
International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

10.5121/ijcsit.2010.2304 40

��������	�
��
�
�����������	���
��
��	������
�������
�
�����	���
��
�
����
������������
�����
����
���

���
��
��
������
�

K. M. Azharul Hasan, Mohammad Sabbir Hasan
Computer Science and Engineering Department

Khulna University Of Engineering and Technology(KUET)
Khulna 9203, Bangladesh.

azhasan@gmail.com, shabbir_cse03@yahoo.com

ABSTRACT

Because of the importance of object oriented methodologies, the research in developing new measure for object
oriented system development is getting increased focus. The most of the metrics need to find the interactions
between the objects and modules for developing necessary metric and an influential software measure that is
attracting the software developers, designers and researchers. In this paper a new interactions are defined for
object oriented system. Using these interactions, a parser is developed to analyze the existing architecture of the
software. Within the design model, it is necessary for design classes to collaborate with one another. However,
collaboration should be kept to an acceptable minimum i.e. better designing practice will introduce low coupling.
If a design model is highly coupled, the system is difficult to implement, to test and to maintain overtime. In case of
enhancing software, we need to introduce or remove module and in that case coupling is the most important factor
to be considered because unnecessary coupling may make the system unstable and may cause reduction in the
system’s performance. So coupling is thought to be a desirable goal in software construction, leading to better
values for external software qualities such as maintainability, reusability and so on. To test this hypothesis, a good
measure of class coupling is needed. In this paper, based on the developed tool called Design Analyzer we
propose a methodology to reuse an existing system with the objective of enhancing an existing Object oriented
system keeping the coupling as low as possible.

KEYWORDS
Coupling, Cohesion, Design Pattern, Object Oriented Paradigm, Principal Component Analysis, Reusable
Software.

1. INTRODUCTION

There is increasing pressure on software developers to produce quality software in as short time as
possible. This necessitates the reuse of previously developed or commercially available software elements
to expedite the development process. The most common form of reuse is the reuse of code in a fine-grain
manner such as objects in the object-oriented paradigm or a large-grain manner such as components in the
component oriented paradigm [1]. A severe problem is encountered, however, is the quickly increasing
complexity of such systems and the lack of adequate criteria and guidelines for good designs. To cope
with this problem, it is imperative to better understand the properties and characteristics of object-oriented
systems.
 Reusability of software is considered as crucial technical precondition to improve the overall software
quality and reduce production and maintenance cost [2]. Software components are supposed to be better

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

41

reusable and more flexible compared to conventionally developed software. Unfortunately, the benefits
associated technology has their price [3]. Poor documentation of the code makes studying and
understanding details painful and time consuming for reusing that software. Abstracting design details
from the source code help to understand the implementation details reuse it in efficient manner.
Sometimes it becomes even impossible to understand particular document without the design details.
Design patterns provide ways to structure software components into systems that are flexible, extensible,
and have a high degree of reusability. Design patterns are an attempt to capture expertise in building
object-oriented software that describes solution to a recurring design problem in a systematic and general
way. Gamma at el [4] defines design patterns as "descriptions of communicating objects and classes that
are customized to solve a general design problem in a particular context." A design pattern names,
abstracts, and identifies the key aspects of a common design structure that makes it useful for creating a
reusable object-oriented design. The design pattern identifies the participating classes and their instances,
their roles and collaborations, and the distribution of responsibilities. Object-oriented design patterns
typically show relationships and interactions between classes or objects, without specifying the final
application classes or objects that are involved[3][5]. In this paper a methodology is proposed to find the
design pattern of the software from the source code. This would provide several goals in software
construction leading to better values for external attributes such as maintainability, reusability, and
reliability. To find the design pattern it is important to know the interactions between the internal
components of the software. Different interactions are pointed out and described to get the interactions.
 Coupling characterizes a module's relationship to other modules of the system. It measures the
interdependence of two modules[4]. Coupling measures the strength of physical relationships among the
items that comprise an object. Strong coupling makes a system more complex, highly inter-related
modules are harder to understand, change or correct. Designing the systems with the weakest possible
coupling between modules can reduce complexity[7]. To validate the interactions we have selected three
different types of industrial software for case study. For analyzing the coupling measures of object
oriented systems based on different interactions of the classes, a parser has been developed named
“Design Analyzer” to find the design pattern of the system. Such design analyzer is useful to get internal
software architecture of software developed in Object Oriented Paradigm[1]. Finally, using principal
component analysis [7] the measures are analyzed for selecting the most responsive coupling measure.

2. CASE STUDY

 In this research work the analysis was performed on four industrial softwares developed in Object
Oriented paradigm. A tool named “Design Analyzer” is developed as a part of this research work for
parsing the source code to get the design pattern. The selected softwares were developed prior to the
analysis and no modification was done during the analysis. For proceeding in an efficient manner the
process of analyzing the source codes should follow the syntax of the programming language. Brief
descriptions of these softwares are given here:
Software 1-Turtle Chat: This is chatting software like Yahoo! Messenger. This software can send and
receive instant messages over Internet Protocol. There are two parts of this software: Server Part and
Client Part. Here the Client side of contains 22 user defined classes and the Server side contains 4 user
defined classes.
Software 2-Com Chat: This is also chatting software, which sends and receives data through the
communication port of a personal computer. The software uses Java Communication API. The main
purpose of this software is to simulate the seven layers of the OSI Model. The software implements
Broadcasting, CheckSum and Routing techniques. This software contains 22 user defined classes.
Software 3-Admission Test Management System: This is mainly database software which can be used for
admission test management of any university by storing information of the applicants, information of

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

42

allowed candidate for exam, merit list of selected candidates, waiting list and so on. This software
contains 13 user defined classes.

3. RELETED WORKS

 In OO paradigm coupling describes the interdependency between methods and between object classes,
respectively [6][7]. Stevens et al., who first introduced coupling, in the context of structured development
techniques, define coupling as “the measure of the strength of association established by a connection
from one module to another” [9]. Braind et al. defined some properties to be satisfied by the coupling
measure for empirical validation [10]. There are differences between necessary and unnecessary coupling.
The rationale is that without any coupling the system is useless. Consequently, for any given software
solution there is a basic or necessary coupling level. Such unnecessary coupling does indeed needlessly
decrease the reusability of classes. There is also static and dynamic coupling measure for object oriented
systems. As the polymorphic method invocation is determined by run time, the coupling on this method
belongs to dynamic coupling [11]. It is not very much clear what the potential uses of existing measures
are and how different coupling measures could be used in a complementary manner to obtain a more
detailed picture of the coupling in an object-oriented system. Several authors have tried to address this
problem by introducing frameworks to characterize different approaches to coupling and the relative
strengths of it. There are some existing and quite different frameworks for object-oriented coupling. Eder
et al. identify three different types of relationships[12]. These relationships, interaction relationships
between methods, component relationships between classes, and inheritance between classes, are then
used to derive different dimensions of coupling.
 Hitz and Montazeri [13] characterize coupling by defining the state of an object (the value of its
attributes at a given moment at run-time), and the state of an object’s implementation (class interface and
body at a given time in the development cycle). From these definitions, they derive two “levels” of
coupling, Class level coupling (CLC), represents the coupling resulting from implementation
dependencies between two classes in a system during the development lifecycle and Object level coupling
(OLC), represents the coupling resulting from state dependencies between two objects during the run-time
of a system.
 An approach to measure coupling in object-based systems [14] such as those implemented in C++ by
expanding it to include inheritance and friendship relations between classes. This framework concentrates
on coupling as caused by interactions that occur between classes[15].
 All the coupling measures mentioned in this paper are developed for using as metric suite. In this paper
we defined the interactions to find the design pattern of software. Designing software is phase which is
normally done before the implementation of software. But in this paper the design pattern of a software
has been recovered analyzing the existing source code. This design pattern will be used to reuse the
existing source code to modify or extend the software. This is a basic difference between other software
metric related works. Beside, In this a methodology is proposed to add a new module in a existing
software.

4. A METHODOLOGY TO FIND THE DESIGN PATTERN FOR JAVA BASED OBJECT
ORIENTED SYSTEM

Before we go any further, it is imperative to first discuss the concept of a design pattern. Gamma at el
defines design patterns as "descriptions of communicating objects and classes that are customized to solve
a general design problem in a particular context." A design pattern names, abstracts, and identifies the key
aspects of a common design structure that makes it useful for creating a reusable object-oriented design.
The design pattern identifies the participating classes and their instances, their roles and collaborations,
and the distribution of responsibilities. Object-oriented design patterns typically show relationships and

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

43

interactions between classes or objects, without specifying the final application classes or objects that are
involved. But beyond a description of the problem and its solution, software developers need deeper
understanding to tailor the solution to their variant of the problem. Hence a design pattern also explains
the applicability, trade-offs, and consequences of the solution. It gives the rationale behind the solution,
not just a pat answer. In this paper the proposed Design Analyzer finds the interactions, roles,
collaborations and relationships of the software in a graphical format.

In the subsequent sub sections the interactions between objects is found out for Java based programs. In
Section 3 these interactions are used to develop the algorithm for Design Analyzer. The term object is
used to mean a module through out the paper.

4.1 Types of Inter-module Interactions That Occur in Java

 There different ways that are commonly found for interactions between the classes in a Java based
object-oriented software are described in this section. These inter module relationships are as follows:

1. Inter-module relationship through Return Type
2. Inter-module relationship through Argument Passing in a member function
3. Inter-module relationship through Object Declaration
4. Inter-module relationship through Inheritance

From these four types of relationship, we have defined two types of interactions:
a) Operation-Operation (O-O) interaction

 b) Class-Class interaction (C-C) interaction

Operation-Operation (O-O) interaction: The first two categories (relationship through return type and
argument passing) above are included in O-O interaction. Hence we defined O-O interaction as follows

Definition 1: (Operation-Operation Interaction): The Operation-Operation interaction (O-O) is defined as
the interaction between two operations of two or more different objects or classes. Let OC be an operation
of class C. There is an operation-operation interaction between classes C and D, if class D is the type of a
parameter of operation OC or class D is the return type of OC.

Class-Class interaction (C-C) interaction: The last two categories above (relationship through object
declaration and inheritance) are included in C-C interaction. Hence we defined C-C interaction as follows

Definition 2: (Class-Class Interaction): The Class-Class interaction (C-C) is defined as the interaction
between two classes if any one of the above two interaction occurs (i.e. interaction through object
declaration or inheritance). Let C and D be two classes of an object oriented system. There is a C-C
interaction between the classes C and D, if an object Od of D is declared inside class C or D is derived
from class C through inheritance.

Definition 3:(Interaction Graph) The Interaction Graph <G,E> of a software is a graph where each

node G represents a class of the system and there is an edge E between two nodes G1 and G2 if there is an
interaction (O-O, C-C) between the two classes. Our developed and proposed Design Analyzer is an
Interaction Graph.

4.2 The Parsing Scheme to Find the Design Pattern

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

44

In this section the two types of interactions defined in Section 2 (C-C and O-O) is parsed in java based
programs to develop the Design Analyzer. Although the examples are in Java but it can easily be extended
in any object oriented language.

4.2.1 Parsing for the O-O Interaction

Relation through Argument Passing

Before proceeding we have to know the format of how classes can be inter-related through argument
passing in functions. Let’s consider two classes Class A and Class B. Let a is the object of Class A which
is declared in the scope of Class B. In java this can happen in one of the following fashion:

(1) Class B{

access-modifier static A function-name (argument list)
 }

(2) Class B{

access-modifier final A function-name (argument list)
 }

(3) Class B{
access-modifier A function-name (argument list)
}

Here access-modifier sits for indicating public, private or protected and argument list represents

variables of any data type. So from here we see that Class B is the container class because it contains a
function that uses the object of another class as argument. During parsing the source codes of Class B if
we find a statement like:

access-modifier static A function-name (argument list) or access-modifier final A function-name
(argument list) or
 access-modifier A function-name (argument list);

then we can come to the decision that Class B is related to Class A through the object a and c as argument
of the function function-name.

Relation through Return Type of function

Considering two classes Class A and Class B. Let a is the object of Class A which is declared in the
scope of Class B. In java this can happen in one of the following fashion:

(1) Class B{

 access-modifier static return-type function-name (A a, A c);
 }

(2) Class B{

 access-modifier final return-type function-name (A a, A c)
}

(3) Class B{

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

45

 access-modifier return-type function-name (A a, A c)
 }

Here access-modifier sits for indicating public, private or protected and return type specifies value of

any data type or void. So from here we see that Class B is the container class because it contains a
function that uses the object of another class as argument. During parsing the source code of Class B if we
find a statement like

access-modifier static return-type function-name (A a, A c) or access-modifier final return-type function-
name (A a, A c) or access-modifier return-type function-name (A a, A c);

then we can come to the decision that Class B is related to Class A through the object a and c as argument
of the function function-name.

4.2.2 Parsing for the C-C interaction

Relation through object declaration

Before proceeding we have to know the format of how classes can be inter-related through object
declaration in Java. Let’s consider two classes Class A and Class B. Let a is the object of Class A which
is declared in the scope of Class B. In java this can happen in the following fashion.

Class B {

 A a = new A();
}

So from here we see that Class B is the container class because it contains the object of another class.
During parsing the source code of Class B if we find a statement like A a = new A (); then we can come
to the decision that Class B is related to Class A through the declaration of the object a.

Relation through Inheritance

Let’s consider two classes Class A and Class B. Let a is the object of Class A which is declared in the
scope of Class B. In java this can happen in one of the following fashion:

(1) Class B extends A{

 // body of Class B
}

(2) Class B implements A {
 // body of Class B
}

So from here we see that Class B inherits Class A. During parsing the source code of Class B if we find
a statement like Class B implements A or Class B extends A then we can come to the decision that Class
B is related to Class A through inheritance.

5. AN ANALYSIS OF DESIGN PATTERN USING DESIGN ANALYZER
We have developed tool using java for analyzing the source code of an object oriented system to get the
design pattern of the system. We named it Design Analyzer. Through out the paper where we used the
word Design Analyzer we mean the developed software. The Design Analyzer implements the parsing

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

46

scheme described in Section 4. The input of the system is the source code of an Object Oriented program
and output is the graphical representation (See Fig. 1) of the design pattern of the software. The design
pattern is a graph <G,E> where each node G represents a class of the system and there is an edge E
between two nodes if there is an interaction (O-O, C-C) between the two classes. We have considered
only the user defined classes that are found in the source code. This is because our next goal is to add a
new module in the system so that we can reuse the existing system with minimum modification.

Fig 1: Graphical Representation of the relationship among the User Defined Classes of software 1

Fig.1 shows the design pattern found using the Design Analyzer for software 1 described in Section 1
from the figure we can see that there are 19 user defined classes in the system. Among them the class
ChatClient is very much coupled with other classes. The ChatClient class has 16 coupling relations with
others. We can see that there is no class isolated in the system. Hence this is a criterion of good design.
But the distribution of coupling is based on only three classes namely ChatClient, ScrollView and
Tappanel. This is a sign of low maintainability. Because if the class ChatClient fails for any reason most
of the classes will be affected. Fig. 2 shows the design pattern of software 2. From Fig.3 we see that the
average coupling distribution is similar to the classes. Fig. 3 shows the design pattern of software 3. From
the figure we see that the software is poorly designed. Almost all the classes are coupled with one class
namely Admission. If this class fails or has a bug then the whole software will work poorly. In conclusion
we can say that to reuse a software it is very important to know about the design pattern of the software. If
it is poorly designed then it might be error prone for reuse in the future.

6. The Coupling Measures
In this research work the following couplings metrics have been chosen for the analysis of inter module
dependencies. A brief definition of the measures is given here. All the measures determine the coupling
between components. A survey of the metrics can be found in [16][17].

1. Number of used classes by dependency relation (NUCD): This measure is used to count the total
number of distinct classes with whom a particular class is creating dependency relation. Only one
evidence for dependency relation would be enough, caused by any of dependency types (e.g. parameter,
local variable, return type) to recognize the dependency between two classes.

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

47

Fig 2: Graphical Representation of the relationship among the User Defined Classes of Software 2

Fig 3: Graphical Representation of the relationship among the User Defined Classes of Software 3

2. Total number of evidences for “Used classes by dependency relation” (TNUCD): This measure is
used to count total number of evidences for a particular class of “Used classes by dependency relation.”
All types of dependencies (e.g. parameter, local variable, return type) will be used to count such
evidences.

3. Number of user classes for a class through dependency relation (NUCC): This measurement
represents the total number of distinct classes who are using a particular class through dependency
relations.

4. Total number of evidences for “User classes through dependency relation” (TNUCC): This
measurement counts the total number of usage evidences of a particular class by the other classes in OO
design.

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

48

5. Class Coupling: The Class Coupling (CLC) is the summation of Client Coupling and Server Coupling
of the class. It is the measure of the summation of out degree and in degree of a node in Class Class
Interaction Graph(CCIG).

Class Coupling= Client Coupling (CC) + Server Coupling (SC).

The number of Coupling Relations for which a class is a client to other class is called Client Coupling for
the class. It is the measure of out degree of a node in CCIG. The number of Coupling Relations for which
a class is a server to other class(s) is called Server Coupling for the class. It is the measure of in degree of
a node in CCIG.

6. Visible Member: The measure “Visible Member” shows the amount of members (attributes and
methods) visible to other class numerically. This measure is used to find the over all members which can
be called or used by other classes. Visible members are the most required criteria for direct coupling

7. Criteria of Measuring Coupling

We have developed an Interaction Graph (See Definition 3) and coupling occurs due to this interaction,
hence among the coupling measures to select an effective one is necessary and useful. The methodology
of Principal Component Analysis[7] has been adopted to select the most responsive coupling measure for
a system. When we want to add a module we need to find a class that is less responsive. From graphical
analysis we take decision to add a module in which the interaction graph has fewer edges and in this
section we show some experimental result to prove the idea.

7.1 Experiment Design
To make a study of coupling measure we want to determine the best coupling metrics defined above. We
are going to apply these measures on the software under observation. The above measures are applied on
these softwares through principal component analysis.

Principal Component Analysis:
Principal component analysis [7][17] is typically used to reduce the dimensionality and/or to extract new
uncorrelated features from the original data. Principal component analysis involves an Eigen analysis on a
covariance matrix. If the input data is represented as a matrix X of ‘n’ rows and ‘m’ columns:

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

nmnn

m

m

xxx

xxx

xxx

X

...
.
.

.

.
.
.

.

.
....
....

21

22221

11211

Where n = total number of classes and m = total measures, when finding most effective measure and
n = total number of measures and m = total number of classes, when finding the less responsive class.
Then, the sample mean µi is computed for each column when finding most effective measure, where

�
=

=
n

i
iji x

n 1

1µ for j = 1, 2…m.

Then X can be centered to form X*

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

49

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−−−

−−−
−−−

=

mnmn

mm

mm

xxx

xxx

xxx

X

µµµ

µµµ
µµµ

....
.
.

.....

.....
.
.

.

.
...
...

22211

2222121

1212111

*

Then covariance matrix **])[1(XXnR T= is computed. An Eigen analysis on the covariance matrix R

yields a set of positive Eigen values },,.........,{ 21 mλλλ . If the Eigen values are sorted in descending

order (i.e., mλλλ >>>21), their corresponding Eigen vectors, { mvvv ,....,, 21 }, are the principal
components. The first principal component retains the most variance, if the feature vectors are projected
onto the first principal component, more variance will be retained than if the vectors are projected onto
any other principal component. The second component retains the next highest residual variance, and so
on. A smaller Eigen value contributes much less weight to the total variance. In many cases, the first few
components can retain nearly all of the variance. If the ‘d’ most significant principal components are
selected for projection of the data, then the variance (V) retained by this approximation is [8]:

�

�

=

== m

i
i

d

i
i

V

1

1

λ

λ

V is also called the degree of accuracy for the approximation.

8. Results and Discussions
8.1 Finding an Effective metric for Coupling

For the set of xij are calculated as defined above for all 3 softwares under observation. Here Software-1
has 20 classes, Software-2 has 11 classes and Software-3 has 13 classes. The Principal Component
Analysis produces the principal components for coupling metrics (Shown in Table 1, Table 3 and Table
5).
In case of Software-1 (see Table 1), the projection of the objects into the first principal component retains
76.85% of the total variance and projection of the first two principal components retains 94.99% to the
total variance as in Table 2. Observation of the first Eigen vectors reveals that in case of Category1
coupling metrics for Software-1, TNUCC is the most significantly weighted measure.
In case of Software-2 (see Table 3), the projection of the objects into the first principal component retains
85.75% of the total variance and projection of the first two principal components retains 97.76% to the
total variance as shown in Table 4. Observation of the first Eigen vectors reveals that in case of Category1
coupling metrics for Software-2, “Class Coupling” is the most significantly weighted measure.
 Table 5 shows the principal components of Category1 coupling metrics of Software-3, the projection of
the objects into the first principal component retains 84.46% of the total variance and projection of the
first two principal components retains 96.87% to the total variance as shown in Table 6. Observation of
the first Eigen vectors reveals that in case of Category1 coupling metrics for Software-3, “Class
Coupling” is the most significantly weighted measure.
 The experimental result shows that projecting the object class feature vectors onto the first two principal
components retained up to a considerable range of the total variance, hence two components are sufficient
to represent the entire dataset with less error. But the most significant component for all these software is

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

50

not same. Hence there is no uniform coupling measure which remains the most significant component for
all software.

Table 1: The Principal Components and their Eigen Values for Coupling Metrics of Software 1.

Principal
Component No.

Component Vector Eigen Value

1 (-0.0388 , 0.0505, 0.0289, 0.7147, 0.6960, 0.0000) 2.8132

2 (-0.3550, 0.7244, 0.1141, -0.0371, -0.0390, -0.5774) 0.6641
3 (-0.0399 , -0.0228 , 0.0026 , 0.6966 , -0.7160 , -

0.0000)
0.1771

4 (-0.4562 , -0.6741 , -0.0521 , -0.0105 , 0.0365 , -
0.5774)

0.0043

5 (-0.8112 , 0.0503 , 0.0620 , -0.0476 , -0.0025 , 0.5774) 0.0018
6 (-0.0690 , 0.1236 , -0.9897 , 0.0160 , 0.0118 , 0.0000) -0.0000

Table 2: The retained variances of principal components for Coupling Metrics of Software 1.

Number of Component % Variance Retained
1 76.85%
2 94.99%
3 99.83%
4 99.95%

Despite of the very interesting research work and studies on coupling measures, there is still a little
understanding of the motivation and empirical hypotheses behind many of the measures. It is reported that
relating the measures is a difficult task in most of the cases and especially to conclude for which
applications they can be used. Analysis shows that there are a lot of inconsistencies in different measures
of coupling for object-oriented system. The variations of existing measures reveal that they cannot be
represented in a unified framework accepted by all. Therefore, a conclusion can be drawn that the efforts

Table 3: The Principal Components and their Eigen Values for Coupling Metrics of Software 2.

Principal
Component No.

Component Vector Eigen
Value

1 (0.0795 , 0.0648 , -0.0225 , -
0.5955 , 0.7344 , 0.3084)

596.6112

2 (0.5364 , 0.5395 , -0.0423, -
0.4623, -0.3742, -0.2564)

83.6107

3 (0.0373 , -0.0463 , -0.2535 ,
-0.0989 , -0.4453, 0.8510)

11.0265

4 (0.2428 , -0.8120 , -0.2278
, -0.3757 , -0.1610, -
0.2506)

3.9422

5 (0.7729 , -0.1612 , 0.3617
, 0.4093 , 0.1854 ,
0.2097)

0.2327

6 (0.2196 , 0.1317 , -0.8665
, 0.3366 , 0.2492 , -
0.0910)

0.3619

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

51

Table 4: The retained variances of principal components for Coupling Metrics of Software 2.
Number of Component % Variance Retained
1 85.75%
2 97.76%
3 99.35%
4 99.91%

Table 5: The Principal Components and their Eigen Values for Coupling Metrics of Software 3.

Principal
Component
No.

Component Vector Eigen Value

1 (-0.1548 , -0.0351 , -0.2210 , -0.5965 , 0.6043, -0.4529) 69.2342
2 (-0.3079 , -0.1109 , -0.6325 , -0.3580 , -0.2624 , 0.5438) 10.1730
3 (-0.3139 , 0.0804 , 0.2420 , -0.3704 , -0.6980, -0.4605) 2.4804
4 (-0.6161 , 0.2338 , 0.5561 , -0.0966 , 0.2745, 0.4145) 0.0583
5 (-0.6115 , 0.0560 , -0.3701 , 0.6063 , 0.0554, -0.3394) 0.0224
6 (0.1707 , 0.9603 , -0.2152 , -0.0440 , -0.0199, 0.0037) 0.0081

for improving the understanding of object-oriented coupling and for creating a unique framework with
empirical validation are useful and necessary.

Table 6: The retained variances of principal components for Coupling Metrics of Software 3.

Number of Component % Variance Retained
1 84.46%
2 96.87%
3 99.89%

8.2 Finding an Effective class to add a module for extending reusability
Here effective class means the class that has low coupling with respect to others and the class in which if
one new module is added then the modification needed will be minimum to achieve the reusability. From
the graphical analysis the designer can take the decision of where to add the new module of the existing
software in an efficient manner by keeping the development cost as minimum as possible. This leads to a
better reusability of the existing software. Here in this we show one example of software 1 (See fig…)
where one new module is added to make the existing software reusable. From the graphical analysis of
Software 1 the decision that can be taken is: a new module can be added beside the classes which are not
highly coupled such as: InformationDialog, CustomButton, ScrollBar, ImagePanel. Also we present a
principal component analysis to find a module to interact with for reusing the module.
Table 13 shows the first 3 principal component of software 1. Here first component retains 70.30%
variance and first two component retains 95.15% of the total variance. In Table 13 the lower coupling
contributing modules are shown in bold face. From the 3 principal components we can see that among the
negative impact values only module 9(whose name is InformationDialog and shown as underline) has
negative impact to all the principal components. Hence we can take decision if one module is added
interacting with only module 9 and then the purpose of the new software serves then it is a good decision
to implement it. If the purpose does not serves then we should select a module having low coupling. Also
we can see from design pattern of software 1 that the class InformationDialog interacts only with 1 class
namely ChatClient. We have implemented our approach for software adding a new class StatusArea and

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

52

we found that the system is working well serving the new purpose. Figure A shows the design pattern
after adding the new module StatusArea.

Table 13: Principal components for finding most Affecting Class (Software 1)

Principal
comp. #

Eigen Vector Eigen Value

 1. (-0.2190 -0.0989 0.5251 0.5679 0.2232 -0.0705 0.1037
0.0043 -0.0430 0.0168 -0.0093 0.0019, 0.0167 0.1911 -
0.1806 0.3981 -0.0881 0.1068 0.0081 0.1707)

0.9713

2. (0.9157 -0.0559 0.1064 0.1236 0.0472 0.0021 0.0214
0.0033 -0.0089 0.0517 0.0505 0.0059, -0.0289 -0.1707 -
0.1957 0.1786 0.0640 -0.1361 -0.0267 0.0150)

0.2244

3. (0.0874 0.5140 0.5518 -0.3007 -0.1698 0.0262 0.0652 -
0.0109 -0.0120 0.0457 -0.0055 -0.1150, 0.2353 0.1326
0.0021 -0.2258 -0.0821 0.0315 -0.3285 0.2104)

0.0600

Fig 4 : Graphical Representation of the relationship among the User Defined Classes of software 1(after
adding a new module)

7. Conclusion

Identification of design patterns from source code is one of the most promising methods for improving
software maintainability and reusing design experience. It is hard or even impossible to understand poorly
documented legacy systems. Nevertheless, developers try to understand unknown object oriented systems
by analyzing the source code to recover the architecture of the system, which is a hard task since the
dependencies between the classes cannot be recovered well enough. However when a software of Object
Oriented System undergoes the development process, the designer should be concern about the
development cost that can be measured with respect to some quality metric of software such as Coupling.
In this paper, an approach of detecting design patterns from Java source code is presented and the

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

53

approach continues with the analysis of source codes of softwares for selecting the most effective
component and the highly coupled class. This helps the designer to take the decision that how and where
a new module can be added in an efficient manner by keeping the coupling value as minimum as possible
and by ensuring the reduction of development cost. We believe, the knowledge about design patterns
using the design tool can help developers to understand the underlying architecture faster.

REFERENCES

[1] W. AI-Ahmad, “Object-Oriented Design Patterns for Detailed Design,” Journal of Object

Technology, vol. 5 No. 2, pp. 155-169, 2006.

[2] W. Pree, “Meta Patterns-A means for capturing the essentials of reusable object-oriented design”,
ECOOP’94, LNCS 821, pp. 150-162. 1994.

[3] W. Pree, H. Sikora, “Design patterns for object-oriented software development (tutorial)”,

International Conference on Software Engineering, Proceedings of the 19th international
conference on Software engineering, pp. 663 – 664, 1997.

[4] Mohammad S. Hasan, K. M. A. Hasan, Finding the Design Pattern from the Source Code for

Developing Reusable Object Oriented Software, 2nd Int. Conference on the Application of Digital
Information and Web Technologies (ICADIWT 2009), August 4-6, 2009, London, UK, pp. 157-
162, IEEE Explorer.

[5] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object Oriented Design”, IEEE
Transactions on Software Engineering 20 (6), 476-493, 1994.

[6] P. Coad and E. Yourdon, “Object-Oriented Analysis”, prentice-Hall, second edition 1991.

[7] P.C. Wong, R.D. Bergeron, “Multivariate visualization using metric scaling”. Proc., Visualization
97, Phoenix, October 1997, pp. 111-118.

[8] W. Stevens, G. Myers, and L. Constantine, “Structured Design”, IBM Systems Journal, 13 (2),
115-139, 1974.

[9] . L. Briand, S. Morasca, and V. Basili, “Property-Based Software Engineering Measurement”,
IEEE Transactions of Software Engineering, 22 (1), 1996, pp. 68-86.

[10] K. M. Azharul Hasan and D. N. Batanov, “Measuring Coupling for Developing Object-Oriented
Systems”, In Porc. ICT, April 8-10, pp. 325-330, 2003.

[11] J. Eder, G. Kappel, and M. Schrefl, “Coupling and Cohesion in Object-Oriented Systems”,
Technical Report, University of Klagenfurt, 1994.

[12] M. Hitz, and B. Montazeri, “Measuring Coupling and Cohesion in Object-Oriented systems”, In
Proc. Int.Symposium on Applied Corporate Computing, 1995.

[13] L. Briand, P. Devanbu, and W. Melo, 1997, “An Investigation into Coupling Measures for C++”,
Technical Report ISERN 96-08, IEEE ICSE ‘97.

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

54

[14] Dentcho N. Batanov and Somjit Arch-int, “Business Objects and Components for Web-based

Information Systems Development”, Proceedings of IRMA’2002 Seattle, 2002.

[15] Imran Baig, "Measuring Cohesion and Coupling of Object-Oriented Systems- Derivation and
Mutual Study of Cohesion and Coupling", School of Engineering Blekinge Institute of
Technology, Thesis No: MSE-2004:29, pp. 20-26, August 2004

[16] F. Brito e Abreu “The MOOD Metrics Set” Proc. ECOOP’95 Workshop on Metrics, 1995

[17] K. M. Azharul Hasan, Mohammad Sabbir Hasan,” Principal Component Analysis of Coupling
Measures for Developing High Quality Object Oriented Software”, Proceedings of 3rd
International Conference on Computer Communication Engineering (ICCCE’10), Kualalampur,
Malaysia, pp.217-222, IEEE.

Authors

Dr. K. M. Azharul Hasan received his B.Sc. (Engg.) from Khulna
University, Bangladesh in 1999 and M. E. from Asian Institute of
Technology (AIT), Thailand in 2002 both in Computer Science. He
received his Ph.D. from the Graduate School of Engineering, University
of Fukui, Japan in 2006. His research interest lies in the areas of
databases and software engineering, and his main research interests
include Parallel and distributed databases, Parallel algorithms,
Information retrieval, Data warehousing, MOLAP, Multidimensional
databases, OOAD, Software metric and Software maintenance. He is
with the Department of Computer Science and Engineering Khulna
University of Engineering and Technology (KUET), Bangladesh since
2001.

Mohammad Shabbir Hasan received his B.Sc. (Engg.) in
Computer Science and Engineering from Khulna University of
Engineering and Technology (KUET), Bangladesh in 2008. His
research interest includes different areas of Software Engineering
like Software Metric, Requirement Gathering, Software Security
and Software Maintenance. Currently he is serving as a Lecturer of
Department of Computer Science and Engineering in Institute of
Science, Trade and Technology (ISTT), Bangladesh.

