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ABSTRACT 

 
In this paper, we apply grammar-based pre-processing prior to using the Prediction by Partial Matching 

(PPM) compression algorithm. This achieves significantly better compression for different natural 

language texts compared to other well-known compression methods. Our method first generates a grammar 

based on the most common two-character sequences (bigraphs) or three-character sequences (trigraphs) in 

the text being compressed and then substitutes these sequences using the respective non-terminal symbols 

defined by the grammar in a pre-processing phase prior to the compression. This leads to significantly 

improved results in compression for various natural languages (a 5% improvement for American English, 

10% for British English, 29% for Welsh, 10% for Arabic, 3% for Persian and 35% for Chinese). We 

describe further improvements using a two pass scheme where the grammar-based pre-processing is 

applied again in a second pass through the text. We then apply the algorithms to the files in the Calgary 

Corpus and also achieve significantly improved results in compression, between 11% and 20%, when 

compared with other compression algorithms, including a grammar-based approach, the Sequitur 

algorithm.  
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1. INTRODUCTION 
 

1.1. PREDICTION BY PARTIAL MATCHING 
 
The Prediction by Partial Matching (PPM) compression algorithm is one of the most effective 

kinds of statistical compression. First described by Cleary and Witten in 1984 [1], there are many 

variants of the basic algorithm, such as PPMA and PPMB [1], PPMC [2], PPMD [3], PPM* [4], 

PPMZ [5] and PPMii [6]. The prediction of PPM depends on the bounded number of previous 

characters or symbols. In PPM, to predict the next character or symbol, different orders of models 

are used, starting from the highest orders down to the lowest orders. An escape probability 

estimates if a new symbol appears in the context [1, 2]. Despite the cost of the terms of memory 

and the speed of execution, PPM usually attains better compression rates compared with other 

well-known compression methods.  

 

One of the primary motivations for our research is the application of PPM to natural language 

processing. Therefore, we report in this paper results on the use of PPM on natural language texts 

as well as results on the Calgary Corpus, a standard corpus used to compare text compression 

algorithms. PPM has achieved excellent results in various natural language processing 

applications such as language identification and segmentation, text categorisation, cryptology, 

and optical character recognition (OCR) [7].  
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Each symbol or character in PPM is encoded by using arithmetic coding using the probabilities 

that are estimated by different models [8].To discuss the operation of PPM, Table 1 shows the 

state of different orders for PPM, where k=2, 1, 0 and -1 after input string “abcdbc” has been 

handled. In this exampleto estimate the probability for symbols in the contexts, the PPM 

algorithm starts from the highest order k=2. To estimate the probability of the upcoming symbol 

or character, if the context predicts the next symbol or character successfully, the associated 

probability for this symbol or character will be used to encode it. Otherwise, the probability of the 

escape will be estimated to let the encoder move down to the next highest order which is in this 

case isk=1until the encoder reaches (if needed) the lowest order which is k=-1. Then the 

probability for all symbols or characters will be estimated and encoded by
�

|�|
whereA is the size of 

alphabets in the contexts. The experiments show the maximum order that usually gets good 

compression rates for English is five [1][8][7]. For Arabic text, the experiments show that order 

seven the PPM algorithm gives a good compression rate [9]. 

 
TABLE 1: PPMC model after processing the string “abcdbc”. 

 

 
 

 

For example, if “c” followed the string “abcdbc”, the probability for an order 2 model with the 

input symbol “abcdbc” would be 
�

�
 because a successful prediction for the clause “ab→c”can be 

made. Suppose the string “a” follows the input string “abcdbc” instead.The probability of 
�

�
 for 

an escape for the order 2 model would be encoded arithmetically, and the process of encoding 

downgrades from order 2 model to the next order 1 model. Moreover, in order 1, the encoder does 

not predict string “a”, so another escape (with probability 
�

�
 ) is going to be encoded, and the 

process of encoding downgrades to order 0. In order 0, the probability is willbe 
�

��
 for string 

“a”.Therefore, to encode string “a”, the total probability is 
�

�
 * 

�

�
 * 

�

��
 = 

�

��
 , which is 5.2 bits.  

 

If a previously unseen character new string “n” follows the input string “abcdbc”, the process 

encodes down to the lowest order which is k=-1 model. In this model k=-1, all strings are 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 1, February 2017 

3 

encoded with the same probabilities which is 
�

|�|
 where A is size of alphabet. Supposing the size of 

the alphabet is 256, so the probability for the new string “n” is 
�

���
 for the order -1 model. 

Therefore, the character “n” is encoded using the probability 
�

�
 * 

�

�
 * 

�

��
 * 

�

���
 which is 11.4 bits.  

 

As our method uses both grammar-based and text pre-processing techniques prior to compression, 

we will now briefly discuss related work in these two areas.  

 

1.2.GRAMMAR-BASED COMPRESSION ALGORITHMS 
 

Grammar-based compression algorithms depend on using a context-free grammar (CFG) to help 

compress the input text. The grammar and the text is compressed by arithmetic coding or by 

different statistical encoders [10]. Two examples of grammar-based compression schemes are the 

Sequitur algorithm [11] and the Re-Pair algorithm [12].  

 

Sequitur is an on-line algorithm that was developed by Nevill-Manning and Witten in 1997 [11]. 

Sequitur uses hierarchical structure as specified by a recursive grammar that is generated 

iteratively in order to compress the text. Sequitur depends on repeatedly adding rules into the 

grammar for the most frequent digram sequence (which may consist of terminal symbols that 

appear in the text or non-terminal symbols that have been added to the grammar previously). The 

rule for the start symbol S shows the current state of the corrected text sequence as it is being 

processed. For instance, a text “abcdbcabc” is converted into three rules, which are S as the start 

symbol and A and B as nonterminal symbols: S→BdAB, A→bc, B→aA.  

 

In contrast, the Re-Pair algorithm proposed by Larsson and Moffat [12] in 2000 is off-line. Like 

Sequitur, Re-Pair replaces the most frequent pair of symbols with a new symbol in the source 

message essentially extending the alphabet. The frequencies of symbol pairs are then re-evaluated 

and the process repeats until there are no longer any pair of symbols that occur twice. Through 

this off-line process, what can be considered to be a dictionary has been generated, and then an 

explicit representation of this dictionary is encoded as part of the compressed message.  

 

1.3.TEXT PRE-PROCESSING FOR DATA COMPRESSION  

 
Abel and Teahan [13] discuss text pre-processing techniques that have been found useful at 

improving the overall compression for the Gzip, Burrows-Wheeler Transform (BWT) and PPM 

schemes. The techniques work in such a way that they can easily be reversed while decoding in a 

post-processing stage that follows the decompression stage. The methods discussed include a long 

list of prior work in this area and various new techniques, and presents experimental results that 

show significant improvement in overall compression for the Calgary Corpus. The methods most 

similar to our method described in this paper are the bigraph replacement scheme described by 

Teahan [7] and the token replacement scheme described by Abel and Teahan [13].  

 

The main contribution of the work described in this paper is the improved pre-processing method 

for PPM. This is due to the discovery that instead of using a fixed set of bigraphs for replacement 

from a standard reference source (such as the Brown corpus),significantlybetter compression 

results can be achieved by using bigraphs obtained from the text being compressed itself. 

 

The rest of the paper is organised as follows. Our new approach is discussed in the next section. 

Then we discuss experimental results on natural language texts and the Calgary Corpus by 

comparing how well the new scheme performs compared to other well-known methods. The 

summary and conclusions are presented in the final section.  
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2. GRAMMAR BASED PRE-PROCESSING FOR PPM (GR-PPM)  

 
In this section, a new off-line approach based on Context Free Grammars (CFG) is presented for 

compressing text files. This algorithm, which we call GR-PPM (which is short for Grammar 

based pre-processing for PPM), uses both CFGs and PPM as a general-purpose adaptive 

compression method for text files.  

 

In our approach, we essentially use the N most frequent n-graphs (e.g. bigraphs when n=2) in the 

source files to first generate a grammar with one rule for each n-graph. We then substitute every 

time one of these n-graphs occurs in the text with the single unique non-terminal symbol as 

specified by its rule in the grammar in a single pass through the file. (Further schemes described 

below may use multiple passes to repeatedly substitute commonly occurring sequences of n-

graphs and non-terminal symbols). This is done during the pre-processing phase prior to the 

compression phase in a manner that allows the text to be easily regenerated during the 

postprocessing stage. For bigraphs, for example, we call the variant of our scheme GRB- PPM 

(Grammar Bigraphs for PPM). Our new method shows good results when replacing the N most 

frequent symbols for bigraphs (for example, when N=100) but also using trigraphs (when n=3) in 

a variant which we have called GRT-PPM (Grammar Trigraphs for PPM). 

 

Each natural language text contains a high percentage of common n-graphs which comprise a 

significant proportion of the text [7]. Substitution of these n-graphs using our context-free 

grammar scheme and standard PPM can significantly improve overall compression as shown 

below. For example, natural languages contain common sequences of two characters (bigraphs) 

that often repeat in the same order in many different words, such as in the English “th”, “ed”and 

“in”, and for the Arabic language, such as “ في“ ,”ال” and “لا ” and so on.  

 

The frequencies of common sequences of characters in reference corpora (such as the Brown 

Corpus for American English [14] and the LOB Corpus for British English [15]) can be used to 

define the n-graphs that will be substituted (without the need to encode the grammar separately, 

making it possible to have the algorithm work in an online manner rather than offline). However, 

although this method can be quite effective, what we have found to be most effective for our 

scheme is to determine the list of n-graphs that define the grammar in a single or double pass 

through the text being compressed prior to the compression phase, and then encoding the 

grammar separately along with the corrected text which is encoded using PPM.  

 

Our method replaces common sequences similar to both Sequitur and Re-Pair, but unlike them, 

this is not done iteratively on the current most common digram sequence or phrase, but is done by 

replacing the most common sequences as the text is processed from beginning to end in a single 

pass (although further passes may occur later). Also, the PPM algorithm is used as the encoder 

once the common sequences have been replaced whereas Re-Pair uses a dictionary based 

approach for the encoding stage. Like Re-Pair, our method is only off-line during the phase which 

generates the grammar.  

 

Our approach adapts the bigraph replacement text pre-processing approach of Teahan [7] by 

using an offline technique to generate the list of bigraphs first from the source file being 

compressed. This approach is considered within a grammar-based context, and the approach is 

further extended by considering multiple passes and recursive grammars.  

 

Figure 1 shows the whole process of GR-PPM. First, the CFG will be generated from the original 

source files by taking the N most frequent n-graphs and replacing them with the non-terminal 
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symbols as defined by their rules in the grammar. After rules are produced, the sender will do 

grammar-based pre-processing to correct the text. Then, the corrected text is encoded by using 

PPMD, and the resulting compressed text is then sent to the receiver. The receiver then decodes 

the text by using PPMD to decompress the compressed file that was sent. Grammar-based post-

processing then facilitates the reverse mapping by replacing the encoded non-terminal symbols 

with the original n characters or n-graphs.  

 
 

 
 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 
 

 

 
 

 

 
 

 
 

 

  

 
Figure 1: The complete process of grammar based pre-processing for Prediction by Partial Matching (GR-

PPM). 

 

One final step is the need to encode the grammar so that it is also known by the receiver since, as 

stated, we have found we can achieve better compression by encoding separately a grammar 

generated from the source file itself rather than using a general grammar (known to both sender 

and receiver) that was generated from a reference corpus. We choose to use a very simple method 

for encoding the grammar—simply transmitting the lists of bigraphs or trigraphs directly. (So 

encoding a grammar containing N = 100 rules for the GRB-PPM scheme where     n = 2 and 

character size is 1 byte (for ASCII text files, say), this will incur an overhead of N × n bytes or 

200 bytes for each file being encoded).  

 

Table 2 illustrates the process of GRB-PPM using a line taken from the song by Manfred Mann 

(one published paper uses this song as a good example of repeating characters [12]). The 

sequence is “do wah diddy diddy dum diddy do”. For GRB-PPM, for example, there are five 

bigraphs which are repeated more than once in the first pass through the text: in, do, di and dd . 

Thus, these bigraphs will be substituted with new non-terminal symbols, say A, B, C and D, 

respectively, and included in the grammar (for example, if we choose N = 4). Note that 

substitution is performed as the text is processed from left to right. If a bigraph is substituted, the 

process will move to the character following the bigraph before continuing.  

Original 
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Table 2: An example of how GR-PPM works for a sample text.  

 

Pass 

  

Grammar  String & Corrected Strings  

  singing.do.wah.diddy.diddy.dum.diddy.do  

 

1st  

 

A→in, B→do, C→di, D→dd  

 

sAgAg.B.wah.CDy.CDy.dum.CDy.B  

 

2nd  

 

E→Ag, F→CD sEE.B.wah.Fy.Fy.dum.Fy.B  

 

 

In GRBB-PPM (Grammar Bigraph to Bigraph for PPM), new rules are formed in a second pass 

through the text in the corrected text that resulted from the first pass for the further bigraphs, Ag, 

CD. These will then be represented with non-terminals E and F that are added to the expanded 

grammar. After all bigraphs have been substituted, the message is reduced to the new sequence 

sEE.B.wah.Fy.Fy.dum.Fy.B. 

 

Note that we ignore spaces and any punctuation characters because based on our experiments, 

including these symbols decreases the compression rate. Moreover, the grammar will be 

transmitted to the receiver with the original text after all bigraphs are substituted in the original 

text with their non-terminal symbols. In the above example, it is clear that the number of symbols 

is reduced from 31 symbols in the original text to 23 symbols in the first pass (GRB-PPM) and to 

20 symbols in the next pass (GRBB-PPM).  

 

The grammar in both GRB-PPM and GRT-PPM share the same characteristic, which is that no 

pair of characters appears in the grammar more than once. This property ensures that every 

bigraph in the grammar is unique, a property called non-terminal uniqueness using the same 

terminology proposed by Neville-Manning and Witten [11]. To make sure that each rule in the 

grammar is useful, the second property, referred to as rule utility, is that every rule in the 

grammar is used more than once in the corrected text sequence. These two features are in the 

grammar that GR-PPM generates and are discussed in more detail next. 

  

2.1. NON-TERMINAL UNIQUENESS  
 

For the more general case (i.e. considering n-graphs, not just bigraphs), each n-graph has to 

appear only once in the grammar and is also substituted once by a non-terminal symbol. To 

prevent the same n-graph from occurring elsewhere in the corrected text sequence, each n-graph 

is substituted based on the n-graph that will be generated by the algorithm. In the example of 

Table 2, the list of most frequent bigraphs that form the grammar are added at the same time as 

the text is processed in each pass. For example, when di appears in the text more than once, the 

new non-terminal symbol A is substituted. On the other hand, in the Sequitur algorithm [11], only 

the most frequent digram (i.e. bigraph using our terminology) are added incrementally to the 

grammar.  

 

2.2.RULE UTILITY  
 
Every rule in the grammar should be used more than one time to ensure that the rule utility 

constraint is applied. When di appears in the text more than once, the new non-terminal symbol C 

is substituted. In our approach, rule utility does not require the creating and deleting of rules, 

which makes the rules more stable. This method retains the tracking of long files, thus avoiding 
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the requirement of exterior data structures. However, in the Sequitur algorithm, when the new 

letter in the input appears in first rule 

digram [11]. The process of deleting and creating of the rules in the grammar each time when the 

new symbol appears is unstable and inefficient. In the Sequitur approach, the grammar 

dynamically created. To avoid separate data structures, we apply a multi

PPM and add multiple symbols to the grammar at the same time and this causes a greater stability 

and efficiency.  

 

2.3.HIERARCHICAL GRAMMATICAL 

 
In order to further illustrate our method, Figures 2a and 2b show the hierarchical grammatical 

structures that are generated by our 

The hierarchical grammatical structures are formed based on the most frequent two characters or 

bigraph in each text. For example, in Figure 2a, the word 

bigraph in GRB-PPM, and the non

bigraph for the next pass for GRBB

 

Figure 2: Hierarchical structure in the grammars generated by our algorithm for sample sequences in two 

The same algorithm generates the Arabic version in Figure 2b, where the word 

 كف) in a similar wayه  and كف

spaces to make them more visible, 

algorithms and structures. On the other hand, in the Sequitur algorithm, spaces are part of the 

algorithm, which means it is also part of the grammatical structures generated by the algorithm. 

 

Figure 3: Pseudo

Figure 3 summarises the algorithm using pseudo

passes the algorithm performs (from 1 up to a maximum of 

to find the N most frequent bigraphs and substitute them with

through 5 implement the bigraphs utility constraints. Line 7 compresses the final text file by using 

PPMD after substituting N bigraphs. 
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the requirement of exterior data structures. However, in the Sequitur algorithm, when the new 

ears in first rule S, the grammar creates a new rule and deletes the old 

]. The process of deleting and creating of the rules in the grammar each time when the 

new symbol appears is unstable and inefficient. In the Sequitur approach, the grammar 

dynamically created. To avoid separate data structures, we apply a multi-pass approach for GR

PPM and add multiple symbols to the grammar at the same time and this causes a greater stability 

RAMMATICAL STRUCTURES  

In order to further illustrate our method, Figures 2a and 2b show the hierarchical grammatical 

structures that are generated by our approach for two different languages, English and Arabic. 

The hierarchical grammatical structures are formed based on the most frequent two characters or 

bigraph in each text. For example, in Figure 2a, the word the is split into th and

PPM, and the non-terminal that represents it and the letter e forms the second 

bigraph for the next pass for GRBB-PPM), and so on for other words in the texts.  

 

Figure 2: Hierarchical structure in the grammars generated by our algorithm for sample sequences in two 

languages: (a) English (b) Arabic.  
 

The same algorithm generates the Arabic version in Figure 2b, where the word كفهis also split into 

 is the bigraph and  هis the second bigraph). We use bullets for 

more visible, but nevertheless, spaces will not be considered in our 

algorithms and structures. On the other hand, in the Sequitur algorithm, spaces are part of the 

algorithm, which means it is also part of the grammatical structures generated by the algorithm. 

 

ure 3: Pseudo-code for the GR-PPM algorithm.  
 

Figure 3 summarises the algorithm using pseudo-code. Line 1 is for a loop to define how many 

passes the algorithm performs (from 1 up to a maximum of P passes). Lines 2 to 4 are for a loop 

requent bigraphs and substitute them with non-terminal symbols. Lines 3 

through 5 implement the bigraphs utility constraints. Line 7 compresses the final text file by using 

bigraphs.  
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the requirement of exterior data structures. However, in the Sequitur algorithm, when the new 

e and deletes the old 

]. The process of deleting and creating of the rules in the grammar each time when the 

new symbol appears is unstable and inefficient. In the Sequitur approach, the grammar is being 

pass approach for GR-

PPM and add multiple symbols to the grammar at the same time and this causes a greater stability 

In order to further illustrate our method, Figures 2a and 2b show the hierarchical grammatical 

guages, English and Arabic. 

The hierarchical grammatical structures are formed based on the most frequent two characters or 

and e (th is the 

forms the second 

 

Figure 2: Hierarchical structure in the grammars generated by our algorithm for sample sequences in two 

is also split into 

is the second bigraph). We use bullets for 

but nevertheless, spaces will not be considered in our 

algorithms and structures. On the other hand, in the Sequitur algorithm, spaces are part of the 

algorithm, which means it is also part of the grammatical structures generated by the algorithm.  

 

code. Line 1 is for a loop to define how many 

passes). Lines 2 to 4 are for a loop 

terminal symbols. Lines 3 

through 5 implement the bigraphs utility constraints. Line 7 compresses the final text file by using 
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3. EXPERIMENTAL RESULTS  
 

This section discusses experimental results for variants of our method GR-PPM de-scribed above 

for compression of various text files compared with other well-known schemes.  

 

We have found that variants of the GR-PPM algorithm achieve the best compression ratio for 

texts in different languages, such as English, Arabic, Chinese, Welsh and Persian. Also, we have 

compared the results with those of different compression methods that are known to obtain good 

results, including Gzip and Bzip2. BS-PPM uses order 4 PPMD to compress UTF-8 text files and 

is a recently published variant of PPM that achieves excellent results for natural language texts 

[9]. For both GRB-PPM and GRT-PPM, we use the 100 most frequent bigraphs or trigraphs and 

order 4 PPMD for the encoding stage.  

 

Table 3 compares the results of using GRB-PPM and GRT-PPM (using N = 100 and order 4 

PPMD) with different versions of well-known compression methods, such as Gzip, Bzip2 and 

BS-PPM order 4. (PPMD has become the de facto standard for comparing variants of the PPM 

algorithm, and so is included with our results listed here.) We do these experiments with different 

text files in different languages, including American English, British English, Arabic, Chinese, 

Welsh and Persian. We use the Brown corpus for American English and LOB for British English. 

For Arabic, we use the BACC [16]. For Persian, the Hamshahri corpus is used [17]. The LCMC 

corpus is used for Chinese [18] and the CEG corpus is used for Welsh [19].  

 

It is clear that GRB-PPM achieves the best compression rate (shown in bold font) in bits per 

character (bpc) for all cases in different languages. Also, GRB-PPM is significantly better than 

various other compression methods. For instance, for Arabic text, GRB-PPM shows a nearly 45% 

improvement over Gzip and approximately 15% improvement over Bzip2. For Chinese, GRB-

PPM shows a 36% improvement over BS-PPM and 38% improvement over Gzip. For the Brown 

corpus, GRB-PPM shows nearly a 35% improvement over Gzip and approximately 15% 

improvement over Bzip2. For the LOB corpus, GRB-PPM shows a 36% improvement over Gzip 

and 15% improvement over Bzip2. For Welsh, GRB-PPM shows a 31% improvement over BS-

PPM and 48% improvement over Gzip. For Persian, GRB-PPM shows nearly a 50% 

improvement over Gzip and approximately 22% improvement over Bzip2.  

 

GRBB-PPM and GRTT-PPM, which are the second passes of GRB-PPM and GRT-PPM 

respectively, achieve better compression ratios than their single pass variants for all the different 

language texts, such as English, Arabic, Welsh and Persian. In GRBB-PPM and GRTT-PPM, we 

use the 100 most frequent bigraphs for both passes and order 4 PPMD for the encoding stage as 

before.  
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Table 3: GRB-PPM and GRT-PPM compared with other compression methods for different natural 

language texts.  

 

File Language Size Gzip Bzip2 PPMD4 BS-

PPM 

GRT- 

PPM 

GRB- 

PPM 

(bpc) (bpc) (bpc) (bpc) (bpc) (bpc) 

Brown  American 

English  

5968707  3.05  2.33  2.14             2.11 2.03 1.99 

LOB  British 

English  

6085270  2.95  2.22  2.03  2.10  1.92  1.88  

LCMC  Chinese    5379203 2.58  1.64  1.61  2.49  1.61      1.59  

BACC  Arabic   69497469 2.14  1.41  1.68  1.32  1.29  1.21  

Hamshahri  Persian   53472934 2.58  1.64  1.68  1.25  1.31  1.22  

CEG  Welsh  6753317 2.91  1.95  1.69  2.20  1.57  1.51  

Average    2.14  1.86  1.80  1.91  1.62  1.56  

 

Table 4 shows the results of the different single pass and double pass variants of GR-PPM. The 

results for the single pass variants GRB-PPM and GRT-PPM have been included from Table 3 for 

ease of comparison as well as the results of the grammar-based compression algorithm Sequitur. 

It is clear that GRBB-PPM achieves the best compression rate (bpc) for almost all cases in the 

different language texts with only the single result on the Chinese text, the LCMC corpus, being 

better for the Sequitur algorithm. For Arabic, GRBB-PPM shows 29% improvement over PPMD 

and a nearly 19% improvement over the Sequitur algorithm. For American English, Brown 

GRBB-PPM shows 8% improvement over PPMD and a nearly 23% improvement over Sequitur. 

For British English, LOB GRBB-PPM shows a 20% improvement over the Sequitur algorithm. 

For Welsh, GRBB-PPM shows 12% improvement over PPMD and 27% improvement over the 

Sequitur algorithm. For Persian, GRBB-PPM shows 27% improvement over PPMD and a nearly 

14% improvement over Sequitur. 

 
Table 4: Variants of GR-PPM compared with other compression methods for different natural language 

texts.  

 

File  PPMD 

Order4 

Sequitur GRT- 

PPM  

GRTT- 

PPM  

 GRB- 

PPM  

GRBB- 

PPM 

(bpc)   (bpc) (bpc) (bpc) (bpc) (bpc) 

Brown  2.14 2.55 2.03 2.00 1.99 1.97 

LOB  2.03 2.34 1.92 1.90 1.88 1.88 

LCMC  1.61 1.45 1.61 1.61 1.59 1.59 

BACC  1.68 1.47 1.29 1.29 1.21 1.20 

Hamshahri  1.68 1.42 1.31 1.31 1.22 1.22 

CEG  1.69 2.04 1.57 1.54 1.51 1.49 

Average  1.80 1.87 1.62 1.60 1.56 1.55 

 

Table 5 shows the compression rate for PPMC, Sequitur [20], Gzip, GRB-PPM and GRBB-PPM 

on the Calgary corpus. Overall, the GRBB-PPM algorithm outperforms all the well-known 

compression methods. For the Sequitur algorithm, GRBB-PPM shows on average a nearly 19% 

improvement and on average a 17%, 12% and 1% improvement over Gzip, PPMC and GRB-

PPM, respectively. Although GRBB-PPM achieves similar results on the book1, book2, news and 

pic files compared to GRB-PPM, GRBB-PPM is better than GRB-PPM for the other files. 
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Table 5: Performance of various compression schemes on the Calgary Corpus. 

 

File  Size PPMC Gzip Sequitur  GRB- PPM  GRBB- 

PPM 

(bytes) (bpc) (bpc) (bpc) (bpc) (bpc) 

bib  111261  2.12 2.53 2.48 1.87 1.85 

book1  768771  2.52 3.26 2.82 2.25 2.25 

book2  610856  2.28 2.70 2.46 1.91 1.91 

news  377109  2.77 3.07 2.85 2.32 2.32 

paper1  53161  2.48 2.79 2.89 2.34 2.32 

paper2  82199  2.46 2.89 2.87 2.29 2.26 

pic  513216  0.98 0.82 0.90 0.81 0.81 

progc  39611  2.49 2.69 2.83 2.36 2.33 

progl  71646  1.87 1.81 1.95 1.66 1.61 

progp  49379  1.82 1.82 1.87 1.70 1.64 

trans  93695  1.75 1.62 1.69 1.48 1.45 

Average   2.14 2.29 2.32 1.91 1.88 

 

4. SUMMARY AND CONCLUSIONS  
 
In this paper, we have described new algorithms for improving the compression for different 

natural language texts. These algorithms work by substituting a repeated symbol (bigraph or 

trigraph) with a non-terminal symbol from a grammatical rule in a CFG before using PPM to 

compress the text files. These algorithms are maintained by two constraints, which are non-

terminal uniqueness and rule utility. These techniques also work well as good compression 

methods for general text files.  
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