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ABSTRACT 

Energy consumption is a critical design issue in real-time systems, especially in battery- operated 

systems. Maintaining high performance, while extending the battery life between charges is an interesting 

challenge for system designers. Dynamic Voltage Scaling (DVS) allows a processor to dynamically 

change speed and voltage at run time, thereby saving energy by spreading run cycles into idle time. 

Knowing when to use full power and when not, requires the cooperation of the operating system 

scheduler. Usually, higher processor voltage and frequency leads to higher system throughput while 

energy reduction can be obtained using lower voltage and frequency. Instead of lowering processor 

voltage and frequency as much as possible, energy efficient real-time scheduling adjusts voltage and 

frequency according to some optimization criteria, such as low energy consumption or high throughput, 

while it meets the timing constraints of the real-time tasks. As the quantity and functional complexity of 

battery powered portable devices continues to raise, energy efficient design of such devices has become 

increasingly important. Many real-time scheduling algorithms have been developed recently to reduce 

energy consumption in the portable devices that use DVS capable processors. Extensive power aware 

scheduling techniques have been published for energy reduction, but most of them have been focused 

solely on reducing the processor energy consumption. While the processor is one of the major power 

hungry units in the system, other peripherals such as network interface card, memory banks, disks also 

consume significant amount of power. Dynamic Power Down (DPD) technique is used to reduce energy 

consumption by shutting down the processing unit and peripheral devices, when the system is idle.  Three 

algorithms namely Red Tasks Only (RTO), Blue When Possible (BWP) and Red as Late as Possible (RLP) 

are proposed in the literature to schedule the real-time tasks in Weakly-hard real-time systems. This 

paper proposes optimal slack management algorithms to make the above existing weakly hard real-time 

scheduling algorithms energy efficient using DVS and DPD techniques. 
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1. INTRODUCTION 

Battery powered portable real-time systems have been widely used in many applications. As the 

quantity and the functional complexity of battery powered portable devices continues to raise, 

energy efficient design of such devices has become increasingly important. Also, these real-time 

systems have to concurrently perform a multitude of complex tasks under stringent time 

constraints. Thus, minimizing power consumption and extending battery lifespan while 

guaranteeing the timing constraints has become a critical aspect in designing such systems. The 

interest in real-time systems has been growing steadily since more industrial systems rely on 
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computer based operations. Therefore, the critical applications are being done by the computer 

in real-time environment must produce desired result at the correct time. The result (correct 

output) not obtained in correct time may be disastrous. As per the definition, the output of real-

time systems not only depends on the correctness of the result but also the time when the result 

is produced.  

Based on the functional criticality of jobs, usefulness of late results and deterministic or 

probabilistic nature of the constraints, the real time systems are classified as, Hard real-time 

system in which consequences of not executing a task before its dead line catastrophic or fatal, 

Soft real-time system in which the utility of results produced by a task decreases over time after 

deadline expires and Firm or Weakly hard real-time system in which the result produced by a 

task ceases to be useful as soon as the deadline expires but the consequences of not meeting the 

deadline are not very severe [1]. Typical illustrating examples of systems with weakly-hard real-

time requirements are multimedia systems in which it is not necessary to meet all the task 

deadlines as long as the deadline violations are adequately spaced [2]. 

Computations occurring in a real-time system that have timing constraints are called real-time 

tasks. A real-time application usually consists of a set of cooperating tasks activated at regular 

intervals and/or on particular events. Tasks in real-time system are of two types, periodic tasks 

and aperiodic tasks [1].  Periodic tasks are time driven and recur at regular intervals called the 

period.  Aperiodic tasks are event driven and activated only when certain events occur. The 

necessary condition is that real-time tasks must be completed before their deadlines for a system 

to be successful. 

Weakly hard real-time systems research is motivated by the observation that for many real-time 

applications (which are periodic in nature) some deadline misses are acceptable as long as they 

are spaced distantly/evenly. Examples for such applications include multimedia processing, 

real-time communication and embedded control applications. There have been some previous 

approaches to the specification and design of real-time systems that tolerate occasional losses of 

deadlines. Hamdaoui and Ramanathan introduced the idea of (m, k)-firm deadlines [3] to model 

tasks that have to meet m deadlines every k consecutive instances. If this constraint is violated 

in any time window, the system is said to exhibit a dynamic failure (implying possible 

degradation in system performance or quality-of-service). The Skip-Over model was introduced 

by Koren and Shasha [4] with the notion of skip factor. In this model, a task’s tolerance to 

deadline misses is characterized by the skip factor s: in any s consecutive instances of the task at 

most one can miss its deadline. It is a particular case of the (m, k)-firm model. They reduce the 

overload by skipping some task instances, thus exploiting skips to increase the feasible periodic 

load. In the Dynamic Window Constrained Scheduling (DWCS) model motivated by the real-

time packet scheduling applications, a given task needs to complete at least m instances before 

their deadlines in every non-overlapping window of k instances [5], [6], [7]. 

In real-time systems, the systems must schedule the tasks by deadlines and there is no benefit in 

finishing the computation early. Making computations energy efficient in the systems, the 

battery lifetime can be increased. In order to make them energy efficient, in the scheduling, the 

execution time of the tasks can be extended up to the deadline for each task set. This is possible 

through dynamic voltage scaling (DVS) technique. 

In this paper, we address the problem of the dynamic scheduling of periodic task sets with skip 

constraints. In this context, the objectives of a scheduling algorithm are to maximize the 

effective Quality of Service (QoS) of periodic tasks defined as the number of task instances 

which complete before their deadline and to minimize the energy consumption of tasks. 

This paper is organized in the following way. The processor, energy and resource task models 

are described in Section 2. Existing scheduling algorithms (without energy efficiency) for 

weakly-hard real-time systems are explained in Section 3. Energy-efficiency technique 
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proposed to the existing algorithms is described in Section 4. Section 5 discusses the simulation 

and analysis of results. Finally Section 6 concludes this paper with future work. 

2. SYSTEM MODELS 

In this section, we briefly discuss the processor, energy and task models that we have used in 

our work. 

2.1. Processor Model 

The target platform of this work is a single processor system whose only power source is a 

battery. We assume that the system has DVS capability, where the processor speed (frequency) 

and supply voltage can be dynamically adjusted. We further assume the processor can exist in 

two modes: execution mode and stand-by mode. In the stand-by mode, the processor does not 

execute any tasks, and consumes only the stand-by power. The CPU switches to stand-by mode 

if it is idle. In the execution mode, the CPU speed can vary between a lower bound Smin and an 

upper bound Smax. In this case, the power consumed is a function of the CPU speed/frequency. 

In any time interval [τ 1, τ 2], the total energy consumption is the integral of power consumption 

function, which includes the stand-by and dynamic power consumption components. We also 

assume that time and energy overheads due to CPU speed changes are negligible. We adopt an 

inter-task DVS model; that is, we assume that the CPU speed can be changed only at task 

completion or pre-emption points, following [8], [9]. 

2.2. Energy Model 

The DVS technique reduces the dynamic power dissipation by dynamically scaling the supply 

voltage and the clock frequency of processors. The relationship between power dissipation Pd, 

supply voltage Vdd, and frequency f is represented by  

Pd = Cef X V
2

dd X f    and  

f = k X (Vdd −Vt 
2
)/Vdd,  

where Cef is the switched capacitance, k is the constant of circuit, and Vt is the threshold voltage 

[10]. The energy consumed to execute task Ti, Ei, is expressed by Ei = Cef X V
2

dd X εi, where εi is 

the number of cycles to execute the task. The supply voltage can be reduced by decreasing the 

processor speed. It also reduces energy consumption of task. Here we use the task’s execution 

time at the maximum supply voltage during assignment to guarantee deadline constraints. 

2.3. Task Model 

We consider a set of n independent periodic real-time tasks Γ = {T1, T2, …, Tn}. Each task Ti = 

(pi, ci, ai, sfi) is characterized by four parameters: the period pi, worst-case execution time ci 

which is the upper bound on the computation time of Ti, when all the overheads of scheduling 

and resource claiming are included under maximum speed Smax, actual execution time ai which 

is the actual time taken by the task during execution, and skip factor sfi which specify the task’s 

tolerance to deadline misses. That means that the distance between two consecutive skips must 

be at least sfi periods. By definition, the actual execution time of any task is always less than or 

equal to its worst-case execution time, that is, ai ≤ ci. We further assume that the relative 

deadline di is equal to the period pi. Ti,j denotes the j
th

 instance or job of task Ti. Every instance 

of a task is either red or blue [4]. A red task instance must complete before its deadline: A blue 

task instance can be aborted at any time. However, if a blue instance completes successfully, the 

next task instance is still blue. We use the term hyper-period P to refer to the least common 

multiple of all task periods, that is 

 P = LCM (p1,  p2, …, pn)  
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We assume pre-emptive scheduling, and that the pre-emption and speed change overheads can 

be incorporated in ci if necessary. The process descriptor of Ti is augmented to include two 

fields related to the CPU speed: a nominal speed Si 
nom

, which is the default speed assigned to 

the task when it is about to be dispatched, and an actual speed Si, which is the speed at which 

the task is being executed at the specific time instant. Under a constant speed S, the execution 

time of task Ti is ci /S. The utilization of task Ti under CPU speed S is given by ui(S) = ci / (pi S). 

The aggregate utilization of the task set (under maximum speed) is given by  

Utot = ∑
=

n

i 1

ci /pi  

In this paper, we assume that the execution time scales linearly with the CPU speed, ignoring 

memory stall effects. This is a conservative but safe assumption since it overestimates the new 

execution time when the CPU speed is reduced [11]. Hence, it does not affect the schedulability 

analysis. 

With the above system models, our problem can be formulated as follows: 

Given system Γ = {T1, T2, ···,Tn}, Ti = (pi, ci, ai, sfi), i = 0, ···, n, schedule Γ with a dynamic 

scheduling algorithm on a variable voltage processor with discrete supply voltage levels V = 

{Vmin, ...,Vmax} and corresponding processor speeds S = {Smin, ...,Smax} such that all constraints 

with a skip factor sf are guaranteed and the energy consumption is minimized. 

3. EXISTING ALGORITHMS 

In this paper, existing three scheduling algorithms designed for overloaded real-time systems 

that allow skips are considered for energy efficiency. First two scheduling algorithms namely 

Red Tasks Only (RTO) algorithm and Blue When Possible (BWP) algorithm were introduced 

by Koren and Shasha [4]. In RTO algorithm, red instances are scheduled as soon as possible 

according to Earliest Deadline First (EDF) algorithm while blue ones are always rejected. The 

BWP is an improvement of RTO, and this schedules blue instances whenever their execution 

does not prevent the red ones from completing within their deadlines. In other words, blue 

instances are served in background relatively to red instances. The third algorithm Red as Late 

as Possible (RLP) algorithm [2] brings forward the execution of blue task instances so as to 

minimize the ratio of aborted blue instances, thus enhancing the QoS (i.e., the total number of 

task completions) of periodic tasks. It considered two factors, 

• If there are no blue task instances in the system, red task instances are scheduled as 

soon as possible according to the EDF algorithm. 

• If blue task instances are present in the system, they are scheduled as soon as possible 

according to the EDF algorithm, while red task instances are processed as late as 

possible according to the EDL algorithm. 

3.1. RTO Algorithm 

In this algorithm red instances are scheduled as soon as possible according to EDF algorithm, 

while blue ones are always rejected. Deadline ties are broken in favour of the task with the 

earliest release time. In the deeply red model where all tasks are synchronously activated and 

the first sfi−1 instances of every task Ti are red, this algorithm is optimal. Initial RTO schedule 

is illustrated in Figure 1 using the task set T = {T0, T1, T2, T3, T4} of five periodic tasks whose 

parameters are described in Table 1. Tasks have uniform skip parameter sfi = 2 and the total 

processor utilization factor Utot is equal to 1.15. 
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Table 1: Task Parameters 

Task T1 T2 T3 T4 T5 

ci 3 4 1 7 2 

pi 30 20 15 12 10 

 

 

Figure 1: RTO Schedule (sfi = 2) 

 

As we can see, the distance between every two skips is exactly sfi periods, thus offering only the 

minimal guaranteed QoS level for periodic tasks. 

This RTO algorithm is implemented by creating two queues. One is the red queue and the other 

one is the blue queue. In the beginning the instances of all the tasks are created. These task 

instances may be either red or blue. The red task instances are queued in the red queue and the 

blue task instances are queued in the blue queue. The task instances in both the queues are 

sorted in the order of increasing deadline.  

The red instance with least deadline will be executed first. The scheduler places the task 

instances generated periodically in the appropriate queue for execution. The red instances alone 

are executed. The blue instances are left as it is without executing. The red hit variable is 

incremented after each successful completion of the red task instances. The red miss variable is 

incremented if a red task instance misses the deadline. If the distance between two skips is less 

than the skip factor then it is considered as a miss. The blue miss variable is incremented after 

each completion of the period since there will not be any execution of blue tasks instances. 

Whenever a blue task instance is generated it will be missed definitely.  

The RTO scheduler creates a feasible schedule for the hyper-period of a given task set. Then the 

success ratio is calculated for the task set under schedule. The success ratio is ratio of the total 

number of hits to the total number of task instances generated in a hyper-period.  

3.2. BWP Algorithm 

This algorithm schedules blue instances whenever their execution does not prevent the red ones 

from completing within their deadlines. In that sense, it operates in a more flexible way. 

Deadline ties are still broken in favour of the task with the earliest release time. Figure 2 shows 

an illustrative example of BWP scheduling using the task set previously mentioned in Table 1. 
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Figure 2: BWP schedule (sfi = 2) 

This Blue When Possible (BWP) algorithm is implemented by creating two queues. One is the 

red queue and the other one is the blue queue. In the beginning the instances of all the tasks are 

created. These task instances may be either red or blue. The red task instances are queued in the 

red queue and the blue task instances are queued in the blue queue. The task instances in both 

the queues are sorted in the order of increasing deadline. 

The red instance with least deadline will be executed first. After the completion of the first red 

instance the next red instance with least deadline will be executed. When there are no red task 

instances to execute in the red queue, then the blue task instance with the least deadline is 

executed. If a red task instance is created, then immediately this executing blue task will abort 

its execution and the red task instance will be executed. As soon as the period of each task is 

completed, a new task instance is created and queued in the appropriate queue for execution.  

The red hit variable is incremented after each successful completion of the red task instances. 

The red miss variable is incremented if a red task instance misses the deadline. If the distance 

between two skips is less than the skip factor then it is considered as a skip. The blue hit 

variable is incremented after each successful completion of the blue task instances. The blue 

miss variable is incremented if a blue task instance misses the deadline or if it is aborted. 

3.3. RLP Algorithm 

The main drawback of BWP relies on the fact that blue task instances are executed as 

background tasks. This leads to abort partially or almost completely executed blue task 

instances, thus wasting processor time. 

The objective of RLP algorithm is to bring forward the execution of blue task instances so as to 

minimize the ratio of aborted blue instances, thus enhancing the actual QoS (i.e., the total 

number of task completions) of periodic tasks. From this perspective, RLP scheduling 

algorithm, which is a dynamic scheduling algorithm, is specified by the following behaviour: 

• If there are no blue task instances in the system, red task instances are scheduled as 

soon as possible according to the EDF (Earliest Deadline First) algorithm. 

• If blue task instances are present in the system, these ones are scheduled as soon as 

possible according to the EDF algorithm (note that it could be according to any other 

heuristic), while red task instances are processed as late as possible according to the 

EDL algorithm. 

Deadline ties are always broken in favour of the task with the earliest release time. The main 

idea of this approach is to take advantage of the slack of red periodic task instances. 
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Determination of the latest start time for every red request of the periodic task set requires 

preliminary construction of the schedule by a variant of the EDL algorithm taking skips into 

account [12]. In the EDL schedule established at time τ, we assume that the instance following 

immediately a blue instance which is part of the current periodic instance set at time τ, is red. 

Indeed, none of the blue task instances is guaranteed to complete within its deadline. Moreover, 

Silly-Chetto in [12] proved that the online computation of the slack time is required only at time 

instants corresponding to the arrival of a request while no other is already present on the 

machine.  

In our case, the EDL sequence is constructed not only when a blue task is released (and no other 

was already present) but also after a blue task completion if blue tasks remain in the system (the 

next task instance of the completed blue task has then to be considered as a blue one). Note that 

blue tasks are executed in the idle times computed by EDL and are of same importance beside 

red tasks (contrary to BWP which always assigns higher priority to red tasks). 

 
Figure 3: RLP Schedule (sfi = 2) 

4. PROPOSED ENERGY EFFICIENT SCHEDULING TECHNIQUES 

A major trend in the microprocessor industry is towards energy-efficient mobile computing for 

maximal battery life using the concept of performance on demand. The basic idea is to run the 

CPU at a voltage and frequency that satisfies the current performance requirement. Dynamic 

voltage and frequency scaling is a very effective technique for reducing CPU energy [13] [14]. 

Significant energy benefits can be achieved by recognizing that peak performance is not always 

required and therefore the operating voltage and frequency of the processor can be dynamically 

adapted based on instantaneous processing requirement. Examples include the Intel Pentium III 

SpeedStep technology [15] which lets the user run the processor at a lower voltage and 

frequency when using the battery, LongRun technology from Transmeta’s Crusoe [16] and 

PowerNOW! Technology from AMD [17]. In this paper, we propose energy-efficient technique 

to the above existing real-time scheduling algorithms that can exploit the variable voltage and 

frequency hooks available on processors for improving energy efficiency. 

4.1. DVS with Processor Reclamation 

DVS allows adjusting processor voltage and frequency at runtime. DVS can be implemented at 

various levels of a system, such as in the processor, in the OS scheduler, in the compiler or in 

the application. Operating system is the only component with an overview of the entire system, 

including task constraints and status, resource usage, etc. Therefore, the most effective and 

efficient approaches to reduce energy consumption can be achieved with proper task scheduling 

algorithms. It is time consuming to find an optimal schedule where energy consumption is 

minimized and all timing constraints are met. Many previous works either proposed offline 

scheduling for large energy reduction, or used heuristic methods to reduce scheduling overhead. 
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However, while the former approaches are inflexible and too costly to store in memory, the 

latter ones may not realize the full potential of energy savings. 

Our approach involves pre-computing a global nominal speed for all the tasks statically, and 

applying the dynamic reclamation/speed adjustment techniques online whenever possible. At 

dispatch time, the speed of each job of Ti is first set to the nominal speed Snom. However, its 

actual speed Si may be even lower after the application of the dynamic slack reclamation 

techniques. The nominal speed must be carefully chosen to guarantee the deadlines of the 

mandatory jobs. At run-time, it is possible to further reduce the actual CPU speed, and 

consequently reduce the energy consumption, by observing that the schedule has idle intervals 

due to the optional jobs that are skipped. Thus, it is possible to use this slack time for dynamic 

slow-down making it possible to improve the energy efficiency of the system. 

If, at run-time, the mandatory jobs complete execution before their worst case execution time, 

then it is possible to exploit the unused processor time to further minimize the energy 

consumption by performing dynamic speed reduction. We perform dynamic speed slow-down 

by using the Dynamic Reclaiming Algorithm (DRA) [8].  DRA detects early task completions 

by comparing the actual schedule to the static optimal schedule. In this schedule, all the jobs run 

at the same speed, namely the nominal speed Snom, through which all the (selected) jobs will be 

able to meet their deadlines even under a worst-case workload. DRA determines the amount of 

processor time that a dispatched job can safely use to slow down its speed. This additional 

processor time is used to calculate the new lower speed of a currently dispatched job. A main 

feature of the scheme is to calculate this additional time quickly, and without affecting the 

feasibility of already selected tasks. The earliness is computed in such a way to allow the low-

priority tasks to use the slack time of completed high priority tasks. The exact formula for 

calculating the earliness and determining the reduced speed, as well as the details of the DRA is 

discussed in [8]. 

4.2. Hybrid Approach 

Extensive power aware scheduling techniques have been published for energy reduction, but 

most of them have been focused solely on reducing the processor energy consumption. While 

the processor is one of the major power hungry units in the system, other peripherals such as 

network interface card, memory banks, disks also consume significant amount of power. 

Dynamic Power Down (DPD) technique is used to shut down a processing unit and peripheral 

devices to save power when it is idle. There is a minimal time interval that the device can be 

feasibly shut down with positive energy-saving gain. Only when the slack time or idle time is 

more than this minimum time interval the DPD is used. 

In this paper, we combined DPD and DVS techniques in order to make the above existing 

algorithms energy-efficient with less overhead and without affecting the QoS provided by these 

algorithms to the system. First DVS is applied, and then if possible DPD is applied to further 

reduce the energy. 
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4.2. Overall Architecture 

 

Figure 4. Overall Architecture Block Diagram 

The architecture block diagram of the proposed system is shown in Figure 4. Randomly 

generated task sets are given as input for the three existing weakly-hard real-time scheduling 

algorithms RTO, BWP and RLP. The existing three algorithms are made energy efficient using 

the above discussed DVS and DPD techniques. These two techniques are applied to the 

algorithms in a required time multiplexed manner so that it involves less overhead and reduces 

the energy effectively without affecting the QoS provided by the algorithms to the System. 

5. SIMULATION AND ANALYSIS OF RESULTS 

5.1. Simulation 

The input to the algorithms is the task set with parameters as mentioned in the task model. 

These parameters are generated randomly. The period of a task is randomly generated within a 

range 3 to 100, to maintain the hyper period which is the Least Common Multiple (LCM) of the 

periods for the given task set within a limit.  The periods of the second, third and fourth tasks 

are generated as random multiples of the first one. The parameter computation time is selected 

in the range 1 to 15, and it also maintained to be less than or equal to period, as the computation 

time is mostly less than the period in the case of real-time system. When each task repeats itself, 

a red instance or a blue instance of the task should be created. This instance creation is made 

random.  

The simulated algorithms generate the average success ratio by calculating the success ratio of 

each task and calculating the average of them. The algorithms are first tested with two numbers 

of tasks. The average success ratio for two tasks with a simulation test running ten times are 

noted separately for all the three algorithms This action is repeated for  the increased number of 

tasks. Each point in the graph is an average of ten simulation runs 

The same method is followed for the energy calculation in the simulated energy efficient 

algorithms also. The maximum number of tasks taken for the simulation is 10 tasks as the 

number of independent tasks in a task set of a real-time system may not exceed this number in 

general. 
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5.2. Result Analysis 

The existing three scheduling algorithms for the weakly-hard real-time systems are simulated 

and the graph is plotted with the values of success ratio of periodic task set against the number 

of tasks given as  input as shown in Figure 5. From the figure it is noted that RLP gives the best 

QoS out the three existing algorithms. The RTO algorithm schedules only red task instances. 

This algorithm never even tries to schedule any blue task instance. So, it is clear from the graph 

that it provides only less QoS than the other two. Even though both BWP and RLP algorithms 

schedule, both red and blue task instances, RLP gives the maximum QoS among the three. 

 

Figure 5. Success Ratio 

 

The above existing algorithms are simulated with energy efficiency and the graph is plotted 

with the values of normalized energy consumption against the number of tasks in the task set 

generated. This is given in Figure 6, and shows that out of three algorithms, RTO consumes 

lesser energy. This is due to the fact that RTO schedules only the red task instance leaving all 

blue task instances.  So, more slack time is available for applying DVS and DPD techniques in 

appropriate slack periods thereby reducing the energy consumption to a maximum level. Even 

though both BWP and RLP algorithms schedule, both red and blue task instances, RLP 

consumes lesser energy. 

 

Figure 6. Normalized Energy Consumption 
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6. CONCLUSION 

Three existing scheduling algorithms for weakly-hard real-time systems were simulated for 

energy efficiency without affecting the QoS using the proposed hybrid approach. From the 

simulation results it is found that the RLP scheduling algorithm gives better QoS to the system 

and the RTO algorithm consumes less energy among the three. Our aim is to reduce the energy 

consumption while maintaining the same QoS offered by the algorithms. Even though RTO 

algorithm consumes less energy among the three, it never schedules the blue instances of task 

set in the system, which decreases the QoS of the system. However  scheduling of blue task 

instances in addition to mandatory red task instances will increase the QoS of the system. It is 

also studied from the results that, when QoS as well as energy efficiency are to be maintained 

together, the RLP scheduling algorithm is the efficient one. The simulation results show that 

RLP algorithm is more efficient in considering both QoS and energy consumption among the 

three algorithms studied. 

The proposed energy-efficient algorithms are  designed for single processor system which 

considers only independent tasks. However, there exists scope for it being extended to multi 

processor or distributed systems which consider dependant tasks with precedence and resource 

constraints along with the timing constraints. Though such an extension requires more efficient 

algorithms and power scheduling techniques, it can be worked out. 
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