
International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

DOI : 10.5121/ijcsit.2011.3107 85

IMPROVING THE CHARACTER

RECOGNITION EFFICIENCY OF FEED

FORWARD BP NEURAL NETWORK

Amit Choudhary
1
 and Rahul Rishi

2

1
Department of Computer Science, Maharaja Surajmal Institute, New Delhi, India

amit.choudhary69@gmail.com
2
Department of Computer Science and Engineering, TITS, Bhiwani, Haryana, India

rahulrishi@rediffmail.com

ABSTRACT

This work is focused on improving the character recognition capability of feed-forward back-propagation

neural network by using one, two and three hidden layers and the modified additional momentum term.

182 English letters were collected for this work and the equivalent binary matrix form of these characters

was applied to the neural network as training patterns. While the network was getting trained, the

connection weights were modified at each epoch of learning. For each training sample, the error surface

was examined for minima by computing the gradient descent. We started the experiment by using one

hidden layer and the number of hidden layers was increased up to three and it has been observed that

accuracy of the network was increased with low mean square error but at the cost of training time. The

recognition accuracy was improved further when modified additional momentum term was used.

KEYWORDS

Character Recognition, MLP, Hidden Layers, Back-propagation, Momentum Term.

1. INTRODUCTION

Off-line character recognition involves the automatic conversion of hand printed character (as

an image) into letter codes which are usable within computer and text-processing applications.

As compared to on-line; off-line character recognition is comparatively difficult, as different

people have different handwriting styles and also the characters are extracted from documents

of different intensity and background [6]. Nevertheless, limiting the range of variations in input

can allow recognition process to improve.

One of the most important types of feed forward neural network is the Back Propagation Neural

Network (BPNN) [12]. It is a multi-layer feed forward network using gradient-descent based

delta-learning rule, commonly known as back propagation (of errors) rule. Back Propagation

provides a computationally efficient method for changing the weights in a feed forward

network, with differentiable activation function units, to learn a training set of input-output

examples. Being a Gradient Descent Method, it minimizes the total squared error of the output

computed by the net.

The network is trained by supervised learning method. The aim is to train the network to

achieve a balance between the ability to respond correctly to the input characters that are used

for training and the ability to provide good responses to the input that were similar. The total

squared error of the output computed by network is minimized by a gradient descent method

known as Back Propagation or Generalized Delta Learning Rule [1].

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

86

The experiments conducted in this paper have shown the effect on the learning and character

recognition accuracy of the neural network by increasing the number of hidden layers and

introducing an additional modified momentum term. Three experiments were performed.

Experiment-1, Experiment-2 and Experiment-3 employed a network having one, two and three

hidden layers respectively. All other experimental conditions such Learning Rate (η),

Momentum Constant (α), Activation Function, Maximum Training Epochs, Acceptable Error

Level and Termination Condition were kept same for all the experiments.

The remainder of the paper is organized as follows: Section 2 briefs some related work already

done by the researchers in this field. Section 3 deals with the overall system design and the

various steps involved in the OCR system. Neural Network Architecture and functioning of

proposed experiments are presented in section 4. Various experimental conditions for all the

experiments are given in Section 5. Discussion of Results and interpretations are described in

section 6. Section 7 presents the conclusion and also gives the future path for continual work in

this field.

2. RELATED WORKS

A number of review papers on off-line handwriting recognition have been published [4, 14].In

the review, Steinherz, et al. [14] commented on the importance of features extraction and

selection for the recognition system to perform well. Vinciarelli [5] focused on segmentation

based strategies as far as off-line handwritten word recognition is concerned. He pointed out

that these strategies were suitable for small lexical only. The review presented by Koerich, et al.

[4] focused on the large lexical based systems in which large number of training samples is

required. In the literature, very good recognition results have been seen as far as isolated

numerals or characters are concerned [7]. However, the results obtained for the segmentation

and recognition of cursive handwritten words have not been satisfactory in comparison [10, 11,

13, 15].The reason for not achieving satisfactory recognition rates is the difficult nature of

cursive handwriting and difficulties in the accurate segmentation and recognition of cursive and

touching characters.

3. OCR SYSTEM DESIGN

The various steps involved in the recognition of a handwritten character are illustrated in the

form of flow chart in Fig. 1.

Figure 1. Typical Off-Line Character Recognition System

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

87

The steps required for typical off-line character recognition are described here in detail:-

3.1 Pre-processing

Pre-processing is done to remove the variability that was present in off-line handwritten

characters. The pre-processing techniques that have been employed in an attempt to increase the

performance of the recognition process are as follows:

Deskewing is used to make the base line of the handwritten word in a horizontal direction by

rotating the word in a suitable direction by a suitable angle. Some examples of techniques for

correcting slope are described by Brown and Ganapathy [9].

Scaling sometimes may be necessary to produce characters of relative size

Noise can be removed by comparing the character image by a threshold [6].

Slant estimation and correction is achieved by analysis of the slanted vertical projections at

various angles [2].

Contour Smoothing is a technique to remove contour noise which is introduced in the form

of bumps and holes due to the process of slant correction.

Thinning is a process in which the skeleton of the character image is used to normalize the

stroke width.

3.2 Binarization

All hand printed characters were scanned into grayscale images. Each character image

was traced vertically after converting the grayscale image into binary matrix [3, 8]. The threshold

parameter along with the grayscale image was made an input to the binarization program

designed in MATLAB. The output was a binary matrix which represented the image shown in

Fig. 2(c).Every character was first converted into a binary matrix and then resized to 8 X 6

matrixes as shown in Fig. 2(c) and reshaped to a binary matrix of size 48 X 1 which is made as

an input to the neural network for learning and testing. Binary matrix representation of character

‘A’ can be defined as in Fig. 2(c). The resized characters were clubbed together in a matrix of

size 48 X 26 to form a sample [2]. In the sample, each column corresponds to an English

alphabet which was resized into 48 X 1 input vector.

Figure 2 (a) Grayscale image of character ‘A’ (b) Binary representation of character ‘A’; (c) Binary

matrix representation and (d) Reshaped sample of character ‘A’.

For sample creation, 182 characters were collected from 35 people. After pre-processing, 5

samples were considered for training such that each sample was consisting of 26 characters (A-

Z) and 2 samples were considered for testing the recognition accuracy of the network.

3.3 Feature Extraction and Selection

The derived information can be general features, which were evaluated to ease further

processing.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

88

3.4 Classification

Classification is the final stage of our OCR system design. This is the stage where an automated

system declares that the inputted character belongs to a particular category. The classifier here

we have used is a feed forward back propagation neural network.

4. NEURAL NETWORK ARCHITECTURE USED IN THE RECOGNITION

PROCESS

To accomplish the task of character classification and input-output mapping, the multi-layer

feed forward artificial neural network was considered with nonlinear differentiable function

‘tansig’ in all processing units of output and hidden layers. The neurons in the input layer have

linear activation function. The number of output units corresponds to the number of distinct

classes in the pattern classification. A method has been developed, so that network can be

trained to capture the mapping implicitly in the set of input output pattern pair collected during

an experiment and simultaneously expected to modal the unknown system to function from

which the predictions can be made for the new or untrained set of data [8, 12]. The possible

output pattern class would be approximately an interpolated version of the output pattern class

corresponding to the input learning pattern close to the given test input pattern. This method

involved the back propagation learning rule based on the principle of gradient descent along the

error surface in the negative direction.

Figure 3. Feed forward neural network with one hidden layer.

The network has 48 input neurons that are equivalent to the input character’s size as we have

resized every character into a binary matrix of size 8 X 6. The number of neurons in the output

layer was 26 because there are 26 English alphabets. The number of hidden neurons is directly

proportional to the system resources. The bigger the number more the resources are required.

The number of neurons in a hidden layer was kept 10 for optimal results.

The output of the network can be determined as

)(
1

ki

n

i

ik WZfy ∑
=

=

 where f is the output function,

iZ is the output of hidden layer and

kiW is the connection strength between neurons of hidden and output layer.

and , also for hidden layer’s processing unit output ;

)(
1

j

n

j

jii XVfZ ∑
=

=

where jX is the output of input layer and jiV is the weight between input and hidden layer.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

89

The LMS error between the desired and actual output of the network

2][5.0 k

k

k ytE −= ∑

where
kt is desired output

The error minimization can be shown as;

ikkk
ki

zyfyt
W

E)(]['−=
∂

∂

 Weights modifications on the hidden layer can be defined as;

ikkk

k ij

k

ij
ij zyfyt

v
y

k
V

EV)(][)(* '−
∂

∂
∂=

∂
∂=∆ ∑

[Let, k∂ =][kk yt −)(' kyf]

and we have

ijV∆ =)(* '

i

k

ki zfWk∑∂

Thus the weight updates for output unit can be represented as;

)1()()()1(−∆+∆+=+ tWtWtWtW kikiikik αη

where

)(tWik is the state of weight matrix at iteration t

)1(+tWik is the state of weight matrix at next iteration

)1(−tWik
 is the state of weight matrix at previous iteration.

)(tW ki∆ is current change/ modification in weight matrix and

α is standard momentum variable to accelerate learning process. This variable depends on the

learning rate of the network. As the network yields the set learning rate the momentum variable

tends to accelerate the process.

The network is made to learn the behaviour with this Gradient Descent. For next trial the

gradient momentum term is modified by adding one more term i.e. the second momentum term.

)2()1()()()1(−∆+−∆+∆+=+ tWtWtWtWtW kikikiikik βαη

When the weight update with equation is computed sequentially, leads to the following benefits:

1. Formed as a sum of the current (descent) gradient direction and a scaled version of the

previous correction.

2. Faster learning process

3. Weight modification is based on the behaviour learned from latest three iterations

instead of two.

The neural network was exposed to 5 different samples as achieved in Section 3. Actual output

of the network was obtained by “COMPET” function [3] and is a binary matrix of size 26× 26

because each character has 26× 1 output vector. First 26×1 column stores the first character's

recognition output, the following column will be for next character and so on for 26 characters.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

90

For each character the 26×1 vector will contain value ‘1’ at only one place. For example

character ‘A’ if correctly recognized, will result in [1, 0, 0, 0 …all …0] and character ‘B’ will

result in [0, 1, 0, 0 … all …0]. The difference between the desired and actual output was

calculated for each cycle and the weights were adjusted during back-propagation. The process

continued till the network converged to the allowable or acceptable error.

5. LEARNING PARAMETERS

The various parameters and their respective values used in the learning process of all the three

experiments with one, two and three hidden layers are shown in Table I.

Table I: Experimental Conditions of the neural network

PARAMETER VALUE

Input Layer

 No. of Input Neurons 48

 Transfer / Activation Function Linear

Hidden Layer

 No. of Neurons 10

 Transfer / Activation Function TanSig

Output Layer

 No. of Output Neurons 26

 Transfer / Activation Function TanSig

Learning Rule Momentum

Learning Constant 0.01

Acceptable Error (MSE) 0.001

Momentum Term (α) 0.90

Modified Momentum Term (β) 0.05

Maximum Epochs 2000

Termination Conditions (NHL) Based on minimum Mean Square Error

or maximum number of epochs allowed

Initial Weights and bias term values Randomly generated values between 0

and 1

Number of Hidden Layers (NHL) Experiment-1 NHL =1

Experiment-2 NHL =2

Experiment-3 NHL =3

6. DISCUSSION OF RESULTS AND INTERPRETATIONS

The system was simulated using a feed forward neural network system that consisted of 48

neurons in input layer, 10 neurons in hidden layer and 26 output neurons. The characters were

resized into 8×6 binary matrixes and were exposed to 48 input neurons. The 26 output neurons

correspond to 26 upper case letters of English alphabet. The network having one hidden layer

was used for Experiment-1 and in Experiment-2 and Experiment-3; the process was repeated for

the network having two and three hidden layers each having 10 hidden neurons. In structured

sections, the experiments and their outcomes at each stage are described.

Gradient Computation

The gradient descent is the characteristic of error surface. If the surface is not smooth, the

gradient calculated will be a large number and this will give a poor indication of the “true error

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

91

correction path”. On the other hand, if the surface is relatively smooth, the gradient value will

be a smaller one. Hence the smaller gradient is always the desirable one. For each trial of

learning, the computed values of gradient descent are shown in Table II.

Table II: Comparison of gradient values of the network for all the three experiments with standard and

modified momentum term.

 Experiment-1(NHL=1) Experiment-2(NHL=2) Experiment-3(NHL=3)

Sample

Gradient1

(Classical

Method)

Gradient2

(Modified

Method)

Gradient1

(Classical

Method)

Gradient2

(Modified

Method)

Gradient1

(Classical

Method)

Gradient2

(Modified

Method)

Sample1 1981400 2029280 1419834 1300263 1217348 1114823

Sample2 5792000 2021500 3714695 3502623 2984628 2132849

Sample3 7018400 1723310 5834838 5459346 4629835 4017892

Sample4 1173900 1043094 6157572 4914614 6276419 1222478

Sample5 6226319 3189781 6317917 5718393 5186437 3048174

It has been observed in Table II that in Experiment 2 using MLP with two hidden layers, the

gradient values are much smaller than in MLP with one hidden layer used in Experiment 1. It is

also observed that as the number of hidden layer is further increased by one, the gradient value

is found to be least as shown in Experiment 3 in Table II. It is clear from all the three

experiments that the gradient values are further reduced when modified momentum term is

introduced in the weight update process.

Number of Epochs

The number of epochs in the learning process of the network is represented in Table III.

Table III: Comparison of training epochs between the learning trails for all the three experiments

 Experiment-1(NHL=1) Experiment-2(NHL=2) Experiment-3(NHL=3)

Sample

Epoch1

(Standard

Momentum

Term)

Epoch2

(Modified

Momentum

Term)

Epoch1

(Standard

Momentum

Term)

Epoch2

(Modified

Momentum

Term)

Epoch1

(Standard

Momentum

Term)

Epoch2

(Modified

Momentum

Term)

Sample1 186 173 521 479 909 881

Sample2 347 321 623 598 1104 1023

Sample3 551 529 717 680 1334 1252

Sample4 695 663 832 778 1391 1428

Sample5 811 759 960 972 1569 1463

In Table III, Epoch1 and Epoch2 represent the number of network iterations for a particular

sample when presented to the neural network having standard and modified momentum terms

respectively in all the three experiments. It is clear that small number of epochs is sufficient to

train a network when we use one hidden layer. As the number of hidden layers is increased, the

number of epochs also increases as observed in Experiment 3 in Table III. We can say that the

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

92

network converges slowly when a large number of hidden layers are used in the experiment and

the network converges rapidly when the second momentum term is introduced. Although, the

network with three hidden layers requires more time during learning, the gradient values are

found to be quiet low as shown earlier in Table II. Hence, the error surface will be smooth and

the network’s probability of getting stuck in the local minima will be low.

Error estimation

The network performance achieved is shown in Table IV. For all the three experiments with

one, two and three hidden layers, first column in each experiment represents the error present in

the network trained with classical weight update method and second column represents the error

present in the network trained with modified weight update method. It is evident that the error is

reduced when the number of hidden layers is increased and is further reduced when the

modified momentum term is used in the network during weight update mechanism. In other

words, we can conclude that with the increase in the number of hidden layers, there is an

increase in probability of converging the network before the number of training epochs reaches

it maximum allowed count.

Table IV: Error level attained by the neural network

Sample

Experiment-1(NHL=1) Experiment-2(NHL=2) Experiment-3(NHL=3)

Error With

Classical

Weight

Update

Method

Error With

Modified

Weight

Update

Method

Error With

Classical

Weight

Update

Method

Error With

Modified

Weight

Update

Method

Error With

Classical

Weight

Update

Method

Error With

Modified

Weight

Update

Method

Sample1 0.00006534 0.000059171 0.000023139 0.000023581 0.000012144 0.000005317

Sample2 0.000568387 0.000492472 0.000374023 0.000329581 0.000024913 0.000005955

Sample3 0.000831155 0.000618926 0.000550854 0.000517252 0.000049734 0.000008634

Sample4 0.000912383 0.000637404 0.000834808 0.000751754 0.000058315 0.000031475

Sample5 0.004875740 0.003585913 0.001218150 0.001397148 0.000094612 0.000182618

Testing

The character recognition accuracy with testing samples executed in all the three networks with

Standard Momentum Term and Modified Momentum Term are shown in Table V. The

networks were tested with two samples. These samples were new to all the three networks

because they were never trained with these samples. The recognition rates for these samples are

shown in Table V.

It has been observed that in Experiment 2 using MLP with two hidden layers, the recognition

rates are better than MLP with one hidden layer used in Experiment 1. It is also observed that as

the number of hidden layers is further increased by one, the recognition accuracy is found to be

best as shown in Experiment 3 in Table V. It is clear from all the three experiments that the

recognition percentage is further improved when modified momentum term is introduced in the

weight update process.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

93

Table V: Character recognition accuracy

(Sample)

Number

of

characters

in test

sample

Experiment-1(NHL=1) Experiment-2(NHL=2) Experiment-3(NHL=3)

Standard

Momentum

Term

Modified

Momentum

Term

Standard

Momentum

Term

Modified

Momentum

Term

Standard

Momentum

Term

Modified

Momentum

Term

Correctly

Recognized

(%age)

Correctly

Recognized

 (%age)

Correctly

Recognized

 (%age)

Correctly

Recognized

 (%age)

Correctly

Recognized

 (%age)

Correctly

Recognized

 (%age)

26
17

(65.38%)

22

(84.61%)

20

(76.92%)

22

(84.61%)

23

(88.46%)

24

(92.30%)

26
20

(76.92%)

23

(88.46%)

21

(80.76%)

23

(88.46%)

22

(84.61%)

24

(92.30%)

When the networks using standard momentum term and having one, two and three hidden layers

are being trained with Sample 1, the profiles of MSE plot for the training epochs are drawn in

Fig. 4, Fig. 5 and Fig. 6 respectively.

Figure 4. MSE plot for the network with one hidden layer and standard momentum term

Figure 5. MSE plot for the network with two hidden layers and standard momentum term

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

94

Figure 6. MSE plot for the network with three hidden layers and standard momentum term

As the number of hidden layers is increased, the network will converge slowly. After strong

analysis, three relationships between the number of hidden layers, number of epochs and MSE

are established.

NHL α NE (1)

where NHL is the number of hidden layers and NE is the number of epochs.

The number of training epochs is inversely proportional to the minimum MSE.

NE α
MSE

1 (2)

The number of hidden layers is inversely proportional to the minimum MSE.

NHL α
MSE

1

 (3)

where MSE is the mean square error.

7. CONCLUSION AND FUTURE SCOPE

The proposed method for the handwritten character recognition using the descent gradient

approach and modified momentum term yielded the remarkable enhancement in the

performance. As shown in Table-II, the results of all the three experiments for the different

sample of characters represent that the smaller gradient values are achieved in case of modified

momentum weight update mechanism and gradient values are found to be least when three

hidden layers were used in the network. Smaller the gradient values, smoother will be the error

surface and the probability that the neural network will get stuck in the local minima will be the

least. Smaller gradient values indicated that the error correction was downy and accurate.

This paper has introduced an additional momentum term in the weight modification process.

This additional momentum term accelerates the process of convergence and the network shows

better performance. It is clear from Table-V that the recognition accuracy is best in Experiment-

3 where MLP with three hidden layers uses modified momentum term for updating its weights

during error back propagation. Eq.1 implies that the number of hidden layers is proportional to

the number of epochs. This means that as the number of hidden layers is increased, the training

process of the network slows down and is indicated by the increase in the number of training

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

95

epochs. The number of epochs required to train a network are reduced when the second

momentum term is introduced during weight update mechanism as shown in Table-III.

However, Eq.3 implies that the training of the network is more accurate if more hidden layers

are used and the accuracy is further improved when the modified momentum term is used

during weight update mechanism as shown in Table-V. This accuracy is achieved at the cost of

network training time as indicated by Eq.2.

The training process of the network is improved when a second momentum term is introduced.

So if the accuracy of the results is a critical factor for an application, then the network with

modified momentum term and having many hidden layers should be used but if time is a critical

factor then the network with modified momentum term and having single hidden layer (with

sufficient number of hidden neurons) should be used.

Due to the back-propagation of error element in Multilayer Perceptron (MLP), it frequently

suffers from the problem of Local-Minima; hence the samples may not converge. The network

may get trapped in local minima even though there is a much deeper minimum nearby.

Nevertheless, more work needs to be done especially on the test for more complex handwritten

characters. The proposed work can be carried out to recognize English words of different

character lengths after proper segmentation of the words into isolated character images

Thus it can be concluded that more complex neural networks with modified momentum term

and having many hidden layers can be used for soft real time systems where performance is

more critical.

REFERENCES

[1] A. Bharath and S. Madhvanath,” FreePad: a novel handwriting-based text input for pen and touch

interfaces”, Proceedings of the 13th international Conference on Intelligent User Interfaces, pp. 297-

300, 2008.

[2] A. Choudhary, R.Rishi and S. Ahlawat, “Handwritten Numeral Recognition Using Modified BP

 ANN Structure, Communication in Computer and Information Sciences (CCIS-133), “Advanced

 Computing,” COSIT 2011, Springer-Verlag, pp 56-65, 2010.

[3] A. Choudhary, R. Rishi, S. Ahlawat, V. S. Dhaka, ”Optimal feed forward MLP Architecture for off-

line cursive numeral recognition,” International Journal on Computer Science and Engineering, vol.

2, no.1s, pp. 1-7, 2010.

[4]. A. L. Koerich, R. Sabourin and C. Y. Suen,” Large vocabulary off-line handwriting recognition: A

survey”, Pattern Analysis and Applications, 6(2), 97–121, 2003.

[5] A. Vinciarelli,” A survey on off-line cursive word recognition”, Pattern Recognition, 35(7), pp.

1433–1446, 2002.

[6] Bhardwaj, F. Farooq, H. Cao and V. Govindaraju,” Topic based language models for OCR

correction”, Proceedings of the Second Workshop on Analytics For Noisy Unstructured Text Data,

pp. 107-112, 2008.

[7] Britto Jr., R. Sabourin, F. Bortolozzi and C. Y. Suen,” Foreground and background information in an

HMM-based method for recognition of isolated characters and numeral strings”, Proceedings of the

9th International Workshop on Frontiers in Handwriting Recognition, pp. 371–376, 2004.

[8] D. Guillevic and C. Y. Suen,” Cursive script recognition: A sentence level recognition scheme”,

Proceedings of the 4th International Workshop on the Frontiers of Handwriting Recognition, pp.

216–223, 1994.

[9] M. K. Brown and S. Ganapathy,” Preprocessing techniques for cursive script word recognition”,

Pattern Recognition, pp. 447–458, 1983.

[10] R. Plamondon and S. N. Srihari,” On-line and off-line handwriting recognition: A comprehensive

survey”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), pp. 63–84, 2000.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011

96

[11] S. Marinai, M, Gori and G. Soda,” Artificial neural networks for document analysis and

recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(1), pp. 23–35,

2005.

[12] S. N. Sivanandam, S. N. Deepa,” Principals of Soft Computing”, Wiley-India, New Delhi, India. pp.

71-83, 2008.

[13] S. N. Srihari,” Automatic handwriting recognition. Encyclopedia of Language & Linguistics”, 2nd

Edition, Elsevier, 2006.

[14] T. Steinherz, E. Rivlin, and N. Intrator,” Off-line cursive script word recognition—A survey”,

International Journal of Document Analysis and Recognition, 2, pp. 90–110, 1999.

[15] X. Fan and B. Verma,” Segmentation vs. non-segmentation based neural techniques for cursive word

recognition”, International Journal of Computational Intelligence and Applications, 2(4), pp. 1–8,

2002.

Authors:

Amit Choudhary is currently working as an Assistant Professor in the

Department of Computer Science at Maharaja Surajmal Institute, New

Delhi, India for the last 9 years. He has done MCA, M.Tech and M.Phil in

Computer science and is pursing his doctoral degree in Computer Science

and Engineering from M. D. University, Rohtak, India. His research

interest is focused on Machine Learning, Pattern Recognition and Artificial

Intelligence. He has many international publications to his credit.

Dr. Rahul Rishi is currently working as an Associate Professor and Head

of Computer Science & Engineering Department, TITS, Bhiwani,

Haryana, India for the last 14 years. He has done B.Tech, M.Tech and

Ph.D. in Computer Science & Engineering. He has published more than

thirty five research papers in International Conferences and International

Journals of repute. His current research activities pertain to Fuzzy

Relational Databases, Soft Computing, Artificial Intelligence and Data

Mining.

