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ABSTRACT 

 

Summarization of software artifacts is an ongoing field of research among the software engineering 

community due to the benefits that summarization provides like saving of time and efforts in various 

software engineering tasks like code search, duplicate bug reports detection, traceability link recovery, etc. 

Summarization is to produce short and concise summaries. The paper presents the review of the state of the 

art of summarization techniques in software engineering context. The paper gives a brief overview to the 

software artifacts which are mostly used for summarization or have benefits from summarization. The 

paper briefly describes the general process of summarization. The paper reviews the papers published from 

2010 to June 2017 and classifies the works into extractive and abstractive summarization. The paper also 

reviews the evaluation techniques used for summarizing software artifacts. The paper discusses the open 

problems and challenges in this field of research. The paper also discusses the future scopes in this area for 

new researchers.  
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1. INTRODUCTION 
 

Summarization is to reduce the content of a document in such a manner that the important 

information about the document is preserved. Summarization techniques are broadly classified 

into extractive and abstractive techniques. Extractive summarization is to extract the important 

sentences from a document in same way as they appear in the original document and arrange 

them to create a summary of specific length. Whereas abstractive summarization is to understand 

the text and apply linguistic rules to create a summary. Natural language techniques are majorly 

used for abstractive summaries. 

 

There are various software artifacts which are created during a software life cycle along with a 

working source code like requirements document, design documents, bug reports, etc. These 

artifacts are usually archived for future use for understanding of system during software 

maintenance or evolution phase. Reading and understanding of a document is a time-consuming 

task [1] but is must to support any software development task. For example, when a change is to 

be implemented to the system, proper understanding of system is essential as there exists many 

dependencies in a system and failure to handle them may result in bugs or system failure. 

Summarization of software artifacts help save the developer’s efforts and time while performing 
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software engineering tasks. It has been observed that most of the times, manually written 

summaries are incomplete, too-short or outdated. Summarization helps creating the documents 

automatically and thus relieving the programmers from the tedious task of documentation [2].  

Source code and bug reports are two major artifacts on which most of the summarization 

techniques have been applied to generate the summaries. Source code summaries help know the 

description of sections of code and know how a piece of code is related to other parts of source 

code. Bug reports not just contain the defects but also the reasons behind the bugs, feature 

enhancement ideas, steps for resolution of bugs, etc. [4]. Bug reports summarization helps user 

read, investigate and understand multiple aspects of a defect and helps perform many tasks like 

bug reports duplication, etc.Low time to market and tough competition have raised the need of 

summarization tools to help developers. Summarization is a very complex task. Till now it has 

not been very clear on what exactly should go to the summary and what should not be included in 

the summary [3]. Evaluation of summaries is also a challenging task as it is difficult to find the 

accurate effectiveness from human evaluation. 

 

The structure of paper is as follows. Section 2 briefly gives an overview to a general 

summarization   procedure. Section 3 gives a brief overview of the methodology used for 

presenting the various works in the field of software summarization. Section 4 gives a brief 

introduction to the extractive summarization techniques and works performed for generating 

extractive summaries for software artifacts. Section 5 gives a brief introduction to the abstractive 

summarization techniques and various works performed for generating abstractive summaries for 

software artifacts. Section 6 discusses the evaluation techniques used for summarizing software 

artifacts. Section 7 discusses the application of software summarization. Section 8 lists down the 

open problems and challenges in the field of summarization of software artifacts. Section 9 

discusses the areas where there is a future scope for research. And finally, the conclusion.  
 

2. SUMMARIZATION PROCESS: AN OVERVIEW 
 

 
Fig 1: General Summarization Process 

 

 A typical summarization process follows these steps: 

 

1. Corpus Creation: It is to collect or extract the documents of desired granularity as per the 

requirements to perform summarization [5]. 

 

2. Pre-processing of corpus: It mainly includes identification of sentence boundaries, 

tokenization, stops words removal, stemming, case folding and noise removal. There are 
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various open source NLP toolsavailable for pre-processing of corpus like python NLTK, 

Apache OpenNLP, Stanford CoreNLP, etc. 

 

3. Summarization Algorithm Application: 

 

3.1. Content Selection: Many Algorithms and approaches like natural language processing, 

machine learning based approaches, information retrieval based approaches are applied to 

select the important sentences from the artifacts to generate the summary. One of the 

famous algorithm used for content selection is: 

 

PageRank- It is a graph based algorithm used for web links for determining the ranking of web 

pages. But it can be used in the software engineering context as well. In context of source code 

summarization, node can represent important functions or methods in the program and edge a 

relation between the methods. TextRank is an algorithm for summarization of text based on 

PageRank algorithm. By applying this algorithm important functions or methods to be included in 

the summary can be obtained. 

 

3.2. Information Ordering: After the content to be added are extracted, it is important to score 

the sentences. There are various sentence scoring methods available like word-based 

scoring, sentence-based scoring and graph based scoring methods. In word-based scoring 

method, each word is assigned some score and to compute the total score of sentence, all 

the word scores are summed up. For sentence-based scoring methods, features are 

analyzed using cue-phrases (sentences started by “in summary”, “in conclusion”, “our 

survey”, etc.), position of sentence, resemblance of sentence to title and many other 

features like these. For graph-based scoring method, TextRank, bushy path of node i.e. no 

of edges connecting a node to other node and aggregate summary by counting the number 

of edge connecting a node to other nodes in the bushy path are used [6]. 

3.3. Sentence Realization: It is to simplify the sentences. In extractive summarization, the 

selected sentences are kept in the summary as in original document but in case of 

abstractive summarization, natural language summaries are produced and for them 

simplifying the sentences to reduce the length is required. 

3.4. Removing Redundancy: It is to remove the redundant sentences. Redundancy is when 

multiple sentences have same content. Sentence fusion and textual entailment are two 

widely used techniques to remove the redundancy among abstractive summaries but they 

can be adapted for extractive summaries as well. Maximal Marginal Relevance is also 

used for removing the redundancy among the sentences. 

 

4. Evaluation of Summaries: Last step of summarization process is to evaluate the 

summaries so generated. There are two ways to evaluate the summaries: intrinsic and 

extrinsic evaluation. Intrinsic evaluation is when the system is evaluated with itself and 

extrinsic evaluation is when the system is evaluated in terms of how the completion of 

other tasks is affected. Intrinsic evaluation mostly focuses on the informativeness and 

coherence whereas extrinsic evaluation mostly focuses on the efficiency and acceptability 

[7]. 
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3. METHODOLOGY 

 
We have used IEEE Xplore for finding the relevant research papers. We have summarized the 

articles according to the technique used by them for summarization and type of evaluation. We 

have presented them into four columns namely name of authors, artifact on which they performed 

summarization, technique used in their work and the corpus on which they performed their work. 

We have classified the extractive summarization works into Information-Retrieval Based, 

Machine Learning Based, and Topic Models. We have also listed the extractive summarization 

works which have used Crowdsourcing approach and eye-interaction based approach. 

 

For abstractive summarization works, we have classified them into Structure Based Approach and 

Semantic Based Approach. 

 

We have also classified the works according to the evaluation techniques employed for evaluating 

their summaries into intrinsic and extrinsic evaluation. We have identified the various techniques 

used in the field of software summarization for evaluation.  

 

From the various research papers obtained from IEEE Xplore, we have identified the applications 

of software summarization and classified them into Bug Reports Digestion, Improving 

Traceability link recovery, program comprehension, automatic documentation generation.  We 

have identified the future scope areas in the field of software summarization and classified them 

into unit test case summarization, duplicate bug reports detection, source code summarization, 

summarization using crowdsourcing, summarization using eye-tracking interactions, improving 

sentence Ranking Techniques, Creating personalized summaries and Visualization. 
  

4. EXTRACTIVE SUMMARIZATION: AN OVERVIEW IN THE CONTEXT OF 

SOFTWARE ARTIFACTS 

 
Extractive summarization is to generate summaries by extracting sentences from the original text. 

They use statistical analysis of features to locate the important sentences from the text. Various 

features which have been used for sentence extraction like title word feature, keyword features, 

sentence length features, proper noun features, upper case features, cue-phrase features, biased 

word features, font based features, pronouns, presence of non-essential features, sentence-to-

sentence cohesion and discourse analysis [8]. There are various approaches which have been used 

for generating extractive summaries like IR-based approaches, Natural Language Processing, 

Machine Learning based approaches, Topic Models, etc. We have analyzed the papers published 

in recent previous years and classified them as per the technique they use: 

 

• Information Retrieval Based: 

 

� Vector Space Model(VSM): It is based on term-frequency matrix for a document and is 

used for modifying the weights of indexing terms which helps in finding the relevance of 

sentences or documents. Documents are represented as vectors. Dimensionality of vector 

is basically the size of vocabulary. Cosine similarity is mainly used for calculating the 

similarity between the document and the query. 
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� Latent Semantic Indexing(LSI): It is mainly used for the document indexing and 

retrieval. Term-Document matrix is constructed and then Singular Value 

Decomposition(SVD) is applied to reduce the matrix. 

� Latent Dirichlet Allocation(LDA): It is a generative probabilistic topic model.  Each 

document is treated as a group of topics where each topic is assigned some probability of 

generating some words. 

 

Antoniol et al. [9] have used probabilistic IR model and VSM to recover the traceability links for 

C++ projects between the source code and free text documents. Sonia Haiduc et al. [10] used both 

the extractive and lightweight abstractive summarization techniques to automatically generate the 

source code summaries. For extractive summarization, they used VSM and LSI using log, tf-idf 

and binary entropy as weighting mechanisms. Sonia Haiduc et al. [11] in their another paper used 

extractive summarization using lexical and structural information about source code to generate 

the summaries. They used LSI and cosine similarity to obtain the information for their 

summaries. 

 

• Machine Learning Based Approach: It is one of the widely used approach for performing 

extractive summarization. 

� Supervised Learning Approach: Here the likelihood of label is suggested by using labeled 

training dataset [12].  Various classifiers like SVM, Naïve-Bayes, Decision trees, etc. are 

used for training to extract the useful features to be included in the summary when we 

have documents and their respective reference summaries. 

Rastkar et al. [13] applied extractive summarization techniques for automatically 

generating the summaries for bug reports using supervised machine learning. They used 

binary classifiers for producing the summaries. They trained the classifiers on e-mail 

threads, combination of e-mail threads and meetings, and meetings and bug reports based 

on 24 features classified into 4 categories namely structural features, participant features, 

length features and lexical features. Rastkar et al. [14] in another paper used extractive 

multi-document summarization by identifying the sentence level features to describe the 

code changes. 

 

Rigby et al. [15] have used three feature decision tree classifiers to extract the code elements for 

StackOverflow Site Discussions. Nazar et al. [16] used SVM and Naïve Bayesian classifiers to 

create code fragment summaries from online FAQs. They extracted the features using data-driven 

crowdsourcing mechanism. Ying et al. [17] used supervised machine learning based approach 

using Naïve Bayes and SVM classifiers by considering syntactic and query related features for 

generating code fragment summaries. 

 

� Unsupervised Learning Approach: These techniques try to find out the labels from the 

data. These techniques assign centrality and diversity measures to the sentences for 

deciding whether to include it to the summary or not. K-means clustering is widely used 

to select the features to be included in the summary [18]. Euclidean distance is used to 

measure the similarity between two sentences. There are various unsupervised learning 

approaches which have been used for summarizing software artifacts. Mani et al. [19] 

have used centroid, Maximum Marginal Relevance, Grasshopper and DiverseRank 

unsupervised techniques for summarizing bug reports. Lotufo et al. [4] used unsupervised 

bug reports summarization to generate the summaries and used PageRank to calculate the 

probabilities. They used number of topics shared between the sentences, number of times 
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sentence evaluated by other sentences and number of topics shared with title and 

description of bug report to ranks the sentences from relevance perspective. Ferreira et al. 

[20] used Cosine similarity, Euclidean distance, Louvain community detection and 

PageRank methods to rank the comments in bugs to generate the extractive summaries. 

 

� Semi Supervised Learning Approach: Andrea Di Sorbo [21] proposed a semi-supervised 

learning approach called DECA (Development Emails Content Analyzer) where they 

classified the emails according to their content into various categories like opinion 

asking, information seeking, information giving, feature request, etc. by using natural 

language parsing. They also used this approach to re-document the source code. 

 

• Topic Models: It is a statistical model where each document is represented as a set of 

topics. Each topic is a set of words which mostly occur together. Each topic is given 

some probability based on frequencies and co- 

 

Occurrence frequencies. Topic assignments for each token is calculated by using topic model. 

Topic models follows Bayesian paradigm. HPAM (Hierarchical Pachinko Allocation Model) is 

one technique for the topic models. 

 

HPAM: Directed Acyclic Graphs(DAG) is used for representing the topics. Bag-of-words 

representation is used and each document is represented as vector with V components where V is 

the size of vocabulary. Few researches are found which have used NLP based techniques to create 

the extractive summaries. Paul W. McBurney et al. [22] have used Topic Models to create the 

source code summaries focusing on the presentation of summaries. They used HDTM algorithm 

extract the hierarchy of topics from the source code. Brian P. Eddy et al. [23] proposed a topic 

model based approach to summarize the source code and then compared their results with the 

approaches used by Sonia Haiduc et al. [10]. Fowkes et al. [24] have created a tree based 

algorithm called TASSAL (Tree Based AutoFolding Software Summarization Algorithm) which 

works on Abstract Syntax Tree of source code and uses Topic Models for autofolding of source 

code which is to fold the less informative code areas by focusing on the file specific tokens. They 

used TopicSum model to source code where the common Java tokens, common javaDoc 

comment tokens and common header comment tokens were taken as input to construct the model 

and as output it categorized the token to whether specific to file, project or general Java code.  

 

Lot of researches are done where eye-tracking interactions are used to improve the selection of 

subset of keywords for summaries. Rodeghero et al. [25] have generated the extractive summaries 

of java methods by finding out the important keywords based on eye tracking study of 10 java 

professionals where they were asked to read and write the summaries especially for those 

methods which were uncommented by focusing on eye-movements, gaze fixations and 

regressions. 

 

In addition to IR-based approaches, Machine Learning Based approaches, Natural Language 

Processing Approaches, Eye-tracking interactions, crowdsourcing is also one of the emerging 

approaches for helping generate the summaries. Crowdsourcing is a web 2.0 based phenomenon 

which is a data driven model based on problem solving approach in context of text 

summarization. Crowdsourcing is a notion where virtually everyone can participate online. In 

Crowdsourcing, the organization identifies the tasks and then post them online to a crowd to 

interested people. The organization then evaluates the results by considering the contributions 
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from the crowd of people who submitted their results by performing the tasks. Crowdsourcing 

model has been used by Lloret et al. [26]. Hong et al. [27] and Mauyama et al. [28] for text 

summarization process but there are very few papers on this approach for software artifacts. 

Nazar et al. [16] have used this model for extracting source code features manually for 

summarization of source code fragments. Masudur Rahman et a. [29] have used crowdsourcing 

for mining insightful comments from online QA site StackOverflow. Even though it can be used 

for generating abstractive summaries as well but most of the researches are for extractive 

summaries only. 
 

Table 1: Summary of Studies on Extractive Summarization 

 
Author Artifact Method Corpus 

Lotufo et al. [4] Bug Reports Machine 

Learning(Unsupervised) 

Debian, Mozilla, 

Launchpad, Chrome 

Antoniol et al. [9] Source Code(C++) Information 

Retrieval(VSM) 

Albergate, LEDA 

Haiduc et al. [10] Source Code Information Retrieval 

(VSM + LSI) 

ATunes 

Haiduc et al. [11] Source Code Information Retrieval + 

Machine Learning (LSI+ 

Cluster Based) 

ATunes 

Rastkar et al. [13] Bug Reports Machine 

Learning(Supervised) 

Eclipse, FireFox, 

Thunderbird 

Rastkar et al. [14] Source Code Machine 

Learning(Supervised) 

Eclipse Mylyn, 

CONNECT 

Nazar et al. [16] Source Code Machine Learning Eclipse, Netbeans FAQ 

Ying et al. [17] Source Code Machine 

Learning(Supervised) 

Eclipse FAQ 

Mani et al. [19] Bug Reports Machine 

Learning(Unsupervised) 

Eclipse, Mozilla, Gnome, 

KDE 

Ferreira et al. [20] Bug Reports Machine 

Learning(Unsupervised) 

Bootstrap, AngularJS, 

jQuery 

Andrea Di Sorbo et al. [21] Emails Machine Learning (Semi 

Supervised) 

 

McBurney et al. [22] Source Code Topic Models(HDTM) JHotdraw, jajuk, jEdit, 

jTopas, nanoXML, siena 

Fowkes et al. [24] Source Code Topic Models (extension 

of TopicSum) 

Storm, elasticSearch, 

Spring-framework, libgdx, 

bigbluebutton, netty 

Rodeghero et al. [25] Source Code Eye-tracking interactions  

 

5. ABSTRACTIVE SUMMARIZATION: AN OVERVIEW IN THE CONTEXT OF 

THE SOFTWARE ARTIFACTS 

 
Abstractive summarization is to create the summaries where there may be novel sentences which 

are not present in the original document. It deals majorly with the NLP techniques and requires 

deep analysis of text. It involves information integration, sentence compression and reformulation 

[12]. Abstractive summarization techniques are categorized into Structured Based Approach and 

Semantic Based Approach.  

 

Structured Based Approach finds out the important information from a document using trees, lead 

and body phrase structures, etc. They are classified into Tree-Based, Template-Based, Ontology-

Based, Lead and body phrase method and rule-Based method [30]. From the analysis of recent 

years papers on summarization, we have observed that most of the works on abstractive 

summarization in software artifacts have used Template and Rule-based methods. 
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In Semantic Based Approach, semantic information about the document is used and is fed into the 

Natural Language Generation system. Verb phrases and Noun phrases are identified and 

processed by using linguistic data. They are categorized into multimodal semantic model, item 

based method, and semantic graph based. Multimodal document generation is used when the 

document contains both images and data. Semantic model is constructed by using knowledge 

representation in the form of ontologies. Information density metric is calculated to select the 

sentences to generate the summaries. In information item based approach, abstract representation 

of source document is created and then is processed to generate the summaries. In semantic graph 

based method, semantic graph is created where verbs and nouns are represented as nodes and 

edges to semantic relation between them [30]. 

 

Buse et al. [31] generated comments from the exceptions thrown by java methods by using 

symbolic execution to identify under which conditions the exceptions are thrown and then used 

the templates to create the summaries. Sridhara et al. [32] found that templates used for 

comments generation by Buse et al. [31] are inadequate for creating general comments and used 

method signature and body as input to generate the leading descriptive natural language summary 

contents for Java methods. They used lead and body phrase method to create the summaries. Buse 

et al. [33] in another paper combined symbolic execution and code summarization to create 

automatic summaries for describing code changes. They proposed an algorithm called 

DELTADOC which takes two versions of software as input and produces human-readable 

summaries describing method changes as output. 

 

Sonia Haiduc et al. [10] used extractive and lightweight abstractive techniques for summarization. 

For lightweight abstractive summaries, Structure based approach, lead and body phrase method 

was used. From evaluation, they found that lead based summaries scored more than any other 

methods they employed. Sarah Rastkar et al. [34] extracted structural information like how 

methods interact with the concerned methods and other methods and natural language 

information like what the concerned method has about and then represented them in the form of 

ontologies and used RDF graph for ontologies representation. They created the summaries by 

finding the similarities between the methods of concern and by finding source code important for 

implementing the concerned method. Latifa Guerrouj et al. [18] generated the summary for a 

code element from StackOverflow site discussions by extracting the natural language text from 

developer’s discussions. They extracted the language identifiers out of natural language text by 

applying island parser. They used term-proximity to find out the context of identifiers and then 

create the language model from them. Cortes-Coy et al. [35] used method stereotypes to identify 

the method responsibilities in a class for generating the commit messages and used templates to 

generate the sentences from the classes. Laura Moreno et al. [36] used template-based 

summarization to generate the natural language summaries for source code changes of a project. 

One sentence was generated for each change. 

 

Moreno et al. [37] in another paper developed an Eclipse plugin called jSummarizer to generate 

the natural language summaries for Java classes by using stereotype of class. Abid et al. [38] used 

method stereotypes to find out the lines of code that reflect the main action of a method and used 

the separate templates for each stereotype to automatically create the summaries using static 

program analysis. 

 

Kamimura et al. [39] have used static analysis of source code by finding the key method 

invocations and then generated the human-oriented summaries of unit test cases by filling the pre-

defined templates. Masudur Rahman et al. [29] have used topic modelling and PageRank 
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algorithm to automatically generate the code comments from StackOverflow discussions related 

to source code. They used Stanford POS tagger to identify the personal pronouns and possessive 

pronouns and used natural language processing tools to refine and reformulate the comments. 

Christopher Vendome et al. [40] have proposed an approach called UnitTestScribe to 

automatically generate the natural language unit test case summaries. They used natural language 

processing, static analysis, backward slicing and code summarization techniques for 

summarization and used general description of test case methods, focal methods, assertions and 

internal data dependencies of variables in assertions to create the summaries. Shen et al. [41] have 

proposed an approach to automatically generate the commit messages by summarizing source 

code. They used template based summarization to describe the commit intents and reason for 

changes in the system. 

 

CrowdSourcing has been used for generating the abstractive summaries as well. Badihi et al. [24] 

have created a tool called CrowdSummarizer which uses crowdsourcing, gamification and natural 

language processing to generate the accurate and comprehensive natural language summaries for 

java program methods. They used template based method to generate the abstractive summaries. 

 

6. Evaluation Techniques for Software Artifacts Summarization 
 
Evaluation of summaries is a challenging task as it is hard to come up with the notion of what the 

correct output is. Also, summarization is about compression, so compression ratio should be 

considered while evaluating the summaries. Visualization is one of the important part of 

summarization. Compression ratio and visualization when taken together makes evaluation a 

difficult task. Evaluation techniques are broadly classified into intrinsic and extrinsic evaluation. 

Intrinsic evaluation is performed on the system itself whereas Extrinsic evaluation is when the 

impact of system is evaluated like relevance assessment, traceability link recovery in case of 

software artifacts, reading comprehension, etc. 
 

6.1 Intrinsic Evaluation 

 
Intrinsic Evaluation techniques are more popular in software artifacts summarization. Intrinsic 

evaluation is to evaluate the automatically generated summaries of the system by comparing them 

against the gold-set standard summaries for the same system. Intrinsic evaluation techniques 

mostly focus on redundancy, irrelevant content, coherence and informativeness [42] [43]. 

Intrinsic evaluation techniques may either involve human intervention or may be automatic. For 

automatic evaluation, gold-set standard summaries are first created for the artifacts  

 
Table 2: Summary of Studies on Abstractive Summarization 

 

Author Artifact Method Corpus 

Buse et al. [31] Source Code Template Based Azureous, DrJava, FindBugs, 

FreeCol, hsqldb, jEdit, 

jFreeChart, Risk, tvBrowser 

and Weka 

Buse et al. [33] Source Code Template Based FreeCol, jFreeChart, iText, 

Phex, and jabref 

Sridhara et al. [32] Source Code Lead and Body Phrase Megamek, SweetHome3D, 

jHotDraw, Jajuk 

Rastkar et al. [34] Source Code Ontology Based+ 

Information Item Based 

jHotDraw, Drupal and Jex 
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Guerrouj et al. [18] Question Answer Site’s 

Discussions 

Rule Based Discussions of Android.* 

package 

Haiduc et al. [10] Source Code Lead and Body Phrase ATunes 

Cortes-Coy et al. [35] Source Code Template Based ElasticSearch, Spring Social, 

jFreeChart, Apache Solr, 

Apache Felix and Retrofit 

Moreno et al. [36] Source Code Template Based + 

Information Item Based 

41 Apache community open 

source projects and 14 other 

projects like FindBugs, 

FireFox, Google Web 

Toolkit, etc 

Abid et al. [38] Source Code Template Based HippoDraw 

Kamimura et al. [39] Unit Test Case Source Code Template Based jFreeChart 

Moreno et al. [37] Source Code Stereotype Based+ Template 

Based 

ATunes 

Badihi et al. [24] Source Code Template Based 11 open source java 

applications  

Vendome et al. [40] Unit Test Case Source Code Template Based srcML.NET, Sando, 

Glimpse, Google-api-dotnet 

Shen et al. [41] Source Code Template Based Elastic Sesarch,  Spring 

Social and Apache Solr 

and then the automatically created summaries are compared against them. Precision, Recall, F-

Score, Cosine Similarity, etc. are used as measures to compute the performance in case of 

extractive summaries whereas Relevance-Assessment, Pyramid Scores are used in case of 

abstractive summaries.  

 

Precision: It refers to the fraction of a total number of sentences in the generated summary which 

belongs to the gold-set standard summary. It is the measure of how accurate the summaries are. It 

generally refers to the usefulness in the context of summarization [43]. 

 

Precision= (No of lines selected from GSL) \ (No of sentences in the generated summary) 

Where GSL refers to Gold-Set Standard Summary Lines 

 

R-Precision: It works well with the variable length summaries. It is the ratio of number of top-R 

correct words to the number of top-R relevant words returned by the automatic approach. 

 

Recall: It is how much percentage of the sentences in the gold-set standard summaries are present 

in the generated summary. Recall refers to the completeness in the context of summarization and 

represents the ability of algorithm to select the sentences from the generated summary [19]. 

Recall= (No of lines selected from GSL) \ (No of lines in GSL) 

 

Pyramid Score: It is used for assessing the content selection quality in summarization where 

multiple annotators are available. It is a recall-oriented evaluation metric. It is semantically driven 

analysis concerned with analyzing the variations in human summaries. It is mainly used for 

abstractive summaries. Pyramid scores tell how often content units from peer summaries occur in 

reference summaries. 

 

A=weight of content expressed in the summary 

B= weight of an ideally informative summary (Gold-set standard summary) with same number of 

summary content unit(SCU) 

 

Information with same meaning, even if expressed with different words sis termed as same SCU. 
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Pyramid Score=A \ B 

 

Pyramid precision is the fraction of sentences present in the summary that are present in atleast 

one of the golden set summary. Pyramid Recall is the fraction of sentences present in one of the 

golden-set summaries that are present in the generated summary. 

 

F-Score: There is always a trade-off between precision and recall. F-Score combines the results of 

both precision and recall. F-Measure acts as a harmonic mean to solve the precision and recall 

trade-off problem. 

 

F-Score= (2 * (Precision * Recall)) \ (Precision + Recall) 

 

ROUGE (Recall Oriented Understudy for Gisting Evaluation): It is recall oriented metric for 

evaluation of summaries by comparing the automatically generated summaries against the 

reference summaries by calculating the number of overlapping units like N-Grams. It measures 

the quality and correctness of the summary [44]. It is cheap and easy to perform. But it has been 

found that it should be used only when the large amount of test data is available [45]. 

 

Cosine Similarity:  

 

Cosine Similarity (D, E) = (D. E) \ (|D|. |E|) 

Where D and E are the word frequency vectors of two text documents. It lies between 0 to 1. If 

the value is 1, it means documents are nearly identical. 

 

Relative-Utility [45]: Precision and Recall which are used for statistical evaluation suffers from 

the problem of human variation and semantic equivalence problem,to address this problem, 

relative utility method is used where multiple judges score each sentence in the summary. Based 

on their ranks to various sentences, quality of summary is evaluated. This technique requires a lot 

of manual efforts for sentence tagging. 

 

Sonia Haiduc et al. [10] used intrinsic online evaluation that is Relative Utility method for 

evaluating their extractive and lightweight abstractive summaries so generated by automatically 

summarizing the source code. The summaries were evaluated by four developers who answered 

the questions on 4-likert scale. They also used follow-up questionnaire to understand how 

developers performed evaluation. Eddy et al. [46] also used the same intrinsic online, relative 

utility method that is 4-scale Likert-scale evaluation technique as used by Sonia Haiduc [10] to 

evaluate their source code summaries. Sonia Haiduc et al. [11] in their other paper evaluated their 

summaries using Pyramid method. Pyramid Evaluation helped find out if the automatically 

generated summaries are like the set of manually generated summaries. Latifa Gueerrouj et al. 

[18] used R-precision as an evaluation metric to evaluate how close the generated summaries are 

with gold-set standard summaries. Rastkar et al. [13] used both the intrinsic and extrinsic 

evaluation metrics for evaluating the summaries. They evaluated their classifiers using Area 

Under ROC Curve(AUROC), pyramid precision, precision, recall, and F-Score.  

 

McBurney et al. [2] in their first cross-validation assessment, compared their source code 

summaries with summaries generated by JavaDoc. They evaluated their summaries based on 

accuracy, content adequacy and conciseness. McBurney et al. [22] in other paper used human 
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based intrinsic evaluation by recruiting 3 participants to find out the accuracy and effectiveness of 

the extractive summaries generated for source code of a project.   

 

Mani et al. [19] used precision, recall, pyramid score, and F-score to determine the effectiveness 

of unsupervised learning approaches for summarizing bug reports and comparing them with the 

supervised learning based approaches used by Rastkar et al. [13]. Li et al. [40] used human based 

intrinsic evaluation to find how concise, expressive and complete are the unit test cases 

summaries generated by unit test source code. Cortes-coy et al. [47] and Shen et al. [41] 

evaluated the commit messages generated by code changes based on correctness, content 

adequacy and expressiveness. Badihi et al. [24] evaluated their code summaries in terms of 

precision, recall, F-score and overall accuracy. They used 3-scale likert scale to rate the 

summaries in terms of conciseness, content adequacy and accuracy. Lotufo et al. [4] in the first 

part of their evaluation used intrinsic evaluations and compared summaries produced by Rastkar 

et al. [13] by using precision, recall, pyramid score and F-score. 

 

6.2 Extrinsic Evaluation 

 
Extrinsic evaluation techniques are used where the effect of summarization is analyzed on a 

decision process. They are mostly used for judging the acceptability and accuracy of created 

summaries. For example, effects of summarization on analyzing the traceability links, analyzing 

the effects of summarization on question answering sites, etc. They are usually expensive, time-

consuming and requires good amount of planning. Thus, are not used extensively for evaluation. 

 

Relevance-Prediction [42] is one measure to measure the effectiveness of summaries on a specific 

task. It is determining if users can make accurate decisions with generated summaries. Reading 

Comprehension task is also used for extrinsic 

 
Table 3: Summary of Studies on Evaluation Techniques for Software Summarization 

 

Author Artifact Evaluation Method Criteria (if used) 

Rastkar et al. [1] Bug Reports Intrinsic  

McBurney et al. [2] Source Code Intrinsic + Extrinsic Accuracy, Content 

Adequacy, Conciseness 

Lotufo et al. [4] Bug Reports Intrinsic (Precision, 

Recall and Pyramid 

Score) + Extrinsic 

(Likert scale) 

Usefulness 

Haiduc et al. [10] Source Code Intrinsic (Relative 

Utility) 

 

Haiduc et al. [11] Source Code Intrinsic (Content 

Similarity, Pyramid 

Score) 

 

Rastkar et al. [13] Source Code Extrinsic (Task Based) 

+ Intrinsic (AUROC, 

Pyramid Precision, 

Precision, Recall, F-

Score) 

Accuracy, Time to 

Completion, Participant 

Satisfaction 

Rastkar et al. [14] Source Code Intrinsic (F-Score)  

Nazar et al. [16] Source Code Intrinsic (ROC, AUC,  
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Precision, Recall, F-

Measure) 

Ying et al. [17] Source Code Intrinsic (R-Precision, 

ROC) 

 

Guerrouj et al. [18] Source Code from 

StackOverflow Sites 

Intrinsic (Content 

Similarity, ROUGE) 

 

Mani et al. [19] Bug Reports Intrinsic  

Ferreira et al. [20] Bug Reports Intrinsic (Precision, 

Recall, F-Score) 

 

McBurney et al. [22] Source Code Intrinsic (Human 

Evaluation) 

Accuracy, 

Effectiveness 

Badihi et al. [24] Source Code Intrinsic (Precision, F-

Score) 

Conciseness, Content 

Adequacy, Accuracy 

Sridhara et al. [32] Source Code Intrinsic (Human-

Based) 

Accuracy, Content 

Adequacy, Conciseness 

Buse et al. [33] Source Code Extrinsic Information, 

Conciseness 

Rastkar et al. [34] Source Code Intrinsic  

Cortes Coy et al. [35] Source Code Intrinsic Content Adequacy, 

Conciseness, 

Expressiveness, 

Preferability 

Moreno et al. [36] Source Code + Issue 

Reports + Commit 

Messages 

Extrinsic Completeness, 

Importance, 

Applicability 

Kamimura et al. [39] Unit Test Cases Intrinsic  

Li et al. [40] Source Code Intrinsic + Extrinsic Conciseness, 

Expressiveness, 

Completeness 

Eddy et al. [46] Source Code Intrinsic (Relative 

Utility) 

 

Masudur Rahman et 

al. [29] 

Question Answering 

Site Discussions on 

Source Code 

Extrinsic Accuracy, Preciseness, 

Usefulness 

Fowkes et al. [48] Source Code Intrinsic (Precision, 

Accuracy, Recall, F-

Measure) + Extrinsic 

Usefulness, 

Conciseness 

 

evaluation. Rastkar et al. [13] used extrinsic task based evaluation to evaluate if the summaries so 

generated helps perform duplicate bug reports detection task. They evaluated their system with 

the help of 12 developers with at least 5 years of experience. They evaluated their system in terms 

of accuracy, time to completion and participants satisfaction. They used linear regression model 

and Chi-Square test to find out the accuracy and time to completion. 

 

Masudur Rahman et al. [29] used extrinsic evaluation to evaluate if the automatic comments 

generated from StackOverflow source code discussions are found to be accurate, useful and 

precise in terms of describing potential issues, deficiencies and suggesting the future scopes for 

further improvement. McBurney et al. [2] in their second cross-validation assessment, assessed 

whether the contextual information about the methods in the summaries help programmers 

understand the behavior of method. They used cross-validation study method for evaluation. 
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Li et al. [40] along with the intrinsic evaluation, assessed their unit test cases summaries 

extrinsically by assessing how their summaries help developers understand the test cases. Moreno 

et al. [36] assessed their system using extrinsic evaluation in terms of completeness, importance 

and applicability. Lotufo et al. [4] in second part of their evaluation, assessed the quality of 

summaries in terms of usefulness while looking for solution around the bug for duplicate bug 

reports detection, understanding the bug reports in terms of status and open issues, bug 

prioritization, etc. 
 

7. APPLICATIONS 
 

7.1 Bug Reports Digestion 
 

Bug reports are often too lengthy and involve discussions among multiple team members. Easily 

digestible bug reports mean that the user who consults the bug reports should be able to 

understand it easily and be able to seek the desired information quickly. In open source projects, 

the bug reports receive inputs from many contributors, which makes the bug reports difficult to 

understand. Summarization of bug reports help understand the bug reports easily. Ankolekar et al. 

[49] work aimed at bug reports digestion by developing a prototype semantic web interface, 

Dhruv for bug resolution messages. They identified the important information by aiming at why, 

who, what from the bug reports. Dit et al. [5] proposed a system to help developers find the 

comments related to their comments for improving the readability and understandability of 

thread. Lotufo eta l. [4] proposed unsupervised bug report summarization to facilitate the bug 

reports digestion. 
  

7.2 Improving Traceability Link Recovery 
 

Recovering and managing traceability links for software artifacts is an important but difficult and 

time-consuming process as the size of software artifacts is usually large. Traceability link 

recovery helps improve the program comprehension, software maintenance, ensuring the 

completeness of project with respect to proper test coverage available or not, impact analysis and 

during code reuse. Most of the traceability link recovery works have used information-retrieval 

approaches. 
 

Antoniol et al. [9] have used IR-based approaches to recover the traceability links between the 

source code and natural language based documents like requirements document, design 

documents, error logs, etc. Sridhara et al. [32] automatically created the comments to help aid the 

program comprehension and software maintenance. Aponte et al. [43] have used text 

summarization IR-based approaches to generate the summaries for software artifacts like 

requirements document, source code, design documents, test cases and bug reports to identify the 

candidate links for traceability recovery. Baccheli et al. [51] discussed about recovering 

traceability links between the source code and emails using text matching. Rigby et al. [15] 

proposed a novel traceability recovery approach to automatically determine the code elements 

from Question Answering site, StackOverflow’s discussions. Marcus et al. [52] proposed an 

approach to recover the traceability links between source code and documents by using LSI. 

 

7.3 Program Comprehension 

 
During software maintenance and evolution, a programmer has to go through the source code if 

proper documentation is not available. Going through the whole source code to make changes in a 

software is a time-consuming task. Software source code summaries help know quickly what the 
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source code is doing. Buse et al. [33] proposed an algorithm called DELTADOC which uses 

symbolic execution information from log messages and code summarization techniques to find 

the code changes. For maintain the legacy systems, especially for design recovery, lot of 

documents should be looked up. With text summarization, understanding the legacy systems 

become easy [9]. 

 

Analyzing the code is a non-trivial task especially for beginners. Source code comments not just 

help in comprehending the source code but also give insights about the quality, issues and future 

scope. Edmund Wong et al. [53] proposed an approach called CloCom to automatically generate 

the comments for target software projects by detecting the code clones. 

 

Kamimura et al. [39] automatically generated the summaries for unit test cases which are 

important. When the source code evolves, it is essential to modify the unit test cases as well. 

Summaries will ease the comprehension of unit test cases which are usually difficult to 

understand. Panichella et al. [54] extracted the method description from bug reports and email-

threads to help developers understand the source code. Fowkes et al. [24] presented the automatic 

method for code folding based on code’s content which aids in program comprehension while 

developers want to understand the new code bases, locate the relevant source code and perform 

code reviews. Hill et al. [51] used context of words around the query terms, method signatures 

and applied natural language processing techniques to extract the natural language phrases to 

distinguish between the relevant and non-relevant searches. Automatic formulation of queries 

using this contextual search helps locate the relevant code elements easily. 

 

7.4 Automatic Documentation Generation 

 
Documentation is expensive to produce and generate as with the change in requirements due to 

continuous changes in the system, the documentation should be updated timely. But due to lack 

of time and resources, it becomes difficult for programmers to write the documentation often [3]. 

Automatic summarization helps in automatically generating the documents. Lot of work has been 

done in the field. McBurney [3] in his paper has discussed the objectives to improve the 

automatic documents generation. With their summarization, few of the works where documents 

are prepared automatically from summarization are mentioned below. 

 

7.4.1 Release Notes Generation 
 

Release notes describe the changes to the system from the previous release to the current release. 

They describe the changes in terms of documentation changes, license changes, code changes and 

library upgradations, fixed bugs, modified features, etc. ARENA is one approach towards 

automatic release notes generation where source code changes are integrated with issue tracker to 

capture the changes [36]. 

 

7.4.2 Commit Notes Generation 
 

Commit notes describe the code changes in the system. They help developers understand how a 

change to the system spanned across the system’s various artifacts and thus help developers 

support software maintenance tasks like bug triaging, code changes, impact analysis, traceability 

link recovery, etc. Cortes-Coy et al. [47] presented an approach called “ChangeScribe” to 

automatically generate the natural language descriptive commit messages describing the change 
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stereotypes, type of changes and impact of changes using code summarization. Shen et al. [41] 

proposed an approach like one developer by Cortes-Coy et al.  [47] to automatically generate the 

commit messages describing not just what all changes have been implemented in the system but 

also the motivation behind the code change. They used ChangeDistiller to find out the change set 

of source code changes, then identified the what part of information by using stereotype of 

methods and classified the commit messages according to the type of maintenance supported to 

explain the why part of information for a commit message. 
 

8. OPEN PROBLEMS AND CHALLENGES 
 

• For evaluation purpose, the generated summaries are usually compared against gold-set 

standard summaries which are human generated and many times this evaluation is 

performed by humans itself. Stress, fatigue, or experience can affect the results. 

• There are no well-defined standards for good documentation. It is not very clear what the 

good summary is. 

• In conversation related artifacts, due to informal nature of artifacts and presence of source 

code, segmentation of sentences becomes a challenging task. Sentence Chunking is a 

non-trivial problem for informal texts like comments in source code, bug reports and 

email-threads [4]. 

• As in extractive summarization, the sentences are extracted as in original document and 

are arranged in the summary as they appear in original document, it is possible to have 

more redundancy and long length of summaries. Overlapping information may not be 

captured properly. If pronouns are not properly handled considering the context, then 

there are chances of erroneous representation of text. 

• Whether extractive summarization is most appropriate way to summarization or 

abstractive, is still an open question [1]. 

• Representation of abstractive summaries is yet a problem as there is no fixed 

representation for a text. 

• Supervised machine learning based approaches require large training dataset. Gold-set 

standard summaries are created manually and requires a significant amount of time and 

efforts. Manually creating a large training dataset is a hindrance towards machine 

learning for summarization [4]. In summarization process the training dataset is mostly 

labelled manually and sometimes can be biased towards data on which model was learnt 

[19]. Quality of corpus affects the quality of summaries and thus good quality corpus is 

essential for this approach if targeting the quality summaries. 

• Summarization of code fragments poses lot of challenges as code fragments are not 

complete code. 

• Heterogeneous and multi-dimensional nature of complex artifacts poses a lot of 

challenges in summarizing complex software artifacts as they contain various types of 

fragments like xml, source code, text, etc. and each type of fragment contributes 

differently to overall knowledge [55].  
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9. FUTURE SCOPE 
 

9.1 Unit Test Cases Summarization 
  

More work is required for creating the truly useable unit test case summaries. More work on 

understanding how the summarization of unit test cases eases the work of developers, how to use 

them in test case generation tools, how to locate the test cases when software fails due to code 

changes, how will they help in supporting different tasks like testing support is required [39]. 

 

9.2 Duplicate Bug Reports Detection 

 
More work on improving the effectiveness of systems for duplicate bug reports detection and for 

recommending the similar changes to help in software evolution is required. 
 

9.3 Source Code Summarization: 

 
More work on summarization of heterogeneous complex artifacts is required. Most of the focus 

of studies in source code summarization is for C++ and Java language. Studies can be extended 

for generating the summaries for other object-oriented languages as well [38]. More work on 

assessing the quality and effectiveness of summaries for maintenance tasks like feature location 

or debugging is required [24]. More work on summarizing source code fragments from various 

sources like online forums is required [21]. The benefits of source code summarization to various 

other tasks like automatic reverse engineering and re-documentation need to be explored further 

[11]. More work on creating the techniques which consider the structural information from source 

code is required [10]. Term based techniques for quickly eliminating the irrelevant entities and 

NLP based techniques for better evaluation of relevance of remaining entities can be combined to 

create source code summaries [46]. 

 

Multi-document source code summarization considering the packages and classes is required 

[10]. TASSAL [48] is one of the example of content based model for creating source code 

summaries but deep learning and other techniques can be used for content based model to create 

good coverage summaries which to capture the class relationships and other semantic information 

of source code. Fowkes et al. [48] autofolded the source code at file level, autofolding at 

statement level can be considered for future work. Automatic documents generation tools which 

produce documents by summarizing source code are not very expressive [41], work is required to 

produce more readable and expressive messages. More work on finding what is the most 

important information to be included in the automatic documents generation summaries and how 

to classify them is required [36]. 
 

9.4 Summarization Using Crowdsourcing 

 
There are very few works on utilizing the crowdsourcing approach for summarizing software 

artifacts. Nazar et al. [16] have used crowdsourcing for summarization of code fragments in small 

scale. More work on extending it to large scale is required. More areas where crowdsourcing can 

be utilized for summarization like corpus creation, features extraction, debugging needs to be 

identified. 
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9.5 Summarization Using Eye-Tracking interactions 
 

More work on analyzing the effects of gaze-time, fixations and regressions on long and multi-

word identifiers for identifying the important keywords is required. Eye-tracking studies from 

different roles like testers, security experts, database experts, etc. need to be compared [38]. 
 

9.6 Improving Sentence Ranking Techniques 
 

More work on improving the precision of ranking techniques is required. More work on 

evaluating the influence of text preprocessing in on the quality of ranking techniques is required. 

More work on improving the estimation of sentence relevance is required [4] as improving the 

sentence relevance will improve the quality of summary. More characteristics of bug reports and 

other artifacts need to be considered for summarization to increase sentence relevance.More work 

on integrating the summarization algorithms and the presentation of summaries with the IDEs is 

required [41] [4] [36]. Highlighting the important information in the summaries can be done to 

improve the summary visualization [36]. 
 

9.7. Creating Personalized Summaries 
 

Most of the summaries generated till now are general purpose summaries. According to the role 

of person, the requirements from a document changes. For example, a developer looking for 

duplicate bug report needs different information than a person looking for bug triaging. By 

identifying the topics or terms relevant to person, the summary contents can be changed. More 

work on generating personalized and targeted summaries specific to a role of person or related to 

some specific software engineering task like bug localization or code review is one of the very 

potential future research area [17] [24] [48]. 
 

9.8. Summary Visualization 
 

For large documents, proper summary visualization helps understand, locate and navigate the 

summaries easily [4]. More work on creating the optimal interfaces to support navigation based 

on summaries is required [4]. More work on integrating the summarization algorithms and the 

presentation of summaries with the IDEs is required [41] [4] [36]. Highlighting the important 

information in the summaries can be done to improve the summary visualization [36]. 

 

CONCLUSION 
 

Summarization of software artifacts help support number of software engineering tasks like 

duplicate bug reports detection, program comprehension, code search, software maintenance and 

evolution, automatic documents generation, finding traceability links, etc. The paper gives an 

overview of the state of the art of summarization techniques mainly in terms of extractive and 

abstractive summarization. Summaries are either evaluated intrinsically on itself or extrinsically 

on task basis. The paper gives an overview of evaluation techniques used for summarizing 

software artifacts. Heterogeneous complex data in software artifacts, in-complete code in code 

fragments, no well-defined standards for summaries poses challenges during summarization. The 

paper has also discussed the areas where there is scope of future work like creating personalized 

summaries according to roles and tasks, improving summary visualization, improving automatic 

documents generation, unit test cases summarization, etc. 
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