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ABSTRACT 

This work is focused on improving the character recognition capability of feed-forward back-propagation 

neural network by using one, two and three hidden layers and the modified additional momentum term. 

182 English letters were collected for this work and the equivalent binary matrix form of these characters 

was applied to the neural network as training patterns. While the network was getting trained, the 

connection weights were modified at each epoch of learning. For each training sample, the error surface 

was examined for minima by computing the gradient descent. We started the experiment by using one 

hidden layer and the number of hidden layers was increased up to three and it has been observed that 

accuracy of the network was increased with low mean square error but at the cost of training time. The 

recognition accuracy was improved further when modified additional momentum term was used. 
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1. INTRODUCTION 

 

Off-line character recognition involves the automatic conversion of hand printed character (as 

an image) into letter codes which are usable within computer and text-processing applications. 

As compared to on-line; off-line character recognition is comparatively difficult, as different 

people have different handwriting styles and also the characters are extracted from documents 

of different intensity and background [6]. Nevertheless, limiting the range of variations in input 

can allow recognition process to improve. 

 

One of the most important types of feed forward neural network is the Back Propagation Neural 

Network (BPNN) [12]. It is a multi-layer feed forward network using gradient-descent based 

delta-learning rule, commonly known as back propagation (of errors) rule. Back Propagation 

provides a computationally efficient method for changing the weights in a feed forward 

network, with differentiable activation function units, to learn a training set of input-output 

examples. Being a Gradient Descent Method, it minimizes the total squared error of the output 

computed by the net.  

 

The network is trained by supervised learning method. The aim is to train the network to 

achieve a balance between the ability to respond correctly to the input characters that are used 

for training and the ability to provide good responses to the input that were similar. The total 

squared error of the output computed by network is minimized by a gradient descent method 

known as Back Propagation or Generalized Delta Learning Rule [1]. 
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The experiments conducted in this paper have shown the effect on the learning and character 

recognition accuracy of the neural network by increasing the number of hidden layers and 

introducing an additional modified momentum term. Three experiments were performed. 

Experiment-1, Experiment-2 and Experiment-3 employed a network having one, two and three 

hidden layers respectively. All other experimental conditions such Learning Rate (η), 

Momentum Constant (α), Activation Function, Maximum Training Epochs, Acceptable Error 

Level and Termination Condition were kept same for all the experiments. 

 

The remainder of the paper is organized as follows: Section 2 briefs some related work already 

done by the researchers in this field. Section 3 deals with the overall system design and the 

various steps involved in the OCR system. Neural Network Architecture and functioning of 

proposed experiments are presented in section 4. Various experimental conditions for all the 

experiments are given in Section 5. Discussion of Results and interpretations are described in 

section 6. Section 7 presents the conclusion and also gives the future path for continual work in 

this field. 

 

2. RELATED WORKS 

A number of review papers on off-line handwriting recognition have been published [4, 14].In 

the review, Steinherz, et al. [14] commented on the importance of features extraction and 

selection for the recognition system to perform well. Vinciarelli [5] focused on segmentation 

based strategies as far as off-line handwritten word recognition is concerned. He pointed out 

that these strategies were suitable for small lexical only. The review presented by Koerich, et al. 

[4] focused on the large lexical based systems in which large number of training samples is 

required. In the literature, very good recognition results have been seen as far as isolated 

numerals or characters are concerned [7]. However, the results obtained for the segmentation 

and recognition of cursive handwritten words have not been satisfactory in comparison [10, 11, 

13, 15].The reason for not achieving satisfactory recognition rates is the difficult nature of 

cursive handwriting and difficulties in the accurate segmentation and recognition of cursive and 

touching characters.  

 

3. OCR SYSTEM DESIGN 

The various steps involved in the recognition of a handwritten character are illustrated in the 

form of flow chart in Fig. 1. 

 

Figure 1. Typical Off-Line Character Recognition System 
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The steps required for typical off-line character recognition are described here in detail:- 

3.1 Pre-processing 

Pre-processing is done to remove the variability that was present in off-line handwritten 

characters. The pre-processing techniques that have been employed in an attempt to increase the 

performance of the recognition process are as follows: 

 

Deskewing is used to make the base line of the handwritten word in a horizontal direction by 

rotating the word in a suitable direction by a suitable angle. Some examples of techniques for 

correcting slope are described by Brown and Ganapathy [9]. 

 

Scaling sometimes may be necessary to produce characters of relative size 

 

Noise can be removed by comparing the character image by a threshold [6]. 

 

Slant estimation and correction is achieved by analysis of the slanted vertical projections at 

various angles [2].  

Contour Smoothing is a technique to remove contour noise which is introduced in the form 

of bumps and holes due to the process of slant correction. 

Thinning is a process in which the skeleton of the character image is used to normalize the 

stroke width. 

3.2 Binarization 

All hand printed characters were scanned into grayscale images. Each character image 

was traced vertically after converting the grayscale image into binary matrix [3, 8]. The threshold 

parameter along with the grayscale image was made an input to the binarization program 

designed in MATLAB. The output was a binary matrix which represented the image shown in 

Fig. 2(c).Every character was first converted into a binary matrix and then resized to 8 X 6 

matrixes as shown in Fig. 2(c) and reshaped to a binary matrix of size 48 X 1 which is made as 

an input to the neural network for learning and testing. Binary matrix representation of character 

‘A’ can be defined as in Fig. 2(c). The resized characters were clubbed together in a matrix of 

size 48 X 26 to form a sample [2]. In the sample, each column corresponds to an English 

alphabet which was resized into 48 X 1 input vector. 
 

 
Figure 2 (a) Grayscale image of character ‘A’ (b) Binary representation of character ‘A’;  (c) Binary 

matrix representation and (d) Reshaped sample of character ‘A’. 

 

For sample creation, 182 characters were collected from 35 people. After pre-processing, 5 

samples were considered for training such that each sample was consisting of 26 characters (A-

Z) and 2 samples were considered for testing the recognition accuracy of the network.  

3.3 Feature Extraction and Selection 

The derived information can be general features, which were evaluated to ease further 

processing.  
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3.4 Classification 

Classification is the final stage of our OCR system design. This is the stage where an automated 

system declares that the inputted character belongs to a particular category. The classifier here 

we have used is a feed forward back propagation neural network. 

4. NEURAL NETWORK ARCHITECTURE USED IN THE RECOGNITION 

PROCESS 

To accomplish the task of character classification and input-output mapping, the multi-layer 

feed forward artificial neural network was considered with nonlinear differentiable function 

‘tansig’ in all processing units of output and hidden layers. The neurons in the input layer have 

linear activation function. The number of output units corresponds to the number of distinct 

classes in the pattern classification. A method has been developed, so that network can be 

trained to capture the mapping implicitly in the set of input output pattern pair collected during 

an experiment and simultaneously expected to modal the unknown system to function from 

which the predictions can be made for the new or untrained set of data [8, 12]. The possible 

output pattern class would be approximately an interpolated version of the output pattern class 

corresponding to the input learning pattern close to the given test input pattern. This method 

involved the back propagation learning rule based on the principle of gradient descent along the 

error surface in the negative direction. 

 
Figure 3. Feed forward neural network with one hidden layer. 

 

The network has 48 input neurons that are equivalent to the input character’s size as we have 

resized every character into a binary matrix of size 8 X 6. The number of neurons in the output 

layer was 26 because there are 26 English alphabets. The number of hidden neurons is directly 

proportional to the system resources. The bigger the number more the resources are required. 

The number of neurons in a hidden layer was kept 10 for optimal results. 

 

The output of the network can be determined as  
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where jX is the output of input layer and  jiV  is the weight between input and hidden layer. 
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The LMS error between the desired and actual output of the network  
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where 
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The error minimization can be shown as; 
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Thus the weight updates for output unit can be represented as; 

)1()()()1( −∆+∆+=+ tWtWtWtW kikiikik αη                                
 

where 

)(tWik  is the state of weight matrix at iteration t 

)1( +tWik  is the state of weight matrix at next iteration  

)1( −tWik
 is the state of weight matrix at previous iteration. 

)(tW ki∆  is current change/ modification in weight matrix and  

α  is standard momentum variable to accelerate learning process. This variable depends on the 

learning rate of the network. As the network yields the set learning rate the momentum variable 

tends to accelerate the process. 

 

The network is made to learn the behaviour with this Gradient Descent. For next trial the 

gradient momentum term is modified by adding one more term i.e. the second momentum term. 

)2()1()()()1( −∆+−∆+∆+=+ tWtWtWtWtW kikikiikik βαη            

When the weight update with equation is computed sequentially, leads to the following benefits: 

1. Formed as a sum of the current (descent) gradient direction and a scaled version of the 

previous correction. 

2. Faster learning process  

3. Weight modification is based on the behaviour learned from latest three iterations 

instead of two. 

 

The neural network was exposed to 5 different samples as achieved in Section 3. Actual output 

of the network was obtained by “COMPET” function [3] and is a binary matrix of size 26× 26 

because each character has 26× 1 output vector. First 26×1 column stores the first character's 

recognition output, the following column will be for next character and so on for 26 characters.  
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For each character the 26×1 vector will contain value ‘1’ at only one place. For example 

character ‘A’ if correctly recognized, will result in [1, 0, 0, 0 …all …0] and character ‘B’ will 

result in [0, 1, 0, 0 … all …0]. The difference between the desired and actual output was 

calculated for each cycle and the weights were adjusted during back-propagation. The process 

continued till the network converged to the allowable or acceptable error. 
 

5. LEARNING PARAMETERS 

The various parameters and their respective values used in the learning process of all the three 

experiments with one, two and three hidden layers are shown in Table I. 

 
Table I:  Experimental Conditions of the neural  network 

PARAMETER VALUE 

Input Layer  

      No. of Input Neurons 48 

      Transfer / Activation Function Linear 

Hidden Layer  

      No. of  Neurons 10 

      Transfer / Activation Function TanSig 

Output Layer  

      No. of Output Neurons 26 

      Transfer / Activation Function TanSig 

Learning Rule Momentum 

Learning Constant  0.01 

Acceptable Error (MSE) 0.001 

Momentum Term (α) 0.90 

Modified Momentum Term (β) 0.05 

Maximum Epochs 2000 

Termination Conditions (NHL) Based on minimum Mean Square Error 

or maximum number of epochs allowed 

Initial Weights and bias term values Randomly generated values between 0 

and 1 

Number of Hidden Layers (NHL) Experiment-1 NHL =1 

Experiment-2 NHL =2 

Experiment-3 NHL =3 

 

6. DISCUSSION OF RESULTS AND INTERPRETATIONS 

The system was simulated using a feed forward neural network system that consisted of 48 

neurons in input layer, 10 neurons in hidden layer and 26 output neurons. The characters were 

resized into 8×6 binary matrixes and were exposed to 48 input neurons. The 26 output neurons 

correspond to 26 upper case letters of English alphabet. The network having one hidden layer 

was used for Experiment-1 and in Experiment-2 and Experiment-3; the process was repeated for 

the network having two and three hidden layers each having 10 hidden neurons. In structured 

sections, the experiments and their outcomes at each stage are described. 

 

Gradient Computation 

 

The gradient descent is the characteristic of error surface. If the surface is not smooth, the 

gradient calculated will be a large number and this will give a poor indication of the “true error 
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correction path”. On the other hand, if the surface is relatively smooth, the gradient value will 

be a smaller one. Hence the smaller gradient is always the desirable one. For each trial of 

learning, the computed values of gradient descent are shown in Table II. 

 
Table II:  Comparison of gradient values of the network for all the three experiments with standard and 

modified momentum term. 

 Experiment-1(NHL=1) Experiment-2(NHL=2) Experiment-3(NHL=3) 

Sample 

Gradient1 

(Classical 

Method) 

Gradient2 

(Modified 

Method) 

Gradient1 

(Classical 

Method) 

Gradient2 

(Modified 

Method) 

Gradient1 

(Classical 

Method) 

Gradient2 

(Modified 

Method) 

Sample1 1981400 2029280 1419834 1300263 1217348 1114823 

Sample2 5792000 2021500 3714695 3502623 2984628 2132849 

Sample3 7018400 1723310 5834838 5459346 4629835 4017892 

Sample4 1173900 1043094 6157572 4914614 6276419 1222478 

Sample5 6226319 3189781 6317917 5718393 5186437 3048174 

 

It has been observed in Table II that in Experiment 2 using MLP with two hidden layers, the 

gradient values are much smaller than in MLP with one hidden layer used in Experiment 1. It is 

also observed that as the number of hidden layer is further increased by one, the gradient value 

is found to be least as shown in Experiment 3 in Table II. It is clear from all the three 

experiments that the gradient values are further reduced when modified momentum term is 

introduced in the weight update process.  

 

Number of Epochs 

 

The number of epochs in the learning process of the network is represented in Table III. 

 
Table III:  Comparison of training epochs between the learning trails for all the three experiments 

 Experiment-1(NHL=1) Experiment-2(NHL=2) Experiment-3(NHL=3) 

Sample 

Epoch1 

(Standard 

Momentum 

Term) 

Epoch2 

(Modified 

Momentum 

Term) 

Epoch1 

(Standard 

Momentum 

Term) 

Epoch2 

(Modified 

Momentum 

Term) 

Epoch1 

(Standard 

Momentum 

Term) 

Epoch2 

(Modified 

Momentum 

Term) 

Sample1 186 173 521 479 909 881 

Sample2 347 321 623 598 1104 1023 

Sample3 551 529 717 680 1334 1252 

Sample4 695 663 832 778 1391 1428 

Sample5 811 759 960 972 1569 1463 

 

 

In Table III, Epoch1 and Epoch2 represent the number of network iterations for a particular 

sample when presented to the neural network having standard and modified momentum terms 

respectively in all the three experiments. It is clear that small number of epochs is sufficient to 

train a network when we use one hidden layer. As the number of hidden layers is increased, the 

number of epochs also increases as observed in Experiment 3 in Table III. We can say that the 
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network converges slowly when a large number of hidden layers are used in the experiment and 

the network converges rapidly when the second momentum term is introduced. Although, the 

network with three hidden layers requires more time during learning, the gradient values are 

found to be quiet low as shown earlier in Table II. Hence, the error surface will be smooth and 

the network’s probability of getting stuck in the local minima will be low. 

 

Error estimation 

 

The network performance achieved is shown in Table IV. For all the three experiments with 

one, two and three hidden layers, first column in each experiment represents the error present in 

the network trained with classical weight update method and second column represents the error 

present in the network trained with modified weight update method. It is evident that the error is 

reduced when the number of hidden layers is increased and is further reduced when the 

modified momentum term is used in the network during weight update mechanism. In other 

words, we can conclude that with the increase in the number of hidden layers, there is an 

increase in probability of converging the network before the number of training epochs reaches 

it maximum allowed count. 

 
Table  IV:  Error level attained by the neural network 

 

Sample 

Experiment-1(NHL=1) Experiment-2(NHL=2) Experiment-3(NHL=3) 

Error With 

Classical 

Weight 

Update 

Method 

Error With 

Modified 

Weight 

Update 

Method 

Error With 

Classical 

Weight 

Update 

Method 

Error With 

Modified 

Weight 

Update 

Method 

Error With 

Classical 

Weight 

Update 

Method 

Error With 

Modified 

Weight 

Update 

Method 

Sample1 0.00006534 0.000059171 0.000023139 0.000023581 0.000012144 0.000005317 

Sample2 0.000568387 0.000492472 0.000374023 0.000329581 0.000024913 0.000005955 

Sample3 0.000831155 0.000618926 0.000550854 0.000517252 0.000049734 0.000008634 

Sample4 0.000912383 0.000637404 0.000834808 0.000751754 0.000058315 0.000031475 

Sample5 0.004875740 0.003585913 0.001218150 0.001397148 0.000094612 0.000182618 

 

 

Testing 

 

The character recognition accuracy with testing samples executed in all the three networks with 

Standard Momentum Term and Modified Momentum Term are shown in Table V. The 

networks were tested with two samples. These samples were new to all the three networks 

because they were never trained with these samples. The recognition rates for these samples are 

shown in Table V. 

 

It has been observed that in Experiment 2 using MLP with two hidden layers, the recognition 

rates are better than MLP with one hidden layer used in Experiment 1. It is also observed that as 

the number of hidden layers is further increased by one, the recognition accuracy is found to be 

best as shown in Experiment 3 in Table V. It is clear from all the three experiments that the 

recognition percentage is further improved when modified momentum term is introduced in the 

weight update process. 

 

 

 



International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011 

93 

 

 

Table V:  Character recognition accuracy 

(Sample) 

Number 

of 

characters 

in test 

sample 

 

Experiment-1(NHL=1) Experiment-2(NHL=2) Experiment-3(NHL=3) 

Standard 

Momentum 

Term 

Modified 

Momentum 

Term 

Standard 

Momentum 

Term 

Modified 

Momentum 

Term 

Standard 

Momentum 

Term 

Modified 

Momentum 

Term 

Correctly 

Recognized 

(%age) 

Correctly 

Recognized 

 (%age) 

Correctly 

Recognized 

 (%age) 

Correctly 

Recognized 

 (%age) 

Correctly 

Recognized 

 (%age) 

Correctly 

Recognized 

 (%age) 

26 
17 

(65.38%) 

22 

(84.61%) 

20 

(76.92%) 

22 

(84.61%) 

23 

(88.46%) 

24 

(92.30%) 

26 
20 

(76.92%) 

23 

(88.46%) 

21 

(80.76%) 

23 

(88.46%) 

22 

(84.61%) 

24 

(92.30%) 

 

When the networks using standard momentum term and having one, two and three hidden layers 

are being trained with Sample 1, the profiles of MSE plot for the training epochs are drawn in 

Fig. 4, Fig. 5 and Fig. 6 respectively. 

 
 

Figure 4. MSE plot for the network with one hidden layer and standard momentum term 

 

Figure 5. MSE plot for the network with two hidden layers and standard momentum term 
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Figure 6. MSE plot for the network with three hidden layers and standard momentum term 

 

As the number of hidden layers is increased, the network will converge slowly. After strong 

analysis, three relationships between the number of hidden layers, number of epochs and MSE 

are established.  

 

NHL α NE          (1) 

where NHL is the number of hidden layers and NE is the number of epochs. 

 

The number of training epochs is inversely proportional to the minimum MSE. 

NE    α  
MSE

1           (2) 

 

The number of hidden layers is inversely proportional to the minimum MSE. 

NHL α  
MSE

1   

           (3) 

where MSE is the mean square error. 

 

7. CONCLUSION AND FUTURE SCOPE 

The proposed method for the handwritten character recognition using the descent gradient 

approach and modified momentum term yielded the remarkable enhancement in the 

performance. As shown in Table-II, the results of all the three experiments for the different 

sample of characters represent that the smaller gradient values are achieved in case of modified 

momentum weight update mechanism and gradient values are found to be least when three 

hidden layers were used in the network. Smaller the gradient values, smoother will be the error 

surface and the probability that the neural network will get stuck in the local minima will be the 

least. Smaller gradient values indicated that the error correction was downy and accurate. 

 

This paper has introduced an additional momentum term in the weight modification process. 

This additional momentum term accelerates the process of convergence and the network shows 

better performance. It is clear from Table-V that the recognition accuracy is best in Experiment-

3 where MLP with three hidden layers uses modified momentum term for updating its weights 

during error back propagation. Eq.1 implies that the number of hidden layers is proportional to 

the number of epochs. This means that as the number of hidden layers is increased, the training 

process of the network slows down and is indicated by the increase in the number of training 
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epochs. The number of epochs required to train a network are reduced when the second 

momentum term is introduced during weight update mechanism as shown in Table-III.  

However, Eq.3 implies that the training of the network is more accurate if more hidden layers 

are used and the accuracy is further improved when the modified momentum term is used 

during weight update mechanism as shown in Table-V. This accuracy is achieved at the cost of 

network training time as indicated by Eq.2. 

 

The training process of the network is improved when a second momentum term is introduced. 

So if the accuracy of the results is a critical factor for an application, then the network with 

modified momentum term and having many hidden layers should be used but if time is a critical 

factor then the network with modified momentum term and having single hidden layer (with 

sufficient number of hidden neurons) should be used.  

 

Due to the back-propagation of error element in Multilayer Perceptron (MLP), it frequently 

suffers from the problem of Local-Minima; hence the samples may not converge. The network 

may get trapped in local minima even though there is a much deeper minimum nearby.  

Nevertheless, more work needs to be done especially on the test for more complex handwritten 

characters. The proposed work can be carried out to recognize English words of different 

character lengths after proper segmentation of the words into isolated character images  

Thus it can be concluded that more complex neural networks with modified momentum term 

and having many hidden layers can be used for soft real time systems where performance is 

more critical. 
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