we know the slope but not the absolute level. By adding two known fixed time points we can 
solve the underdetermined system of equations for any nt. If we add the same two time points 
to all the 

time-series the similarity is not altered. If the fixed values are zero, a general solution is easier 
to obtain. The length of the sampling interval between the first real time point and the last fixed 
time point acts as a weight to the first real time point. Additional time points should be t1 = −1 
and t2 = 0, and the original time points should be scaled down by substraction to start as t3 = 1. 
This avoids altering v with the added fixed time points, since with this configuration, the values 
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of a, c and f for the extra time points equal one and do not affect the products. The prototypes 
can be calculated as shown in the following equation, 

 

The change of the distance function has no effect in the optimisation of (2) with respect to the 
membership degree, therefore, uij can be calculated as in the FCM algorithm, 

 

The Algorithm 

STEP 1: Initialization 

 

STEP 2: Addition of two fixed time points and fuzzification 

 

STEP 3: Initialization of the partition matrix 

Initialize the partition matrix randomly,  

 

STEP 4: Repeat for l = 1, 2, ... 

4.1 Compute the cluster prototypes: 

4.2 Compute the distances using Equation (1), 
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4.3 Update the partition matrix: 

 

 

 

Step 5: Use Z-test to find the fitness of clusters 

 

 

3.3 Illustrative examples 

Simulated data sets are used to illustrate the FSTS clustering algorithm. 

 

Only the FSTS algorithm is able to identify the constituting clusters successfully. Our algorithm 
is able to identify the four clusters successfully (FCM 41 out of 50 runs, FSTS 50 out of 50 
runs, KM 23 out of 50 runs and HC 50 out of 50 runs). The clustering parameters are w = 1.6 
and α  = 0.4 for the two fuzzy algorithms. 

4. Conclusion  

Clustering algorithms have been developed for various applications and within a range of 
disciplines. In order to choose the most suitable algorithm for a particular application, the type 
of experiment and the specific purposes of the research have to be considered. The concept of 
similarity is at the core of any clustering algorithm and terms such as co-expression and 
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“similar profiles” have to be well defined within the biological context. In this paper we have 
introduced a metric in which the similarity is based on the rate of change of expression levels 
across time, which is an intuitive biological idea of similar behavior across time.There are a 
number of interesting extensions that could be made to our work. Experimental biologists often 
determine the sampling rate for a time-series experiment based on knowledge about how 
quickly gene expression values change. These assessments often make little use of information 
that may be gleaned from previous expression experiments. Our algorithm could be used to find 
the ”right” sampling rate for time-series experiments, which could lead to substantial time/cost 
savings or improvements in biological results. Another way of extending this work is to 
develop a clustering algorithm that uses our method in order to group genes that show similar 
kinetic changes between datasets. Another open problem is developing a principled method for 
determining the significance of the alignment error in order to automatically detect genes 
whose temporal behavior is altered between experiments. 
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