
International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009

 80

DESIGN AND IMPLEMENTATION OF 32-BIT

CONTROLLER FOR INTERACTIVE INTERFACING

WITH RECONFIGURABLE COMPUTING SYSTEMS

Ashutosh Gupta and Kota Solomon Raju

Digital System Group, Central Electronics Engineering Research Institute (CEERI)\

Council of Scientific and Industrial Research (CSIR), Pilani-333031 (Raj.), India
ashu_gupta09@rediffmail.com,

solomon@ceeri.ernet.in

ABSTRACT

Partial reconfiguration allows time-sharing of physical resources for the execution of multiple functional

modules by swapping in or out at run-time without incurring any system downtime. This results in

dramatically increase in speed and functionality of FPGA based system. This paper presents the

designing an interface controller through UART for execution & implementation of reconfigurable

modules (RM) on Xilinx Virtex-4(XC4VFX12), (XC4VFX20) and (XC4VFX60) devices. To verify partial

reconfiguration execution at run-time an interface has been designed to make user interaction with the

system at run-time. Interface design includes the controllers for controlling the flow of data to and from

the reconfigurable modules to the external world (host environment) through busmacros. The controller

is designed as static module. All the static as well as dynamic modules are designed and simulated to

verify the functionality with supporting simulation tool using ModelSim-6.0d and synthesized with Xilinx

9.1.02i_PR10 (ISE).

KEYWORDS

 Reconfigurable computing systems, Partial reconfiguration, FPGA, Reconfigurable modules, Busmacros

1. INTRODUCTION

All Partial reconfiguration is one of the prerequisite in reconfigurable computing as it allows for

swapping modules into and out of the device without having to reset the complete device for

total reconfiguration. Therefore, reconfiguration time can be reduced by reloading data only to

the needed portion of the chip. It also saves silicon space which could be used to implement

other functional modules [1]. How to design a system with run-time reconfiguration (RTR)?

What are the different technologies that support partial reconfiguration? What are the benefits of

RTR (also called as PR) over the fixed implementation? The answers to these questions are the

aim of this paper. The design process involves several steps starting from the HDL description

of the design to finally merging the static and reconfigurable modules. This paper focuses on: (i)

a system design with two partial reconfiguration regions (PRRs), one(PRR1) consists of two

arithmetic functional modules (32-bit ADD/SUB) and other(PRR2) consists of left and right

shifting functional modules for LEDs, (ii) implementation on XC4VFX12, XC4VFX20 and

XC4VFX60 FPGA devices and (iii) controller has been designed for interfacing of RMs with

general purpose I/O devices and UART. The rest of the paper is organized as follows: Section 2

describes the partial reconfigurable design methodologies. Section 3 describes the design of

controller for interactive interface. Section 4 includes the implementation results, placement and

floorplan of the top level design and the run-time execution of various functional modules with

time sharing has been shown. Finally, Section 5 includes the conclusions drawn and future

scope related to this work.

International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009

 81

2. PARTIAL RECONFIGURATION METHODOLOGIES

Partial reconfiguration can be implemented in two ways: one is module based and other is

difference based [2, 3]. In module based design total functionality is divided into three parts: top

level design, base design, and partial reconfiguration regions. Top level design includes various

base and reconfigurable modules instantiated as black-box, all global signals, such as I/Os,

global clocks. Whereas difference based partial reconfiguration is used only when small change

is made to the design. In difference based method changes are made to the design parameters

such as logic equations, I/O standards, and block RAM contents [4]. The changes can be made

by directly editing the routed NCD file. Switching configuration from one implementation to

other is very quick in difference based partial reconfiguration, but this flow is not recommended

for making the design with large change in functionality from one implementation to other. In

the work presented in this paper, module based partial reconfiguration design flow is used to

implement partially reconfigurable (PR) design on Virtex-4 FPGA. The implementation of PR

design is divided into two parts: PR procedure and design methodology.

2.1. PR Procedure

The PR design flow followed is consists of four steps: (1) Design Entry & Synthesis (2) Initial

Budgeting (3) Active Module Implementation (4) and finally Assembling the static and

dynamic modules. These steps will now be discussed next. During the first steps all the

modules, static as well as dynamic are designed using HDL and synthesized. Separate netlists

are generated for each module. All modules are ported to the top-level module and top-level

module is ported to the I/O pins. Thus, In synthesis properties, I/O buffer insertion must be

enabled while synthesizing top module, and disabled for all sub-modules. Top level module is

synthesized with certain restrictions such as all the design modules instantiated in the top

module with only ports and port directions and signals that connect modules to each other and

to I/O pins, all global logic, I/Os must be included in the top level design, and the top module

include no logic except clock generation and distribution circuit. All signals except clock

signals between PR modules and base design must pass through busmacros. After synthesizing

all the modules, the next step (initial budgeting) is to place constraints on the design for place

and route. Various types of constraints such as timing constraints, AREA GROUP, AREA

GROUP RANGE, LOC, and MODE are placed on the top module. All these constraints are set

in the design constraint file called as UCF (user constraint file). Finally, in this phase top level

design and static design are implemented via NGDBuild, MAP, and PAR. During base design

implementation static.used and routed .ncd file are generated. The static.used file contains the

list of routes in PR region that are used by the base design. This static.used file is used as an

input to PAR during active module implementation step, whereas the .ncd file contains the

implemented static design. In third step, all reconfigurable modules are implemented through

NGDBuild, MAP, and PAR utilities. The routed .ncd files are generated for each reconfigurable

module which contains the corresponding implemented reconfigurable module. The last step in

PR design flow is assembling the implemented static and reconfigurable design. During this

phase, top, base, and reconfigurable modules are merged and a complete design is built from the

each reconfigurable module and base design. Complete as well as partial bitstreams are

generated using the specific tools. Complete bitstream contains the full design and is used to

first configure FPGA, after that partial bitstreams are used to configure FPGA in order to

change the logic inside the PR regions at run-time without affecting the functionality of other

reconfigurable and static modules.

2.2. Design Methodology

In the entire device two PRR regions are selected each having two PRMs. PRR1 contains two

arithmetic functions: 32 bit addition and subtraction, whereas the other PRR contains the two

logical functions: left shift and right shift. Top-level functionality is divided into the three parts:

International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009

 82

top module, base design and reconfigurable modules (RMs). The communication between the

base design and PR region has been achieved via special busmacros. These busmacros are used

to provide a fixed communication between static and reconfigurable modules. Synchronous bus

macros are used here in order to achieve superior timing performance. The bus macros used are

narrow bus macros and are two CLB wide and all the signals (except clock signals) routed

between base and PR region are passes through busmacros as shown in Figure 1.

In Figure 1, we can observe a signal out_neg_cntrl which is used for communication between a

static module and one RM in PR region is passes through a busmacro. Now, there is need to

make interface to the user. Interface has been designed to accomplish the same. The first PRR is

interfaced to the host environment through RS-232 port. User can interact with this PRR

through HyperTerminal. This interface design included a controller which has been designed to

controls the flow of data from the serial port to PRMs in the PRR and vice-versa. This controller

is made as a static logic module ported to the top module. The second PRR is interfaced to the

user via general purpose switches. This included another controller which has been designed to

control the tasks of taking input from the general purpose switches such as push buttons at run-

time and send necessary control signals to the reconfigurable module inside PR region.

 (a) (b)

Figure 1. (a) Internal view narrow synchronous busmacro and (b) Communication between

static and reconfigurable module through busmacros

3. DESIGN OF CONTROLLER FOR INTERACTIVE INTERFACE

The state machine model of the controller designed to control the tasks of taking input from

serial port and routing inputs to the reconfigurable module in PR region through busmacros and

again sending the output result from the reconfigurable module back to serial port through

busmacros is shown in Figure 2. The controller establishes the communication between the

reconfigurable modules and the serial port. Initially, the controller has been set in state 0 in

which it continuously waits for input data from UART receiver. As soon as it receives data, it

stores the operands into the registers. In case of invalid or unknown inputs it sends an error

message to the HyperTerminal through serial port during the state 18 to state 23. Then it sends

the operands to the reconfigurable modules in the PR region through busmacros during the state

5 to State 7. The result received from the PR region is then displayed on the HyperTerminal

through UART during state 10 to state 17.

Busmacro

slices

out_neg_cntrl

(Routed from PR

region to static) module

International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009

 83

Figure 2. State Machine model of controller

The simulation result of state machine is shown in Figure 3.

International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009

 84

Figure 3. Simulation result for controller state machine

4. HARDWARE IMPLEMENTATION AND TESTING

The Boundary Scan mode is used here to configure the FPGA. On device power-up, a full

bitstream is first loaded into the FPGA device. Subsequently, partial bitstreams are loaded to

change the reconfigurable logic in PR regions on-the-fly. Fixed modules or other reconfigurable

modules not being reconfigured are remains fully operational during the reconfiguration of a

reconfigurable module. The partially reconfigurable design with user interface has been

implemented on Virtex-4 XC4VFX12, FX20 and FX60 device successfully. The architecture

view of the system designed is shown in Figure 4.

Figure 4. Complete System architecture

The testing of the PR design is shown in Figure 5. The controller controls the flow of data to

and from the reconfigurable modules to the external world (host environment) through

busmacros. The controller is designed as static modules.

International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009

 85

Figure 5. Reconfiguring the module through FPGA device at run-time

The Percentage of hardware resources utilized by the top-level design is shown in Table 1.

Optimization Goal : Speed

Device, Package, Speed : xc4vfx12, ff668, -10

Table 1. Hardware Utilization for Top Module.

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 278 10944 2%

Number of 4-input LUT’s 484 10944 4%

Number of occupied Slices 348 5472 6%

Number of bounded IOB’s 10 320 3%

Number of BUFGs 1 32 3%

Number of Hard Macro 10

Number used as Shift registers 19

Total Equivalent Gate Count (not including hard macro) 6,805

The synchronized bus macros instantiated in the top-level design are as follows:

� Busmacro_xc4v_l2r_sync_narrow: 6

� Busmacro_xc4v_r2l_sync_narrow: 4

All the signals are completely routed and all the timing constraints are met for the top-level

design. The minimum period for the source clock (sys_clk) is 9.126 ns and therefore, the

maximum frequency is 109.577 MHz. The delay summary report generated after the PAR is as

follows:

� The average connection delay for this design is: 0.937ns

� The maximum pin delay is: 3.318ns

� The average connection delay on the 10 worst nets is: 2.373ns

International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009

 86

Floor-plan and Placement of top-level design is shown in Figure 6.

Figure 6. Floorplan and placement of top-level design on Virtex-4 FPGA chip

5. CONCLUDING REMARKS

In this paper we have addressed the swapping of modules in and out of the device on-the-fly and

a user interface required to interact with the design implemented at run-time. Different

configurations are swapped in or out of the device successfully. The future scope of this work

includes implementation of partial reconfiguration technique on smart real-time applications

like real-time tracking applications, wireless applications such as software defined radio, and in

the development of intelligent robotic systems.

ACKNOWLEDGEMENTS

This work is under the project “Design and development of system level reconfiguration

techniques for reconfigurable computing systems” sponsored by Department of Information

Technology, Ministry of Communications and Information Technology, Govt. of India, New

Delhi.

We would like to thank Dr. Chandrashekhar, Director, Central Electronics Engineering

Research Institute (CEERI), Pilani, and Dr. P. Bhanu Prasad Group Leader, Digital Systems

Group, CEERI, Pilani for their encouragement and support.

International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009

 87

REFERENCES

 [1] Christophe Bobda “Introduction to Reconfigurable Computing: Architectures, Algorithms and

Applications” Springer 2007.

 [2] Two Flows for Partial Reconfiguration: Module Based or Difference Based, Xilinx website

http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf,http://www.xilinx.

com/itp/xilinx7/books/data/docs/dev/dev0038_8.html

 [3] Sedcole, P. Blodget, B. Anderson, J. Lysaghi, P. Becker, T. " Modular partial

reconfigurable in Virtex FPGAs," International Conference on Field Programmable Logic and

Applications, 24-26 Aug. 2005 p.p.: 211- 216, ISBN: 0-7803-9362-7

 [4] Emi Eto, “Difference-Based Partial Reconfiguration”, XAPP290 (v2.0) December 3, 2007.

 [5] Early Access Partial reconfiguration User Guide, UG208, Xilinx website, http://www.xilinx.com

Ashutosh Gupta

Received B.E. (ECE) and M.Tech. in Vlsi Design & Embedded systems from

Guru Jambheshwar University of Science & Technology, Hisar in 2006 and 2008,

respectively. Presently working as a Project Assistant in Digital Systems Group,

Central Electronic Engineering Research Institute, Pilani, India. His field of

interest is FPGA based Reconfigurable computing systems.

Dr. Kota Solomon Raju

Received B.E. (ECE) from SRKR Engineering College Bhimavaram, M.E. from

Birla Institute of Technology & Science Pilani and Ph.D. from Department of

Electronics and Computer Engineering, Indian Institute of Technology, Roorkee.

Presently, he is working as senior scientist in Digital Systems Group, Central

Electronic Engineering Research Institute, Pilani, India. He is working in the field

of reconfigurable computing systems for communication, image processing and

intelligent smart sensor systems.

