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ABSTRACT 

Search-based Software Engineering has been utilized for a number of software engineering activities. 

One area where Search-Based Software Engineering has seen much application is test data generation.  

 

Evolutionary testing designates the use of metaheuristic search methods for test case generation. The 

search space is the input domain of the test object, with each individual or potential solution, being an 

encoded set of inputs to that test object. The fitness function is tailored to find test data for the type of test 

that is being undertaken.  

 

Evolutionary Testing (ET) uses optimizing search techniques such as evolutionary algorithms to generate 

test data. The effectiveness of GA-based testing system is compared with a Random testing system. For 

simple programs both testing systems work fine, but as the complexity of the program or the complexity 

of input domain grows, GA-based testing system significantly outperforms Random testing. 
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1. INTRODUCTION 

Search based optimization techniques have been applied to a number of software engineering 

activities[1] such as requirements engineering, project planning and cost estimation through 

testing, to automated maintenance, service-oriented software engineering, compiler 

optimization and quality assessment. However the above listed applications can be the 

optimization can be applied over the software engineering activity. 

A wide range of different optimization and search techniques have been used. The most widely 

used methods are local search, simulated annealing, genetic algorithms and genetic 

programming. However, whatever may be the search technique employed, it is the fitness 

function that plays a major role and it captures a test objective and makes a contribution to the 

test adequacy criterion. Using the fitness function as a guide, the search seeks test inputs that 

maximize the achievement of this test objective. 

Search Based Software Testing (SBST):  

SBST research has attracted much attention in recent years[2] as part of a general interest in 

search based software engineering approaches. The growing interest in search based software 

testing can be attributed to the fact that there is a need for automatic generation of test data, 
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since it is well known that exhaustive testing is infeasible and the fact that software test data 

generation is considered NP-hard problem [3].  

The reminder of this paper is organized as follows: Section 2 describes the evolutionary testing. 

Section 3 describes the optimization techniques including the meta-heuristic search techniques. 

Sections 4 and 5 comprises of analysis and discussion of results, while the paper is concluded 

in Section 6. 

2. EVOLUTIONARY TESTING 

Evolutionary testing makes use of meta-heuristic search techniques for test case generation. 

Evolutionary Testing is a sub-field of Search Based Testing in which Evolutionary Algorithms 

are used to guide the search. The Fig.1 shows the structure and interaction of test activities 

including test case design by means of evolutionary algorithms. 

 

Figure 1.  Structure and interaction of test activities including test case design by means 

of evolutionary algorithms. 

The test aim is transformed into an optimization problem. The input domain of the test object 

forms the search space. The test object searches for test data that fulfils the respective test aim 

in the search space. A numeric representation of the test aim is necessary for this search. This 

numeric representation is used to define objective functions suitable for the evaluation of the 

generated test data. Depending on the test aim pursued, different heuristic functions emerge for 

test data evaluation.  

Due to the non-linearity of software (if-statements, loops etc.) the conversion of test aim to 

optimization problems mostly leads to complex, discontinuous, and non-linear search spaces. 

Therefore neighborhood search methods (such as hill climbing), are not recommended. Instead, 

meta-heuristic search methods are employed, e.g. evolutionary algorithms, simulated annealing 

or tabu search.  Evolutionary Algorithms have proved a   powerful optimization algorithm for 

the successful solution of software testing. 

3. OPTIMIZATION TECHNIQUES 

Some of the optimization techniques that have been successfully[4] applied to test data 

generation are Hill Climbing(HC) ,Simulated Annealing(SA), Genetic Algorithms(GAs), Tabu 

Search(TS),Ant Colony Optimization(ACO), Artificial Immune System(AIS), Estimation of 

Distribution Algorithms(EDAs), Scatter Search(SS) and Evolutionary Strategies(ESs). 
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3.1. Meta-heuristic Search Techniques 

Meta-heuristic techniques have also been applied to testing problems in a field known as Search 

Based Software Testing [2], [3], a sub-area of Search Based Software Engineering (SBSE) [1]. 

Evolutionary algorithms are one of the most popular meta-heuristic search algorithms and are 

widely used to solve a variety of problems. 

The local Search techniques generally used are  

i. Hill Climbing 

ii. Simulated Annealing 

iii. Tabu Search 

Hill Climbing 

In hill climbing, the search proceeds [6] from randomly chosen point by considering the 

neighbors of the point. Once a neighbor is found to be fitter then this becomes the current point 

in the search space and the process is repeated. If there is no fitter neighbor, then the search 

terminates and a maximum has been found (by definition). However, HC is a simple technique 

which is easy to implement and robust in the software engineering applications of 

modularization and cost estimation. 

Simulated Annealing 

Simulated annealing is a local search method. It samples the whole domain and improves the 

solution by recombination in some form. In simulated annealing a value x1, is chosen for the 

solution, x, and the solution which has the minimal cost (or objective) function, E, is chosen. 

Cost functions define the relative and desirability of particular solutions.  Minimizing the 

objective function is usually referred to as a cost function; whereas, maximizing is usually 

referred to as fitness function. 

Tabu Search 

Tabu search is a metaheuristic algorithm that can be used for solving combinatorial 

optimization problems, such as the travelling salesman problem (TSP). Tabu search uses a local 

or neighbourhood search procedure to iteratively move from a solution x to a solution x' in the 

neighbourhood of x, until some stopping criterion has been satisfied. To explore regions of 

the search space that would be left unexplored by the local search procedure (see local 

optimality), tabu search modifies the neighbourhood structure of each solution as the search 

progresses.     

3.2. Evolutionary Search Using Genetic Algorithms 

GA forms a method of adaptive search in the sense that they modify the data in order to 

optimize a fitness function. A search space is defined, and the GAS probe for the global 

optimum. A GA starts with guesses and attempts to improve the guesses by evolution. A GA 

will typically have five parts: (1) a representation of a guess called a chromosome, (2) an initial 

pool of chromosomes, (3) a fitness function, (4) a selection function and (5) a crossover 

operator and a mutation operator. A chromosome can be a binary string or a more elaborate 

data structure. The initial pool of chromosomes can be randomly produced or manually created. 

The fitness function measures the suitability of a chromosome to meet a specified objective: for 

coverage based ATG, a chromosome is fitter if it corresponds to greater coverage. The selection 
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function decides which chromosomes will participate in the evolution stage of the genetic 

algorithm made up by the crossover and mutation operators. The crossover operator exchanges 

genes from two chromosomes and creates two new chromosomes. The mutation operator 

changes a gene in a chromosome and creates one new chromosome. Fig.2 shows the generic 

search based test input generation scheme. 

3.3 Evolutionary Search Using Genetic Programming  

Genetic programming results in a program, which gives the solution of a particular problem. 

The fitness function is defined in terms of how close the program comes to solving the 

problem. The operators for mutation and mating are defined in terms of the program’s abstract 

syntax tree. Because these operators are applied to trees rather than sequences, their definition 

is typically less straight forward than those applied to GAs? GP can be used to find fits to 

software engineering data, such as project estimation data. 

In order to apply metaheuristics [6] to software engineering problems the following steps 

should therefore be considered: 

 

i. Ask: Is this a suitable problem? 

   That is, “is the search space     sufficiently large to make exhaustive search 

impractical?” 

ii. Define a representation for the possible solutions. 

iii. Define the fitness function. 

iv. Select an appropriate metaheuristic technique for the problem. 

v. Start with the simple local search and consider other genetic approaches. 

 

3.4 Coverage Criteria 

The testing requirements satisfied by the generated test data is the measurement of coverage in 

terms of statement, condition, path, branch, decision etc. 

3.4.1 Statement coverage 
Statement coverage measures the number of executable statements in the code that are 

executed by a test suite. 100% statement coverage is achieved when every statement in 

the code is executed.  

3.4.2 Decision coverage 

Decision coverage, also known as branch coverage, measures the extent to which all outcomes 

of branch statements (such as if, do-while or switch statements) are covered by test cases. 

 
To achieve decision coverage, two test data I1 and I2 need to be generated corresponding to 

each decision di in the program such that di evaluates to true when the code is executed with 

input I1 and evaluates to false when code is executed with input I2. For example, to cover the 

decision at line 70 in Fig.2, we require two test data such that the ’if’ condition evaluates to true 

in one case and false in the other. 
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Figure 2.  Sample C code 

3.4.3. Condition coverage 

Condition coverage is similar to decision coverage with the only difference being that for 

condition coverage, two test data I1 and I2 are needed for each condition in a decision. 

3.5. Automated test data generation (ATDG)  

Most of the work on Software Testing has concerned the problem of generating inputs that 

provide a test suite that meets a test adequacy criterion. The schematic representation is 

presented in Fig.3. Often this problem of generating test inputs is called ‘Automated Test Data 

Generation (ATDG)’ though, strictly speaking, without an oracle, only the input is generated.  

Fig.3 illustrates the generic form of the most common approach in the literature, in which test 

inputs are generated according to a test adequacy criteria [6]. The test adequacy criterion is the 

human input to the process. It determines the goal of testing. 

 

 

 

 

 

 

 

 

 

 

Figure 3. A generic search-based test input generation scheme 

The adequacy criteria can be almost any form of testing goal that can be defined and assessed 

numerically. For instance, it can be structural (cover branches, paths, statements) functional 

(cover scenarios), temporal (find worst/best case execution times) etc. This generic nature of 

Search-Based Testing (SBT) has been a considerable advantage and has been one of the reasons 

why many authors have been able to adapt the SBT approach different formulations. 

10: i n t inp1 , inp2 ; / / I n p u t s 

20: i n t t e s t ( ) 

30: { 

40: i n t lVar =0 , r e tVa l = 0; 

50: i f ( inp1 > 15 ) 

60: lVar = 1; 

70: i f ( lVar && inp2 ) 

80: r e tVa l = 1; 

90: r e t u r n r e tVa l ; 

100: } 
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The fitness function captures the crucial information and it differentiates the good solution from 

the poor one. Once a fitness function has been defined for a test adequacy criterion, then the 

generation of adequate test inputs can be automated using SBSE. The SBSE tools that 

implement different forms of testing all follow the broad structure outlined in Fig.3. 

They code the adequacy as fitness, using it to assess the fitness of candidate test inputs. In order 

to assign fitness to the test inputs, the ATDG system has to make the program to be executed 

for the inputs. The ATDG system then monitors the execution to assess fitness based on how 

well the inputs meet the test adequacy criterion. 

3.6. Existing Applications of Optimization Techniques to Software Engineering Problems  

A. Optimizing the search for accurate cost estimates. 

B. Optimizing the search for resource allocations in project planning. 

C. Optimizing the search for requirements form the next release. 

D. Optimizing design decisions. 

E. Optimizing source code. 

F. Optimizing test data generation 

 (structural, functional, non- functional, safety, robustness, stress, mutation, integration 

and exception). 

G. Optimizing test data selection & prioritization. 

H. Optimizing module clustering.  

I. Optimizing maintenance and reverse engineering.   

 

4. ANALYSIS OF THE EXISTING TEST DATA GENERATION TECHNIQUES 

The comparative study on the existing test data generation techniques are given in the form of a 

tabular column [Table 1]. 

Table 1: Comparative study on the existing test data generation techniques 

SI. 

No. 
Title Year Publication 

Search 

techniques 
Data set 

Parameters 

considered 

Performance 

metrics 

Future 

directions 

 

1. 

 

 

 

 

 

 

“Evolutionary 

white-box 

software test 

with the 

EvoTest 

Framework, 

a progress 

report” 

 

2010 

 

Proceedings 

of the 

International 

Conference on 

Software 

Testing, 

Verification 

and 

Validation 

Workshop 

 

Evolutiona

ry Testing 
Genetic 

Algorithm 

 

Java 

Test 

Samples, 

Objectiv

e CAML 

 

No. of 

generated 

test cases, 

No. of 

branches, % 

of functions 

 

Branch 

Coverage 

(%),Test effort 

 

 

Support for 

pointers-to-void, 

array-type, input 

variables; 

Improve the 

compatibility; 

Evaluation of the 

tool with a C 

compiler; 

 

2. 

 

 

 

 

“An 

Algorithm for 

Efficient 

Assertions-

Based Test 

Data 

Generation” 

 

2010 

 

Proceedings 

of the 

International 

Multi-

conference of 

Engineers and 

Computer 

Scientists   

 

 

New 

Heuristic 

Approach 

 

Existing 

samples  

 

Array size, 

longest path 

length, code 

coverage 

 

Accuracy, 

Scalability 

 

To improve the 

accuracy; 
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3. 

 

“Breeding 

Software Test 

Data with 

Genetic- 

Particle 

Swarm Mixed 

Algorithme” 

 

2010 

 

Journal of 

Computers; 

Vol.5,No.2,  

FEBRUARY 

2010 

 

GPSMA 

(Genetic- 

Particle 

Swarm 

Mixed 

Algorithm) 

 

 

Benchm

ark 

program

s - 

Triangle 

classific

ation 

 

Size, String 

length, 

Probability 

of crossover, 

No. of 

iteration 

 

 

Efficiency, 

Convergence 

Speed, 

(diversity) 

 

Testing the 

GPSMA; 

Applications to 

R-W 

optimization 

problems; 

Fine-tuning of 

the parameters; 

 

4  

“Optimizing 

for the 

Number of 

Tests 

Generated in 

Search Based 

Test Data 

Generation 

with an 

Application to 

the Oracle 

Cost Problem” 

 

 

2010 

 

Third 

International 

Conference on 

Software 

Testing, 

Verification, 

and 

Validation 

Workshops 

 

 

Memory-

Based 

Approach, 

Greedy 

Approach, 

Genetic 

Algorithm 

 

Empirica

l Results 

 

No. of test 

cases 

generated, 

Domain size, 

Cost, Branch 

Coverage 

 

Complexity, 

Effectiveness, 

Diversity 

 

Hybrid algorithm 

which may be 

capable of 

combining the 

features of both 

CDG and set 

cover 

approaches. 

5. 

 

 

 

 

 

“Automated 

GUI Test 

Coverage 

Analysis using 

GA” 

 

 

2010 7-th 

International 

conference on 

Information 

Technology 

Genetic 

Algorithm 

 Test-path, 

length, No. 

of 

generations, 

Coverage 

achieved 

Accuracy of 

fitness, 

Effectiveness 

Developing an 

automated test 

generation tool 

for supporting 

their approach; 

Use other 

optimization 

techniques. 

 

6. 

 

 

 

“Scatter 

Search ” 

2009 Information 

and Software 

Technology 

Scatter 

Search - 

Evolutionar

y Method 

Benchm

arks 

Range of 

input 

variables, 

No. of test 

cases 

generated, % 

of branch 

coverage 

 

Efficiency, 

Diversity 

Benchmarks 

7. “Automatic 

Test Data 

Generation for 

C Programs” 

 

 

 

2009 3-rd IEEE 

International 

Conference on 

Secure 

Software 

Integration 

and Reliability 

Improvement 

BLAST – 

software 

model 

checker(ne

w 

algorithm), 

SAL – 

framework   

Automot

ive 

applicati

ons(Emb

edded 

domain) 

Time, 

condition 

coverage 

Efforts 

required 

 

Enhance the tool 

in order to satisfy 

more criteria 

such as boundary 

value analysis, 

equivalence 

partitioning, def-

use analysis and 

to find out 

possible errors in 

code 

 

 

8. 

 

 

 

 

 

 

“An Approach 

to Generate 

Software Test 

Data for a 

Specific Path 

Automatically 

with Genetic 

Algorithm ” 

 

 

2009 

 

8th IEEE 

International 

Conference on 

Reliability, 

Maintainabilit

y and Safety 

 

Genetic 

Algorithm 

 

Testing 

Benchm

ark- 

TriType 

 

No. of test 

data 

generated, 

Convergence 

ability, 

Consumed 

time(for 

searching) 

 

Efficiency, 

Ability 

 

To decrease the 

evolutionary 

status and to 

improve the 

search efficiency; 

To develop 

completed 

framework for 

automated testing 

data generation 
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5. DISCUSSION ON THE VARIOUS SEARCH TECHNIQUES 

Almost in all cases, the meta-heuristic search techniques have been implemented for the 

specific application for e.g., multi-objective NRP, Ajax web applications, triangle classification 

9. 

 

 

 

“Test Data 

Generation 

Using 

Annealing 

Immune 

Genetic 

Algorithm ” 

 

2009 5-th  

International 

Joint 

Conference on 

INC, IMS and 

IDC  

Genetic 

Algorithm, 

Simulated 

annealing 

algorithm, 

Immune 

Genetic 

Algorithm 

 

Existing 

Program

s- 

Triangle 

Classific

ation 

 

Data 

coverage, no. 

of 

generations 

 

Efficiency 

 

Practical usage 

of AIGA for 

software testing  

10. “Comparison 

of Two Fitness 

Functions for 

GA-based 

Path-Oriented 

Test Data 

Generation ” 

 

 

 

2009 5-th 

International 

Conference on 

Natural 

Computation   

Genetic 

Algorithm 

(i)Branch 

distance            

(ii)Normali

zed 

extended 

Hamming 

distance 

 

Sample 

program 

– 

Triangle 

Classific

ation 

 

Length of 

chromosome

, Test data 

coverage 

 

Efficiency 

 

Experiment on 

larger and more 

complex 

programs 

11. 

 

 

 

 

 

“Generation of 

Test Data 

Using Meta 

Heuristic 

Approach ” 

 

 

 

 

2008 

 

Proceedings 

of IEEE 

Region 10 

Conference on 

TENCON 

2008   

 

GA, Ant 

Colony 

Optimizatio

n 

algorithm- 

Resource 

request 

algorithm 

 

Existing 

test 

samples 

 

Success ratio 

 

Effectiveness 

 

To increase the 

success ratio 

 

12. 

 

 

 

 

“Using a 

Genetic 

Algorithm and 

Formal 

Concept 

Analysis to 

Generate 

Branch 

Coverage Test 

Data 

Automatically

” 

 

2009 

 

4-th 

International 

Conference on 

Computer 

Science and 

Education 

 

A new path 

selection 

algorithm 

(using 

Fibonacci 

series)  

 

Existing 

Program

s 

 

Statement 

Coverage, 

Data flow 

coverage 

 

Cost, 

Computation 

load 

 

Can handle 

different 

language 

procedures 

 

13. 

 

“ Automatic 

Test Data 

Generation for 

Multiple 

Condition and 

MCDC 

Coverage” 

 

 

 

 

2009 

 

4th 

International 

Conference on 

Software 

Engineering 

Advances 

Search 

technique 

used : 

Simulated 

Annealing; 
 Proposed 

framework 

[tool] – 

based on 

FF 

calculation 

Benchm

ark  

program

s – 

[Triangl

e, 

Quadrati

c … ] 

Open 

source 

API 

JGAP 

java 

genetic 

algorith

ms 

package 

FF, CF, 

Success rate, 

Coverage, 

Avg. time of 

execution 

‘Control flow 

coverage’, 

Multiple  

condition 

Decision 

coverage 

Tool can be 

extended to 

include other 

search-based 

algorithms; 
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problem, software clustering problem, project resource allocation, signal generation, buffer 

overflow problem, network security, safety, R-T tasks & in fault prediction. In most of the 

combinatorial problems, they have got better results by implementing Evolutionary Algorithms 

such as GAs, SA, TS, GP and they compared their results with the local search such as RS, HC. 

The dataset used were taken from various sources. The main quality parameters considered are 

branch, path coverage, accuracy and fitness. The results obtained in random generation for few 

sample programs are given in a form of table [2]. 

Table 2:  Results obtained from sample programs 

Triangle classification program results using genetic algorithm are as follows: 

Population size: 4, 2  

Range:  [5, 15] 

 

 

 

 

 

 

 

 

 

Program 

name 
Range of the 

input 

variables 

% of the 

branch 

coverage 

No. of test 

cases 

generated 

Time consumed 
(in secs) 

Linear search 1 to 50 95.26 10 1.78 

Quadratic 
equation 

-10 to 10 83.33 5 3.66 

Bubble sort 1 to 40 89.64 8 5.93 

Triangle 

classification 
1 to 20 81.56 5 4.01 

Greatest 

common 

divisor 

1 to 100 80.3 10 1.97 

Binary search 1 to 35 80.1 8 5.83 

Generation  A  B  C  Fitness  

Generation 1  14  5  9  2.0  

14  14  11  10.0  

14  9  8  10.0  

12  6  12  11.0  

Generation 2  14  14  9  10.0  

14  5  11  11.0  
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Range: [-10, 20]  

Comparison of genetic algorithm with random testing is given below: 

The results show that for the same test data random testing requires 9 times more timing than 

GA. 

5. CONCLUSION 

This paper has provided an overview of the Search-Based Software Engineering and the 

Search-Based Software Testing used in test data generation. The main goal is to make a study 

of the use of search-based optimization techniques to automate the evolution of solutions for 

software engineering problems. For example, real world problems such as optimizing software 

resource allocation, triangle classification, software clustering, component selection and 

prioritization for next release. Experiments show that for simple programs both work fine; there 

is no significant difference, but as the complexity of the program or the complexity of input 

domain grows, GA-based testing system significantly outperforms Random testing. 

 

In this paper, we considered the time required for test data generation and the percentage of 

branch coverage; other parameters can also be considered for future work. Test data has been 

generated in numerals; similarly for character, string, arrays and pointers can also be tried with 

the genetic algorithm.  
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