
International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

DOI : 10.5121/ijcsit.2010.2603 28

Comparison of Class Inheritance and Interface

Usage in Object Oriented Programming through

Complexity Measures

V. Krishnapriya
 1
 and Dr. K. Ramar

 2

1
Head, Dept of Computer Science, Sri Ramakrishna College of Arts & Science for

Women, Coimbatore, Tamilnadu. .E.Mail: vkpriya74@gmail.com
2
 Principal, Sri Vidya College of Engineering and Technology, Virudhunagar,

Tamilnadu.

 Email : kramar_nec@rediffmail.com

ABSTRACT

It is widely acknowledged that in software engineering, the usage of metrics at the initial phases of the

object oriented software can help designers to make better decisions. The quality of class diagrams could

be a major determinant for the quality of the software product that is finally delivered. Quantitative

measurements are useful to assess class diagram quality. Following this innovative thinking, two UML

class diagrams are taken to measure the complexity and size. A set of metrics of complexity measures are

used to measure the class diagrams. Seven known complexity measures are evaluated and compared for

inheritance and interface usage in object oriented programming. Two UML class diagrams are

introduced with possible interfaces and measured the complexity metrics and a comparison has been

made between the class inheritance and class interface usage through complexity measurements.

KEYWORDS

Class diagrams, Interface diagrams, Object oriented metrics, UML, Complexity.

1. INTRODUCTION

Software engineering metrics are important measurements for project planning and

project measurements. The increasing importance of software measurement and metrics led to

the development of new software measures and metrics. Many metrics have been proposed for

traditional programming and object oriented programming.

 “Software quality is the degree to which software possesses a desired combination of

attributes such as maintainability, testability, reusability, complexity, reliability, interoperability

etc” – IEEE 1992.

The increased demand for the software quality has resulted in higher quality software

and nowadays quality is the main differentiator between the software products. Due to this

reason the software designers and developers need valid measures for the evaluation,

improvement and validation of product quality from initial stages. The early focus on class

diagrams quality helps the software engineers and developers to build better software without

doing unnecessary revisions at later stages of development. Revisions or changes at later stages

will lead to increase in expenditure and be more complex to perform. Nowadays software

measurement plays an important role for measuring quality and complexity of software. The

early availability of software metrics for UML diagrams were used for quality and complexity

evaluation. [8][10][11]

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

29

1.1. Measurement and Metrics

Nowadays, software engineering plays a most important technology in the world. As

computer software has grown, the software developers have continually attempted to develop

new technologies. In these newly developed technologies some of them focused on object

oriented technologies [13]. In this paper object oriented class inheritances are differentiated with

object oriented interface class diagrams through complexity measures.
 “If you cannot measure it’s not Engineering Community” is often said by the engineering

community. [6]

The key factor for any engineering discipline is measurement. Without measurement or

metrics it is impossible to measure quality and complexity to detect problems before it is

released. So measurement is very important in managing the software projects. [2][12][14][15]

Metrics are used as a powerful tool in software research, maintenance and

development for estimating cost, effort, complexity, quality, maintenance and to control

etc[5]. Metrics serves as an early warning tool for potential problems happening in

software development [14]. Any metrics must be defined as a complete and well

designed quality improvement paradigm (QIP) [4].

2. BACKGROUND

The concept of an interface in object oriented programming is quite old. Software

engineering has been using interfaces for more than 25 years. Software measurement
activities were not addressed to most of their requirements for providing information
and to support for managerial decision making [12]. Many metrics are available to
measure class, method, inheritance, polymorphism and system level. There is no
significant work on the design of human computer interfaces. In literature, relatively
little information has been published on interface metrics. Those metrics provide only
little information about the quality and usability of the interfaces.

Finding difference in classes makes it more effective for object oriented
programming. The difference in using an inheritance and interfaces in class diagrams
are measured. These measures are done by using structural complexity metrics.

2.1 RELATED WORK
 The concept of interfaces has been measured in java programming by Fried
Stiemann and Co [7]. He represented that the usage of interfaces compared to classes
are 4:1.

Ken Pugh [10] stated that finding commonality among classes makes it more
effective for object oriented programming and he also explored the commonality in
using inheritance and using interfaces in object oriented programming.
 The novel idea in this paper is finding the difference in using class inheritance and

interface through structural complexity metric measures.
Measuring complexity of software products was and still is a widely scattered research

project.

“A lower software structural complexity could lead to a greater software reliability” –

Fenton and Pfleeger, 1997.

The structural complexity measure is the most important measurement to evaluate the

quality of UML class diagrams. [3]

It is well known that software structural complexity metrics are very useful to evaluate

the different characteristics that affect the quality of object oriented software. In literature there

are several measures of complexity. With the above said idea in mind a set of seven different

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

30

metrics are taken to measure the structural complexity of object oriented UML diagrams to find

the difference in using class inheritance and interface concepts in object oriented programming.

2.2 METRICS USED
No single metric is available to measure the complexity of software [7]. The metrics

discussed below are used to measure the complexity of UML diagrams [9].

2.2.1 Number of Aggregation - NAgg
The number of aggregation metric is defined as the total number of aggregation

relationships within the class diagram.

2.2.2 Number of Dependencies – NDep
It is defined as total number of dependency relationships with in the class diagram.

Dependency is a weaker form of relationship which indicates that one class depends on another

class because it uses it at some point of time [10][11].

2.2.3 Number of Generalisations – NGen
The number of generalisation metrics is defined as the total number of generalisation

relationships with in a class diagram. Generalisation is a relationship between two classes [11].

� General/super class

� Special/subclass

2.2.4 Number of Generalisation Hierarchies – NGenH
The number of generalisation hierarchy metric is defined as the total number of

generalisation hierarchies with in the class diagram. A generalisation hierarchy is a structural

grouping of entities that share common attributes. Each instance of super type entity must

appear in at least one subtype. An instance of the subtype must appear in subtype [11].

2.2.5 Number of Aggregation Hierarchies – NAggH
The number of aggregation hierarchy metric is defined as the total number of aggregation

hierarchies with in a class diagram.

2.2.6 Maximum Depth of Inheritance Tree – MaxDIT
 Depth of a class with in the inheritance hierarchy is the maximum number of steps from the

class node to the root of the tree or the length of the longest path from the class to the root of the

hierarchy. This is measured by the number of ancestor classes.

2.2.7 Maximum Hierarchy Aggregation – MaxHAgg
The maximum hierarchy aggregation metric is defined as the maximum between the

hierarchy aggregation value for each class of the class diagram. The hierarchy aggregation value

for a class with in the aggregation hierarchy is the length of the longest path from the class to

the leaves.

3. GOAL AND RESEARCH HYPOTHESES

Two Examples and two hypotheses are used to achieve the goal.

Goal: Exploring the difference in using Class inheritance and interface measures using

complexity measures.

Hypotheses 1: A set of complexity metrics are taken to measure the complexity of two concepts.

Hypothesis 2: length is considered as complexity measure and is measured for both examples.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

31

3.1 METHODOLOGY

 Software complexity is measured in two ways.

(1). Software complexity is calculated by measuring the above said metrics

i. Two Class inheritance diagrams are taken and are measured using the above said

seven structural complexity measures.

ii. The Two class diagrams are introduced with maximum number of possible interfaces

and the complexity measurement metrics are measured.

iii. The results are compared for class inheritance and class interface diagrams.

iv. Length is defined as the number of lines of code. [1]

(2). Complexity is calculated by using length also.

 e (p) = l(p) * c(p) -- I

Where e (p) is the total complexity, l (p) is the length of the software and c (p) is the average

complexity.

4. APPLYING METRICS TO UML DIAGRAMS

Two UML class inheritance diagrams are taken and all the above said metrics are

applied to measure complexity. The two diagrams are introduced with maximum possibility of

interfaces and metrics which are used to measure the complexity. Both inheritance and interface

diagrams complexity measures are compared. First UML class diagram has been taken as

vehicle classification.

Figure 1: Vehicle Classification with Class Inheritance

The above figure 1 vehicle classification diagram is introduced with maximum possible

interfaces and is shown in figure 2.

Figure 2: Vehicle Classification with Interface Diagram

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

32

The above said measurement metrics are applied for class inheritance and class interface

diagrams. The table 1 shows the measurement values for the above said metrics.

Table1: Complexity Measurement for Vehicle Classification

Diagram/

Metric

Leng

th

NAg

g

NDe

p

NGe

n

NGe

nH

NAgg

H

Max

DIT

Max

HAg

g

Avg.

Complex

ity

Total

complexi

ty

Vehicle

Inheritance

125 0 2 6 4 0 2 0 2.0 250

Vehicle

Interface

 93 0 2 4 2 0 1 0 1.29 119.97

The average complexity is calculated by finding the mean for complexity metrics.

0

1

2

3

4

5

6

7

N
Agg

N
D
ep

N
G
en

N
G
en

H

N
Agg

H

M
ax

D
IT

M
ax

H
Agg

Vehicle Inheritance

Vehicle Interface

Graph1. Comparison of Metrics for Vehicle Classification

The second diagram referred is types of shapes which are shown in figure 3.

Figure 3: Types of Shapes Using Class Inheritance

The above diagram is introduced with possible number of interfaces and the diagram is shown

in figure 4.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

33

Figure 4: Types of Shapes with Interfaces

For the above said two figures 3 and 4 the complexity are measured through the above said

seven metrics. The resulted values are tabulated in table 2.

Table 2: Complexity Measurement for Shapes Classification

Diagram/

Metric

Length NAg

g

NDep NGen NGen

H

NAgg

H

Max

DIT

Max

HAg

g

Avg.

Complex

ity

Total

complexit

y

Shape

Inheritan

ce

108 0 7 9 3 0 3 0 3.14 339.12

Shape

Interface

67 0 6 7 2 0 2 0 2.43 162.81

Total complexity represented in two tables is calculated by using the above said formula I. For

table 1 and 2 graphs have been drawn to show the improvement in using interface concepts.

Graph 2 depicts the difference in improvement in structural metrics for the second example.

Graph 3 shows the difference in concepts using length for two examples.

0

1

2

3

4

5

6

7

8

9

10

N
A
gg

N
D
ep

N
G
en

N
G
en

H

N
A
gg

H

M
ax

D
IT

M
ax

H
Agg

Shape Inheritance

Shape Interface

Graph 2: Comparison of Metrics for Shapes Hierarchy

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

34

0

20

40

60

80

100

120

140

V
eh

ic
le
 In

he
rit
an

ce

V
eh

ic
le
 In

te
rfa

ce

S
ha

pe
s
In

he
rit
an

ce

S
ha

pe
s
In

te
rfa

ce

No. Of Lines

Graph 3: Inheritance Vs Interface Concepts Using length

The number of lines is measured for the above said two examples. The length is reduced

for the concept of interfaces compared to inheritance concept. Introduction of interfaces in

object oriented programming in possible places is better for producing good quality and high

reliable software.

Total complexity

0

50

100

150

200

250

300

350

400

Vehicle

Inheritance

Vehicle

Interface

Shape

Inheritance

Shape

Interface

Total complexity

Graph 4: Inheritance Vs Interface using Total Complexity

5. CONCLUSION

The structural complexity is measured between the usage of class inheritance and

interfaces in object oriented programming. In this paper, a set of seven structural metrics are

used to measure UML class diagram structural complexity with respect to the usage of UML

relationships such as aggregations, associations, dependencies and generalisations. The average

and the total complexity values are reduced for both examples of object oriented interfaces

compared to object oriented class inheritance concepts. Interface concept has shown better

performance compared to inheritance concept in object oriented programming. Software

reliability will increase with lower software complexity.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

35

REFERENCES

[1.] Adrain Costea,” On Measuring Software Complexity”, Journal of Applied Quantitative Methods,

vol.2,no.1 , Spring 2007.

[2.] Agarwal K.K.,Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,”Emprical Study of Object-Oriented

Metrics”, Journal of Object Technology, Vol. 5, Nov-Dec 2006.

[3.] Baowen Xu, Dazhou Kang and Jianjiang,”A Structural Complexity Measure for UML Class

Diagrams”, vol.3036, P.No:421-424, May 2004.

[4.] Carlo Ghezzi, Mehdi Jazayeri, Dino Manddrioli,”Fundamentals of software Engineering, P.No: 366,

2
nd

 Edition, Prentice Hall India, 2003.

[5.] El Hachemi Alikacem, Houari A. Sahraoui, “Generic Metric Extraction

Framework”,IWSM/Metrickon, Software Measurement Conference 2006.

[6.] Ivar Jacobson, Magnus Christerson, Patrick Johnson, Gunnar OverGarrd,”Object Oriented Software

Engineering-A Use Case Driven Approach”, P.NO:468, Pearson Education @ 2001.

[7.] Jorge Cardoso,”Control-flow Complexity Measurement of Process and Weyuker’s Properties”, World

Academy of Science Engineering and Technology, Aug 2005.

[8.] Manso M., Genero M. and Piattini M.,”No-Redundant Metrics for UML Class Diagram Structural

Complexity”, Advanced System Engineering, LNCS 2681, P.No: 127-142, Springer 2003.

[9.] Marcela Genero,Mario Piattini “Empirical validation of measures for class diagram structural

complexity through controlled experiments”, Proceedings of the 2002 International Symposium on

Empirical Software Engineering.

[10.] Marcela Genero, Mario Piattini and Coral Calero, ”Empirical Validation of Class Diagram Metrics”,

Proceedings of the 2002 International Symposium on Emprical Software Engineering (ISESE’02) @

2002 IEEE.

[11.] Marcela Genero, Mario Piattini and Coral Calero, ”A Survey of Metrics for UML Diagrams”,

Journal of Object Technology, P.No: 55-92, Vol. 4, No. 9, Nov-Dec 2005.

[12.] Norman E. Fenton, Shari Lawrence Pfleeger,”Software Metrics – A Rigorous & Practical

Approach”, 2nd Edition.

[13.] Roger S. Pressman,”Software Engineering a Practitioner’s Approach”, 6
th

 Edition.

[14.] Stephen R. Schach, ”Object Oriented and Classical Engineering”, 5
th

 Edition,Tata McGraw

Hill,2002.

[15.] Watts S. Humphery,”A discipline for Software Engineering, SEI Series in Software Engineering,

P.No:209-210, Pearson Education Asia, 2001.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

36

Authors

1. V. Krishnapriya M.C.A., M.Phil.,

She is currently Head, Department of computer Science at Sri Ramakrishna College of

Arts and Science for Women, Coimbatore, Tamilnadu and pursuing her Ph.D Mother

Teresa Women’s University, Kodaikanal. She has 13 years of teaching experience and

presented more than 9 papers in National and International Conferences and produced 3

M.Phils so far.

2. K.Ramar B.E, M.E, Ph.D

Received the Ph.D Degree in Computer Science from Manonmaniam Sundaranar

university, Tirunelveli and prior degrees from PSG College of Technology, Coimbatore

and Govt College of Engineering, Tirunelveli. He is currently Principal, Sri Vidya College

of Engineering and Technology, Virudhunagar, Tamilnadu. He is life member in the CSI-

Mumbai, ISTE-NewDelhi, SSI-Trivandrum and Fellow in Institution of Engineers,

Kolkatta. He has published 10 articles in National and International journals and presented

papers in more than 40 conferences. He has produced 5 Ph.D and 15 M.Phils so far.

