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 Abstract— an Artificial Neural Network classifier is a nonparametric classifier. It does not need any 

priori knowledge regarding the statistical distribution of the class in a giver selected data Source. While, 

neural network can be trained to distinguish the criteria used to classify easily in a generalized manner 

that allows successful classification the newly arrived inputs not used during training. Through this 

paper it is eastliblished that back propagation neural network works successfully for the purpose of 

classification. Back propagation suffers from getting stuck into Local Minima. Weight optimization in 

Back propagation can be optimized using the Genetic Algorithm (GA). The back propagation algorithm 

is improved by invoking Genetic algorithm, to improve the overall performance of the classifier. The 

performance of a fitness algorithm using the approach suggested by us is a Hybrid System that is being 

analyzed in this paper. In this paper the issue of improving the fitness (weight adjustment) of Back 

propagation algorithm is addressed. Some of the Advantages of Hybrid algorithms are: convergence 

speed will be increased and the local minima problem can be overcome. The proposed Hybrid Algorithm 

is to perform learning as a back propagation and optimize weights using GA for classification.  

Keywords— Artificial Neural Network, Back propagation algorithm, Genetic algorithm 

I. INTRODUCTION 

Classification is a data mining (machine learning) technique used to predict group 

membership for data instances. Classification means evaluating a function, which assigns a 

class label to a data item. Classification is a supervised learning process, uses training set which 

has correct answers (class label attribute).  

Classification proceeds as these steps: First create a model by running the algorithm on the 

training data. Then test the model. If accuracy is low, regenerate the model, after changing 

features, reconsidering samples. Then identify a class label for the incoming new data. So here 

the problem is to develop the classification model using the available training set which needs 
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to be normalized. Then this data is given to the Back propagation algorithm for classification. 

After applying Back propagation algorithm, genetic algorithm is applied for weight adjustment. 

The developed model can then be applied to classify the unknown tuples from the given 

database and this information may be used by decision maker to make useful decision.  

If one can write down a flow chart or a formula that accurately describes the problem, then 

stick with a traditional programming method. There are many tasks of data mining that are not 

solved efficiently with simple mathematical formulas. 

 Large scale data mining applications involving complex decision making can access billions 

of bytes of data.. Hence, the efficiency of such applications is paramount. Classification is a 

key data mining technique.  

II.  INTRODUCTION TO NEURAL NETWORK 

Artificial Neural Network (ANN) is a computational model, which is based on Biological 

Neural Network. Artificial Neural Network is often called as Neural Network (NN). To build 

artificial neural network, artificial neurons, also called as nodes, are interconnected. The 

architecture of NN is very important for performing a particular computation. Some neurons are 

arranged to take inputs from outside environment. These neurons are not connected with each 

other, so the arrangement of these neurons is in a layer, called as Input layer. All the neurons of 

input layer are producing some output, which is the input to next layer. The architecture of NN 

can be of single layer or multilayer. In a single layer Neural Network, only one input layer and 

one output layer is there, while in multilayer neural network, there can be one or more hidden 

layer. 

An artificial neuron is an abstraction of biological neurons and the basic unit in an 

ANN. The Artificial Neuron receives one or more inputs and sums them to produce an 

output. Usually the sums of each node are weighted, and the sum is passed through a 

function known as an activation or transfer function. The objective here is to develop a 

data classification algorithm that will be used as a general-purpose classifier. To classify any 

database first, it is required to train the model. The proposed training algorithm used here is a 

Hybrid BP-GA. After successful training user can give unlabeled data to classify 

 

 

Fig. 1 Artificial Neurons 
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The synapses or connecting links: that provide weights, wj, to the input values, xj for j = 1 ...m;  

An adder: that sums the weighted input values to compute the input to the activation function 

 

 

 
Where,  

w0 is called the bias, is a numerical value associated with the neuron. It is convenient to think 

of the bias as the weight for an input x0 whose value is always equal to one, so that; 

 

 

 

 

 
An activation function g: that maps v to g(v) the output value of the neuron. This function is a 

monotone function. The logistic (also called the sigmoid) function g(v) = (e
v

/(1+e
v

)) as the 

activation function works best. The practical value of the logistic function arises from the fact 

that it is almost linear in the range where g is between 0.1 and 0.9 but has a squashing effect on 

very small or very large values 

III. ANN ARCHITECTURE : MULTILAYER PERCEPTRON 

The Perceptron  

One neuron can’t do much on its own. Usually we will have many neurons labelled by 

indices k, i, j and activation flows between them via synapses with strengths wki, wij:  

One can connect any number of McCulloch-Pitts neurons together in any way one like. An 

arrangement of one input layer of McCulloch-Pitts neurons feeding forward to one output layer 

of McCulloch-Pitts neurons is known as a Perceptron. Perceptron is simple neural network 

consisting of input layer, output layer, and possibly one or more intermediate layers of neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 ANN Architecture: Multilayer Perceptron 

MLPs are one of the most common neural network structures, as they are simple and 

effective, and have found home in a wide assortment of machine learning applications, such as 

character recognition.  

A typical Back Propagation Neural Network (BPNN) start as a network of nodes arranged in 

three layers--the input, hidden, and output layers. The architecture of BPNN is same as MLP 

and the learning rule applied is BP algorithm. There is no theoretical limit on number of hidden 

layers but there are just one or two. The input and output layers serve as nodes to buffer input 
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and output for the model, respectively, and the hidden layer serves to provide a means for input 

relations to be represented in the output.  

Before any data has been run through the network, the weights for the nodes are random, 

which has the effect of making the network much like a newborn's brain--developed but 

without knowledge. When the connections of the network are going forward the architecture is 

called Feed Forward neural network. 

2.1 ANN Learning: Back Propagation Algorithm 

The back propagation algorithm cycles through two distinct passes, a forward pass followed 

by a backward pass through the layers of the network. The algorithm alternates between these 

passes several times as it scans the training data. 

Forward Pass: Computation of outputs of all the neurons in the network  

•  The algorithm starts with the first hidden layer using as input values the independent 

variables of a case from the training data set.  

•   The neuron outputs are computed for all neurons in the first hidden layer by performing the 

relevant sum and activation function evaluations.  

•   These outputs are the inputs for neurons in the second hidden layer. Again the relevant sum 

and activation function calculations are performed to compute the outputs of second layer 

neurons.  

Backward pass: Propagation of error and adjustment of weights  

•  This phase begins with the computation of error at each neuron in the output layer. A 

popular error function is the squared difference between ok the output of node k and yk the 

target value for that node.  

•   The target value is just 1 for the output node corresponding to the class of the exemplar and 

zero for other output nodes.  

•   The new value of the weight wjk of the connection from node j to node k is given by: 

wnewjk= woldjk+ηojδk. Here η is an important tuning parameter that is chosen by trial and 

error by repeated runs on the training data. Typical values for η are in the range 0.1 to 0.9.  

•    The backward propagation of weight adjustments along these lines continues until we 

reach the input layer.  

•    At this time we have a new set of weights on which we can make a new forward pass when 

presented with a training data observation  

2.2 Considerations for choosing Network Structure  

There are many ways that feed forward neural networks can be constructed. You must decide 

how many neurons will be inside the input and output layers. You must also decide how many 

hidden layers you're going to have, as well as how many neurons will be in each of these 

hidden layers.  

The Input Layer:  

The input layer to the neural network is the conduit through which the external environment 

presents a pattern to the neural network. Once a pattern is presented to the input later of the 

neural network the output layer will produce another pattern. The input layer should represent 

the condition for which we are training the neural network for.  

Every input neuron should represent some independent variable that has an influence over 

the output of the neural network.  
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The Output Layer:  

The output layer of the neural network is what actually presents a pattern to the external 

environment. Whatever patter is presented by the output layer can be directly traced back to the 

input layer. The number of a output neurons should directly related to the type of work that the 

neural network is to perform.  

To consider the number of neurons to use in your output layer you must consider the 

intended use of the neural network. If the neural network is to be used to classify items into 

groups, then it is often preferable to have one output neurons for each group that the item is to 

be assigned into.  

If the neural network is to perform noise reduction on a signal then it is likely that the 

number of input neurons will match the number of output neurons. In this sort of neural 

network you would one day he would want the patterns to leave the neural network in the same 

format as they entered. 

The Number of Hidden Layers:  

There are really two decisions that must be made with regards to the hidden layers. The first 

is how many hidden layers to actually have in the neural network. Secondly, you must 

determine how many neurons will be in each of these layers. We will first examine how to 

determine the number of hidden layers to use with the neural network.  

Neural networks with two hidden layers can represent functions with any kind of shape. 

There is currently no theoretical reason to use neural networks with any more than two hidden 

layers. Further for many practical problems there's no reason to use any more than one hidden 

layer. 

2.3 Parameters to be considered to build BP algorithm 

Initial weight range(r): It is the range usually between [-r, r], weights are initialized between 

these range.  

Number of hidden layers: Up to four hidden layers can be specified; see the overview section 

for more detail on layers in a neural network (input, hidden and output). Let us specify the 

number to be 1.  

Number of Nodes in Hidden Layer: Specify the number of nodes in each hidden layer. 

Selecting the number of hidden layers and the number of nodes is largely a matter of trial and 

error.  

Number of Epochs: An epoch is one sweep through all the records in the training set. 

Increasing this number will likely improve the accuracy of the model, but at the cost of time, 

and decreasing this number will likely decrease the accuracy, but take less time.  

Step size (Learning rate) for gradient descent: This is the multiplying factor for the error 

correction during back propagation; it is roughly equivalent to the learning rate for the neural 

network. A low value produces slow but steady learning; a high value produces rapid but erratic 

learning. Values for the step size typically range from 0.1 to 0.9.  

Error tolerance: The error in a particular iteration is back propagated only if it is greater than 

the error tolerance. Typically error tolerance is a small value in the range 0 to 1.  

Hidden layer sigmoid: The output of every hidden node passes through a sigmoid function. 

Standard sigmoid function is logistic; the range is between 0 and 1. 
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Output layer sigmoid: Standard sigmoid function is logistic; the range is between 0 and 1.  

Critical error: The desired error (MSE) for stopping network training. If the actual error is 

equal to or less than this error, the training will be terminated. 

 

 

 

 

 
Where, O is the desired output for training data or cross-validation data i, T is the network 

output for training data or cross-validation data i, 

2.4 Stoping Training Criteria 

The epoch/cycle control strategy: where the training will keep going until the training 

epochs/cycles reach a user defined number.  

The error control strategy: when the error of the training set is smaller than a user defined 

value, training will be stopped. Usually, TSS, MSE, RSME are used.  

The proportion control strategy: When the proportion of the number of patterns correctly 

classified among the number of total training set reaches a pre-defined percentage, the training 

will be terminated.  

The user control strategy: where the user/network trainer forces the training to stop in case 

he/she thinks there is no need to continue the training.  

The early stopping strategy- Validation control: when error on validation set is a minimum. 

Break the TRAINING set into 2 parts. Use part 1 to compute the weight changes every m 

epochs apply the partially trained network to part 2 (the validation set) and save the weights. 

IV. INTRODUCTION TO GENETIC ALGORITHM 

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing area of 

artificial intelligence. Inspired by Darwin's theory of evolution - Genetic Algorithms (GAs) are 

computer programs which create an environment where populations of data can compete and 

only the fittest survive, sort of evolution on a computer.  

Genetic Algorithms are a search method that can be used for both solving problems and 

modelling evolutionary systems. Since it is heuristic (it estimates a solution) you won't know if 

the solution is exact. Most real-life problems are like that: you estimate a solution, you don't 

calculate it exactly. Most problems don't have any formula for solving the problem because it is 

either too complex or it takes too long to calculate the solution exactly. One example could be 

space optimization - the best way to put objects of varying size into a room so they take as little 

space as possible. A heuristic method is a more feasible approach.  

GAs differs from other heuristic methods in several ways. One important difference is that it 

works on a population of possible solutions, which other heuristic methods use a single solution 

in their iterations. Another difference is that GAs are probabilistic and not deterministic.  

Chromosomes: All living organisms consist of cells. In each cell there is the same set of 

chromosomes. Chromosomes are strings of DNA and serve as a model for the whole organism. 

A chromosome consists of genes, blocks of DNA. Each gene encodes a particular protein. 

Basically, each gene encodes a trait, for example eye color. Possible settings for a trait (e.g. 



International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011 

104 

 

blue, brown) are called alleles. Each gene has its own position in the chromosome. This 

position is called locus. A complete set of genetic material (all chromosomes) is called genome. 

A particular set of genes in genome is called the genotype.  

Reproduction: During reproduction, the first thing that occurs is recombination (or cross-

over). Genes from the parents combine in some way to create a whole new chromosome. The 

newly created offspring can then be mutated. Mutation means that the elements of DNA are a 

bit changed. These changes are mainly caused by errors in copying genes from parents.  

Fitness: The fitness of an organism is measured by the success of the organism in its life.  

Evolution: Evolution is a process that each and every species in nature is subjected to. In 

evolution, each species faces the problems of searching for a beneficial adaptation to adapt to 

the rapidly changing environment around them. 

 

Fig. 3 Outline of Genetic Algorithm 

Start with a set of possible solutions (represented by chromosomes) the population. Solutions 

from one population are taken and used to form a new population. This is motivated by a hope 

that the new population will be better than the old one. New solutions (offspring) are selected 

according to their fitness - the more suitable they are the more chances they have to reproduce 

by mating (crossover). Repeat the cycle until some condition is satisfied. These steps are 

described as follows:  

1. Generate a random population of n chromosomes which are suitable solutions.  

2. Establish a method to evaluate the fitness f(x) of each chromosome x in the population  

3. Create a new population by repeating the following steps until the new population is 

complete  

• Selection: select from the population according to some fitness scheme.  

• Crossover: New offspring formed by a crossover with the parents.  

• Mutation: With a mutation probability mutate new offspring at each locus (position in 

chromosome).  

4. Use the newly generated population for a further run of algorithm.  
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Why to choose Back Propagation Neural Network?  
•     A study of comparing Feed forward Network, Recurrent Neural Network and Time-delay 

neural Network shows that highest correct classification rate is achieved by the fully 

connected feed forward neural network. [9]  

•    From table 3.1, it can be seen that results obtained from BPNN are better than those 

obtained from MLC.  

•   From the obtained results in table 3.3, it can be seen that MLP is having highest 

classification rate, with reasonable error and time taken to classify is also reasonably less  

•    From table 3.3, it can be seen that considering some of the performance parameters, 

BPNN is better than other methods, GA, KNN and MLC.  

Comparison of Classification Methods using WEKA:  

Relation: weather  

Instances: 14  

Attributes: 5 Outlook, Temperature, Humidity, Windy, Play, Test mode evaluated: on training 

data  

Output Class: outlook 

TABLE I  

COMPARISON OF CLASSIFICATION TECHNIQUES 

Classifier  Correctly 

classified 

Instances  

Incorrectl

y 

classified 

Instances  

Root 

mean 

square

d error  

Time to build 

model in 

seconds  

Multilayer 

Perceptron  

85.71%  14.28%  0.254  0.08  

SMO 64.28%  35.71% 0.43 0.53 

bayes.net  50%  50%  0.438  0.02  

NBTree  50%  50%  0.441  0.03  

ZeroR  35.71%  64.28%  0.47  0  

Filtered 

Classifier 

64.28% 35.71% 0.388 0.02 

MultiClass  

Classifier 

57.14% 42.85% 0.417 0.01 

Bagging 71.42% 28.57% 0.395 0.02 

 

Why to combine GA with BP  

Many studies have shown that ANNs have the capability to learn the underlying mechanics 

of time series, or, in the case of trading applications, the market dynamics. However, it is often 

difficult to design good ANNs, because many of the basic principles governing information 

processing in ANNs are hard to understand, and the complex interactions among network units 

usually makes engineering techniques like divide and conquer inapplicable.  

When complex combinations of performance criteria (such as learning speed, compactness, 

generalization ability, and noise resistance) are given, and as network applications continue to 
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grow in size and complexity, the human engineering approach will not work and a more 

efficient, automated solution will be needed.  

When GA is applied to problem solving, the basic premise is that we can create an initial 

population of individuals representing possible solutions to a problem we are trying to solve. 

Each of these individual has certain characteristics that make them more or less fit as members 

of the population.  

The fit members will have a higher probability of mating than the less fit members, to 

produce offspring that have a significant chance of retaining the desirable characteristics of 

their parents.  

Advantages of Genetic Algorithms  

•   Crossover is a crucial aspect of any genetic algorithm, but it may seem that it will 

dramatically change parents with a high fitness function so that they will no longer be fit. 

However this is not the case. As in biology, crossover can lead to new combinations of 

genes which are more fit than any in the previous generations. Other offspring will be 

created which are less fit but these will have a low probability of being selected to go on 

to the next generation.  

•    Creating new variants is the key to genetic algorithms, as there is a good chance of finding 

better solutions. This is why mutation is also a necessary part of the program. It will 

create offspring which would not have arisen otherwise, and may lead to a better solution.  

•     Other optimization algorithms have the disadvantage that some kind of initial guess is 

required and this may bias the final result. GAs on the other hand only requires a search 

range, which need only be constrained by prior knowledge of the physical properties of 

the system.  

Effectively they search the whole of the solution space, without calculating the fitness function 

at every point. This can help avoid a danger in any optimization problem: being trapped in local 

maxima or minima. 

There are two main reasons for this: i) the initial population, being randomly generated, will 

sample the whole of the solution space, and not just a small area; ii) variation-inducing tactics, 

i.e. crossover and mutation, prevent the algorithm being trapped in one part of the solution 

space. 

Types of Hybrid (GA, NN, FL) System:  

The types of hybrid systems can be of following types [16].  

Sequential Hybrids: Pipeline like architecture. GA pre-processor, which obtains the optimal 

parameters for different instances of a problem and hands over the ‘pre-processed’ data set to 

an NN for the further processing  

Auxiliary Hybrids: One technology calls the other as a “Subroutine” to process information 

needed by it. Neuro-Genetic system in which an NN employs a GA to optimize its structural 

parameters, i.e. parameters which defines its architecture  

Embedded Hybrids: Technologies are integrated. NN-FL hybrid system may have an NN, 

which receives fuzzy inputs, process it and extracts fuzzy outputs as well.  

Uses of GA to combine with BPNN:  
Genetic algorithms can be used in conjunction with neural networks in the following four 

ways.  
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• They can be used to choose the best inputs to the neural network [18].  

• Optimize the neural network parameters (such as the learning rates, number of hidden 

layer processing elements, etc.)  

• Train the actual network weights [19].  

• To choose/modify the neural network architecture [17] [19].  

V. THE PROPOSED HYBRID ALGORITHM  

Name of the algorithm: BPNN_GA. Designed for data classification. BPNN_GA is designed 

for a system to work as a general purpose classifier.  

Input to the algorithm: All Attributes of the data set.  

• The input data should be divided into two parts. Training set and Test set.  

• The training set should be created to include equal number of patterns for each class.  

• The training set should be presented as input to the BPNN.  

Output of the algorithm: The class label will be predicted for given input pattern.  

• There will be one neuron in output layer to predict a class.  

• Output of a neuron will predict whether given pattern is classified under that class or 

not.  

Methodology applied in BPNN_GA: 

 
Fig. 4 Methodology Applied in BPNN_GA 

Steps to be followed by the proposed system  

Step 1: Set Parameters for BPNN_GA algorithm.  

Followings parameters are to be set.  

• Initial weight range(r):  

The random range [-r, r] of the initial weights.  

Here minimum initial range [-1,1] is taken.  

• Critical error:  

The desired error (MSE) for stopping network training  

 

 

 

Where, O is the desired output for training data i,  

T is the network output for training data i,  

If the actual error is equal to or less than this error, the training will be terminated.  
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• Number of output nodes:  

It will be equal to the number of object classes.  

In the case of only two output classes, single output neuron is there in output layer.  

• Number of input nodes:  

For specific feature inputs number of input nodes will be equal to the number of features, say 

m.  

For m attribute data set number of input nodes will be m.  

• Number of hidden layers/nodes:  

This is critical to decide. In the proposed algorithm, initially 1 Hidden Layer will be considered.  

Number of nodes ‘n’ in Hidden layer will be problem dependent.  

Initially ‘n’ is taken minimum 

• Activation function:  
Sigmoid Function f() is chosen as an activation function for Hidden layer neurons and output 

layer neurons 

 

 

For input layer, activation function of each neuron is a linear Function, so output is same as 

input given to the neurons. 

• Learning rate:  

In the proposed system, initially learning rate should be taken Small, in the range of [0.5 -

0.8]  

• Error Tolerance:  

It is the tolerable error, Etol, up to that the difference between Obtained output and desired 

output is tolerable.  

For the proposed system Etol is 0.01. Again it can be changed depending on application of 

classification.  

• Number of epochs:  

It is the one sweep through all the records in the training set.  

For the proposed algorithm it is kept in range of 300 - 500.  

• Population size :  

It is the parameter that indicates how many chromosomes will be included in one 

generation. For proposed algorithm population size is kept between 20 - 30.  

• Number of generations Ngen:  

This parameter will be decided according to application. It should range between 200 and 

800.  

• Chromosome encoding type:  

For this system, initial weights taken are real numbers, so the chromosome will also be encoded 

as real values.  
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• Crossover type:  

For the proposed algorithm it is taken as 1 point crossover.  

• Crossover rate:  

It is application dependent. Normally crossover rate ranges between 0.5 - 0.8.  

• Mutation type:  

In the proposed algorithm, flip the gene value with a random value within range of [-1, 1], 

which is same as the range considered for assigning initial weights.  

• Mutation rate:  

In the proposed algorithm mutation rate is kept 0.01.  

Step 2: Apply training pattern to BPNN  

• Give input values to the BPNN from training patterns.  

• Calculate output of each layer according to activation function described in the 

parameter list above.  

Step 3: Calculate error between in obtained output and desired output.  

Once the output of output layer is calculated, find error. 

 

 

 

 
Where, 

dk is desired output for node k 

xk Actual output for node k 

Ep is the Mean Square error when pth pattern is given as input 

Increment epoch count 

If Ep <= Etol OR Epoch count >=300 then Save ∆wki and go to step 7, else continue. 

Step 4: Calculate Error Gradient vector for node i  

By the chain rule, the recursive formula for εi can be rewritten as [21], 

 

Step 5: Adjust the weights using error gradient after each epoch. 
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Where,  

∆wki is a changed weight for connection between node k and i.  

n is the number of data in the training data set  

Ep is the Mean Square error when pth pattern is given as input.  

Go to step 3. 

Step 6: Create a chromosome.  

Create initial chromosome from the saved weight matrix ∆wki. This chromosome should 

represent the weights of BPNN at the last epoch.  

Step 7: Create a population.  

Randomly create n-1 chromosomes in the range of [-1, 1], for population size of n. All the 

chromosomes are created using real value encoding.  

Step 8: Apply training pattern and get output. 

Apply training patterns from training set and get out  

Calculate output of each layer according to activation function  

Described in the parameter list above 

Step 9: Calculate fitness for each chromosome in a population.  

Here fitness function taken is same as the equation used in step 4. 

 

 

 

If Ep<= Etol OR generation count >= Ngen then stop.  

Else continue. 

Step 10: Discard percentage of population which is the least fit. 

Perform selection according to fitness value of chromosomes.  

Step 11: Perform crossover and mutation.  

Perform single point crossover, each chromosome is randomly paired and combined with 

another to create two offspring chromosomes and then random mutation to create a new 

population. Increment generation count  

Pseudo code for Create Network  

Input: Number of layers, learning rate  

Output: New Network created  

Method:  

1. Count initial number of layers number of Layers  

Network.LayerCount = UBound(ArrayOfLayers)  



International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011 

111 

 

2. Check if no of layers are not enough  

If Network.LayerCount < 2 Then  

CreateNet = 0  

Exit Function  

End If  

3. Initialize all neurons  

 

Set the bias to random value  

Network.Layers(i).Neurons(j).Bias = GetRand  

Doesn’t initialize dendrites for output layer because output layers doesn't have any dendrites  

Network.Layers (i).Neurons(j).DendriteCount = ArrayOfLayers(i - 1)  

Set the weight of each dendrite  

For k = 1 To ArrayOfLayers(i - 1)  

DoEvents  

Network.Layers(i).Neurons(j).Dendrites(k).Weight = GetRand  

Next k  

Pseudo code to Run Network 

Input: Number of layers in a network, number of neurons in each layer  

Output: Values calculated for each neuron  

Method:  

1. Check whether number of neurons in input layer are equal to number of input attributes  

If UBound(ArrayOfInputs) <> Network.Layers(1).NeuronCount Then  

Run = 0  

Exit Function  

End If  

2. For each layer in the BPNN  

For each neuron in a layer  

Calculate weighted sum of inputs  

Calculate activation as a sigmoid function  

Next  

Next  

For i = 1 To Network.LayerCount  

For j = 1 To Network.Layers(i).NeuronCount  

Network.Layers(i).Neurons(j).Value = 0 'First set the value to zero  

For k = 1 To Network.Layers(i - 1).NeuronCount  

Network.Layers(i).Neurons(j).Value = Network.Layers(i).Neurons(j).Value +  

Network.Layers(i - 1).Neurons(k).Value * 

Network.Layers(i).Neurons(j).Dendrites(k).Weight  

Next k  

Network.Layers(i).Neurons(j).Value = 

Activation(Network.Layers(i).Neurons(j).Value + 

Network.Layers(i).Neurons(j).Bias)  

Next j  

Next i  

3. Assign values to output layer  

For i = 1 To (Network.Layers(Network.LayerCount).NeuronCount)  

OutputResult(i) = (Network.Layers(Network.LayerCount).Neurons(i).Value)  

Next i  
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Pseudo code to Train Network  
Input: Number of layers in a network, number of neurons in each layer  

Output: input data, output data  

Method:  

 
1. Check if correct amount of input is given  

If UBound(inputdata) <> Network.Layers(1).NeuronCount Then  

Train = 0  

Exit Function  

End If  

2. Check if correct amount of output is given  

 

If UBound(outputdata) <> Network.Layers(Network.LayerCount).NeuronCount Then  

Train = 0  

Exit Function  

End If  

3. Calculate values of all neurons and set the input  

 

call Run (inputdata)  

4. Calculate Delta for each layer  

For i = 1 To Network.Layers(Network.LayerCount).NeuronCount  

Network.Layers(Network.LayerCount).Neurons(i).Delta = 

Network.Layers(Network.LayerCount).Neurons(i).Value * (1 - 

Network.Layers(Network.LayerCount).Neurons(i).  

Value) * (outputdata(i) - Network.Layers(Network.LayerCount).Neurons(i).Value)  

For j = Network.LayerCount - 1 To 2 Step -1  

For k = 1 To Network.Layers(j).NeuronCount  

Network.Layers(j).Neurons(k).Delta = Network.Layers(j).Neurons(k).Value * (1 - 

Network.Layers(j).Neurons(k).Value) * Network.Layers(j + 

1).Neurons(i).Dendrites(k).Weight * Network.Layers(j + 1).Neurons(i).Delta  

Next k  

Next j  

Next i  

5. Calculate new Bias  

6. Calculate new Weights  

VI. DATASET USED FOR CLASSIFICATION PERFORMANCE 

ANALSYSIS  

In this section data sets are taken from ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/nurcery. Performance analysis of the system is considered based on below data sets.  

 
TABLE II 

DATASET TAKE FOR ANALYSIS 

Atttribute Name  Attribute values  

Parents  Usual, pretentious, great_prêt.  

has_nurs  proper, less_proper, improper, critical, very_crit.  

Form  Complete, completed, incomplete, foster.  
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Children  1, 2, 3, more.  

Housing  Convenient, less_conv, critical.  

Finance  Convenient, inconv.  

Social  Nonprob, slightly_prob, problematic.  

Health  Recommended, priority, not_recom.  

Classes  Not_recom, recommend, very_recom, priority, 

spec_prior  

 
Number of Instances in Training set : 7494  

Number of Instances in testing set : 3498  

Number of Attributes: 16 input +1 class attribute  

For Each Attribute:  

All input attributes are integers in the range 0...100.  

The output attribute is the class code 0...9 

VII.   PERFORMANCE ANALYSIS  

Performance analysis based on Iteration 

The Above table shows the performance analysis of neural network using different learning 

rate.  

Performance analysis based on Iterations  

TABLE III  

PERFORMANCE ANALYSIS BASED ON ITERATIONS 

Iterations  Accuracy %  Time (Sec)  

100  80  17  

200  81  34 sec  

300  83  53  

500  83  1.23  

1000  84  2.37  

Performance analysis based on number of Hidden nodes  

Other parameters are Learning Rate =0.4, Error Tolerance =80%, Iterations =300, No of 

Hidden layers = 1, No of Hidden Nodes = 10, Mutation Rate = 0.2, Cross Over Rate = 0.3, 

Generation = 25, Population = 300 

TABLE VI  

PERFORMANCE ANALYSIS BASED ON HIDDEN NODES 

Hidden Nodes  Accuracy %  Time In sec  

8  73  40  

9  84  45  

10  80  46  

11  81  50  

 

Performance analysis based on number of Hidden layers  
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TABLE VII  

PERFORMANCE ANALYSIS BASED ON HIDDEN LAYERS 

Hidden Nodes 

in layer1  

Hidden Nodes 

in layer 2  

Accuracy %  Time in sec  

6  3  82  26  

7  2  74  29  

8  1  39  27  

6  4  83  28  

5  5  81  27  

The Above table shows the performance analysis at various hidden Layers. It is vary difficult to 

select number of hidden layer while selecting architecture. So here we have tested some neural 

network with different hidden layers and hidden neurons 

 

Fig. 5 Performance Comparison of Classification Techniques 

Above figure shows the performance analysis of Back Propagation Neural Network and 

Genetic Algorithm. 

Comparing performance with other classification system  

Comparing the proposed system with MLP training, Naïve Bayes and some other were done 

using a tool WEKA. Data set taken for testing is Nursery Data set, having # variants 12120 and 

training set is having no of variants 12960.  

1. Naïve Bayes  

2. Bayesian network  

3. Support Vector Machine  

Naive Bayes Algorithm: The Naive Bayes (NB) algorithm makes predictions using Bayes 

Theorem, which derives the probability of a prediction from the underlying evidence. NB 

affords fast model build and apply. NB assumes that each attribute, or piece of evidence, is 

independent from the others. In practice, this assumption usually does not degrade the model's 

predictive accuracy significantly  

Bayesian Network: It is a probabilistic graphical model that represents a set of variables and 

their probabilistic independencies. A framework for representing uncertainty in our knowledge. 

A Graphical modelling framework of causality and influence. A Representation of the 
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dependencies among random variables. A compact representation of a joint probability of 

variables on the basis of the concept of conditional independence  

Support Vector Machine Algorithm (SVM): Support Vector Machine (SVM) is a 

classification and regression prediction tool that uses machine learning theory to maximize 

predictive accuracy while automatically avoiding over fit of the data. Neural networks and 

radial basis functions, both popular data mining techniques, can be viewed as special cases of 

SVMs. SVMs perform well with real-world applications such as classifying text, recognizing 

hand-written characters, classifying images. There is no upper limit on the number of attributes 

and target cardinality for SVMs. The SVM kernel functions currently supported are linear and 

Gaussian. 

TABLE VIII  

COMPARISON OF CLASSIFICATION TECHNIQUES 

 

 

 

Fig. 6 Performance Comparison of Classification Techniques 

Above table and figure shows the accuracy measured of various Classification Methods also the 

graph shows the Best performance of Back Prorogation Neural Network with Genetic 

Algorithm better as compare to all other Techniques.  

VIII CONCLUSION  

Both Genetic Algorithm and back propagation are search and optimization techniques. The 

goal of this hybrid algorithm is to perform weight adjustment in order to minimize the Mean 

Square Error between obtained output and desired output. It is better to apply back propagation 

algorithm first, so that the search space of Genetic algorithm will be reduced. Hence one can 

overcome the problem of local minima. The proposed algorithm exploits the optimization 
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advantages of GA for the purpose of accelerating neural network training. BP algorithm is 

sensitive to initial parameters and GA is not. BP algorithm has high convergence speed and 

while GA is having slow convergence. So the proposed system blends merits of both BP and 

GA. 

IX   FUTURE WORK  

In the proposed system, it is assumed that all the input data set has no noise and missing 

values because artificial neural networks have high tolerance to noisy data. So missing value 

handling along with continues & categorical values handling should be done as future 

enhancement. 

X   ACKNOWLEDGEMENT  

The authors’ wishes to all the colleagues for their guidance, Encouragement and support in undertaking 

the research work. Special thanks to the Management for their moral support and continuous 

encouragement.  

IX.REFERENCES  
[1] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd ed., R. M. Osgood, Jr., Ed. 

Berlin, Germany: Springer-Verlag, 1998.  

[2] J. Breckling, Ed., The Analysis of Directional Time Series: Applications to Wind Speed and 

Direction, ser. Lecture Notes in Statistics. Berlin, Germany: Springer, 1989, vol. 61.  

[3] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel ultrathin elevated channel low-

temperature poly-Si TFT,” IEEE Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.  

[4] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, “High resolution fiber distributed 

measurements with coherent OFDR,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.  

[5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed digital-to-RF converter,” U.S. Patent 5 

668 842, Sept. 16, 1997.  

[6] (2002) The IEEE website. [Online]. Available: http://www.ieee.org/  

[7] M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available: http://www.ctan.org/tex-

archive/macros/latex/contrib/supported/IEEEtran/  

[8] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.  

[9] “PDCA12-70 data sheet,” Opto Speed SA, Mezzovico, Switzerland.  

[10] A. Karnik, “Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive 

TCP/IP,” M. Eng. thesis, Indian Institute of Science, Bangalore, India, Jan. 1999.  

[11] J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP Reno congestion avoidance and 

control,” Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.  

[12] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 

802.11, 1997.  

 

 

 

 

 

 


