
International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 2, April 2018 

DOI:10.5121/ijcsit.2018.10201                                                                                                                        1 

 

THE EFFECT OF SEGREGATION IN NON-

REPEATED PRISONER'S DILEMMA 

 

Thomas Nordli 
 

University College of Southeast Norway 
 

ABSTRACT 

 

This article consolidates the idea that non-random pairing can promote the evolution of cooperation in a 

non-repeated version of the prisoner’s dilemma. This idea is taken from[1], which presents experiments 

utilizing stochastic simulation. In the following it is shown how the results from [1] is reproducible by 

numerical analysis. It is also demonstrated that some unexplained findings in [1], is due to the methods 

used. 
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1. INTRODUCTION 

 
The problem of how cooperation can emerge in a population dominated by asocial behavior, is 

addressed by Axelrod and Hamilton in [2]. To answer this, they use clustering in a game of 

repeated prisoner’s dilemma. It is called repeated because the players are given the possibility to 

play several rounds against the same opponent and the ability to remember the previous action of 

each opponent. This repetition together with a limited amount of memory give the players the 

opportunity to reciprocate. To model clustering they manipulate the probability of meeting an 

opponent with similar strategy the pairing is thus non-random. Axelrod and Hamilton found: 

Given conditions highly favoring cooperation in the long run, a low degree of clustering is 

sufficient for cooperation to survive. In [1] it were reported that several others (e.g. [3], [4], [5]) 

previously had been dealing with this idea, and that the work in [5] were the most similar. 

 

The paper [1] goes further and argues that this may happen even in a non-repeating prisoner’s 

dilemma where there are no possibilities for reciprocation. The players aka agents are given two 

possible strategies: always cooperate (applied by the cooperators) and always defect (applied by 

the defectors). By a simulated evolution, it is demonstrated that cooperation will prosper given 

certain initial parameter values. The parameters being (i) degree of clustering aka segregation, 

and (ii) initial fraction of cooperators. The paper also explores how variations on these parameters 

affect the dynamics of the simulated evolution and presents some findings of which some are 

unexplained. 

 

One unexplained finding in [1] appears in an experiment presented as an initial benchmark 

without clustering. The share of cooperators starts with 90% but decreases fast almost linear. In 

the fourth generation, it reaches about 50% and the drop stops temporary. During the following 
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generations — about ten — the share fluctuates around this level. This fluctuation period is called 

a plateau. After the plateau, the rapid decline continues until the total extinction of the 

cooperators. 

 

A second unexplained finding appears in table 1 in [1] that presents different convergence ratios 

for cooperators and defectors on varying values on the two parameters segregation and initial 

fraction of cooperators. In this table three distinct regions appear: One region where no 

cooperators survive (region α), a second where both cooperators and defectors survive (region β) 

and a third where no defectors survive (region γ). It is remarked that a segregation parameter 

value of 0.5 (50%) works as a crossover point: To end up with cooperators exclusively, the initial 

segregation parameter value has to be set above this point (region γ). If the value is set below this, 

both types of players may sustain (region α and β). If the segregation parameter is set to this 

crossover point (or nearby), the simulation needs considerably more generations to converge. The 

paper [1] gives no explanation of neither the formation of these regions nor why the crossover 

point falls at 0.5. 

 

The following two sections will introduce details from [1]: The model used (section 2. The 

Model) and the simulation algorithm that implements this model (section 3. The Simulation 

Algorithm). Section 4. The Numerical Analysis reproduces its results by numerical analysis. 

Then two sections follow dealing with the above-mentioned unexplained findings: The three 

regions (section 5. The three regions) and the choice of selection algorithm and its parameter 

setting (section 6. Changing a Parameter in the Algorithm). Finally a conclusion is made in 

section 7. Conclusion. 

 

2. THE MODEL 
 

This section explains the model used in [1]. 

 

The segregation is modelled as in [5] with one exception: The players are not given the ability to 

remember any previous meetings. Without memory, reciprocal strategies are not possible. Thus, 

only the two following strategies are used: (i) always cooperate and (ii) always defect. The model 

is based on a classical prisoner’s dilemma where the players receive a payoff of either a, b, c or d 

where a > b > c > d. When a defector meets a cooperator, the defector gets a and the cooperator 

gets d. When two defectors meet, they both get c. And finally if two cooperators meet, each 

receive b. This is illustrated in table1. 

 
Table 1: The payoffs in the Prisoner's Dilemma where a > b > c > d. 

 
 

2.1 THE PARAMETERS 

 
Two parameters, proportion of cooperators (named p) and degree of randomness (named r) act on 

the model. Each of these parameters vary from 0 to 1. An overview of these parameters are 

shown in table 2. 
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The first parameter, proportion of cooperators in the population, is given as p, where 0 ≤ p ≤ 1,p 

∈R. Here 0 means that there are no cooperators and 1 means that the population consists 

exclusively of cooperators. As there are only one alternative strategy, namely defecting, the share 

of defectors will always be 1 − p. 

 

The second parameter is the degree of randomness in the process of matching pairs of agents. It is 

indicated by a parameter r, where 0 ≤ r ≤ 1,r ∈R. This parameter is also called segregation 

parameter. When r is 0 there is no segregation, and when r is 1 there is full segregation. In full 

segregation, the meeting opponents always have the same strategy. 

 
Table 2: The parameters of the model 

 
 

2.2 MODELLING SEGREGATION 

 
The probability of a cooperating agent meeting another cooperating agent is modelled as r + 

(1−r)p and the probability of a defecting agent meeting another defecting agent as r +(1 − r)(1 − 

p). If we need to calculate the probability of meeting an opponent with a different strategy one 

simply have to subtract these expressions from 1. This is summarized in in table 3. 

 
Table 3: Modelling segregation 

 

 
 

3. THE SIMULATION ALGORITHM 
 
This section introduce the simulation algorithm presented in [1]. A refined algorithm, including 

details of the implementation necessary to understand the analysis done later in this document, is 

also included here. The evolution model is implemented as a stochastic agent based simulation. 

In this simulation each player is represented by an agent and the players’ opponents are randomly 

picked (line 4 in algorithm 1). 

 

The algorithm found in [1] is listed in algorithm 1. The choice of selection strategy is not 

documented in [1], but because I participated in the initiation of the project, I know that that 

truncation selection, with a truncation threshold of 0.5, was used. This was also confirmed (by 

personal communication) after publication (in 2013 2014). An extended version of the algorithm, 

including details of the selection algorithm, is shown in algorithm2. 
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Algorithm 1 as documented in [1].

1: Initialize random population of players

2: For all players: Set payoff =0

3: while not stop do 

  4:         Choose pairs for playing

  5: For all players: Calculate payoff

  6:         Select players for surviving

  7:  Duplicate selected players with payoff

  8: For all players: Set payoff =0

9: end while 

 

Algorithm 2 elaborating details on the selection strategy.

1: Initialize random population of players

2: For all players: Set payoff =0

3: while not stop do 

  4: Choose pairs for playing

  5:   For all players: Calculate payoff

  6:   Sort the agents by payoff

  7:           Truncate the worst half of population

  8:           Replace the truncated players by duplicating the remaining ones,

  9: For all players: Set payoff =0

10: end while 

 
When using truncation selection, the individuals will be sorted by decreasing payoff. Duplicates 

of the players above the truncation threshold, given as 

done by cloning the survivors 

Truncation selection is also described in [6] and [7].

 

As the truncation threshold used in [1] is 0.5, the population is cut in two equal sized halves, and 

the best half will be duplicated. The duplicates will replace the worst half. This is sho

algorithmically in algorithm 2, where line 6 and 7 from algorithm 1 are replaced with line 6, 7 

and 8 as seen in algorithm 2. 

 

4. THE NUMERICAL ANALYSIS
 

The results presented in [1] where found by stochastic simulation. This section will reproduce 

these results by numerical analysis. The proportion of cooperators in a following generation will 

be estimated by a function of the two parameters, (

reproduction of the results appears when iterating this equation
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as documented in [1].  

1: Initialize random population of players 

2: For all players: Set payoff =0 

4:         Choose pairs for playing 

For all players: Calculate payoff 

6:         Select players for surviving 

Duplicate selected players with payoff>0 

For all players: Set payoff =0 

 

elaborating details on the selection strategy. 

1: Initialize random population of players 

2: For all players: Set payoff =0 

Choose pairs for playing 

For all players: Calculate payoff 

Sort the agents by payoff 

Truncate the worst half of population 

Replace the truncated players by duplicating the remaining ones, with payoff > 0.

For all players: Set payoff =0 

When using truncation selection, the individuals will be sorted by decreasing payoff. Duplicates 

of the players above the truncation threshold, given as s, will then replace those below. This is 

done by cloning the survivors  times, which in this case gives 

Truncation selection is also described in [6] and [7]. 

As the truncation threshold used in [1] is 0.5, the population is cut in two equal sized halves, and 

the best half will be duplicated. The duplicates will replace the worst half. This is sho

algorithmically in algorithm 2, where line 6 and 7 from algorithm 1 are replaced with line 6, 7 

NALYSIS 

The results presented in [1] where found by stochastic simulation. This section will reproduce 

these results by numerical analysis. The proportion of cooperators in a following generation will 

be estimated by a function of the two parameters, (p and r) as expressed in equation (1). The 

reproduction of the results appears when iterating this equation. 

p∗
 
=  P (p,r)                                                      
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with payoff > 0. 

When using truncation selection, the individuals will be sorted by decreasing payoff. Duplicates 

, will then replace those below. This is 

time. 

As the truncation threshold used in [1] is 0.5, the population is cut in two equal sized halves, and 

the best half will be duplicated. The duplicates will replace the worst half. This is shown 

algorithmically in algorithm 2, where line 6 and 7 from algorithm 1 are replaced with line 6, 7 

The results presented in [1] where found by stochastic simulation. This section will reproduce 

these results by numerical analysis. The proportion of cooperators in a following generation will 

) as expressed in equation (1). The 

                                                     (1) 



International Journal of Computer Science & Information Technology 

4.1 ESTIMATING NUMBER OF 

 

The cooperators will be paid either 

sum of qb and qd, where qb and q

shown in equation (2): 

 

In the following let a, b, c and d 

overview of the notation used in this section, is given in table 4.

 

When all the payoffs are calculated for one generation, the agents are sorted by payoff (line 6 in 

algorithm 2). This will bring all of the 

the ds at the bottom. Thus, for any 

 

Each time a defector is being paid 

When a cooperator gets d, a defector gets 

cooperator meeting a defector is of course equal to the probability of a defector meeting a 

cooperator. 
Table 4: Overview of notation used

Since qd and qa always will be of equal size, they will always each be les

shown in equation (3). This means that as long as the truncation threshold is 

will always stay below the threshold and none of them will ever survive to the next generation. 

The cooperators in the population wil

 

 

 

To estimate the number of cooperators after the truncation we must only consider the portion of 

qb that will end up above the truncation threshold. There are two cases that needs to be calculated 

separately: (i)  and (ii) 

 

In the first case the better half will consist of 

counted. As each of them is duplicated, this number is doubled, giving us 

the better half will consist only of 

agents in the upper half, we end up with the number of 

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 2, April 2018

UMBER OF SURVIVING COOPERATORS 

The cooperators will be paid either b or d. Their proportion, p, can therefore be calculated as the 

qd is the portion of population getting paid b and d respectively, as 

p = qb + qd                                 

d denote the players that where paid a, b, c and d respectively. An 

e notation used in this section, is given in table 4. 

When all the payoffs are calculated for one generation, the agents are sorted by payoff (line 6 in 

algorithm 2). This will bring all of the as to the top, followed first by the bs, then by the 

s at the bottom. Thus, for any d to survive, qd has to be greater than the truncation threshold.

Each time a defector is being paid a, a cooperator is paid d. The other way around is also true: 

, a defector gets a. Intuitively we can see this as the probability of a 

cooperator meeting a defector is of course equal to the probability of a defector meeting a 

Table 4: Overview of notation used 
 

always will be of equal size, they will always each be less or equal to 

shown in equation (3). This means that as long as the truncation threshold is 0.5 or greater, the 

will always stay below the threshold and none of them will ever survive to the next generation. 

The cooperators in the population will therefore exclusively consist of the bs and their clones.

0 ≤ qd = qa ≤ 0.5 

To estimate the number of cooperators after the truncation we must only consider the portion of 

that will end up above the truncation threshold. There are two cases that needs to be calculated 

and (ii) . 

In the first case the better half will consist of a’s, b’s and c’s. Then all of the b

plicated, this number is doubled, giving us 2qb. In the second case 

the better half will consist only of a’s and b’s. If we subtract the a’s from the total number of 

agents in the upper half, we end up with the number of b’s. The difference  will thus giv
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, can therefore be calculated as the 

respectively, as 

                                (2) 

respectively. An 

When all the payoffs are calculated for one generation, the agents are sorted by payoff (line 6 in 

s, then by the cs and 

has to be greater than the truncation threshold. 

. The other way around is also true: 

we can see this as the probability of a 

cooperator meeting a defector is of course equal to the probability of a defector meeting a 

 
s or equal to 0.5, as 

or greater, the ds 

will always stay below the threshold and none of them will ever survive to the next generation. 

s and their clones. 

(3) 

To estimate the number of cooperators after the truncation we must only consider the portion of 

that will end up above the truncation threshold. There are two cases that needs to be calculated 

b’s should be 

. In the second case 

’s from the total number of 

will thus give 
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the portion of b’s residing in the better half. This is multiplied by 

giving us . Equation (4) shows how the estimation of the share of cooperators in a 

forthcoming generation is modelled as a function of 

 

 
 

4.2 ESTIMATING DISTRIBUTION OF 

 

If we assume a big enough population, we can estimate how the different payments will be 

distributed in the population, based on the probabilities in the model. In addition we will assume 

that there is no restriction on how many times the agents can play in the same round. This is 

possibly a simplification and may not model exactly the way the simulation was implemented in 

[1], but the reproduction of their results indicates that such a deviation is negligible.

 

The probability of choosing a cooperator or a defector as the first agent is 

respectively. To calculate the probability of the second agent (

multiply the probability of the first player with the second agent (give

probabilities we take from the model in [1] (as shown in table 3). The probabilities are 

summarized in table 5. 

 

 

If we assume a big enough population, the probabilities will be equal to the distribution of payoff 

in the population. The proportion of players being paid 

respectively, may thus be calculated using the table 5.

 

We will to use these expressions to substitute 

table 5, but first we will simplify them. 

r)p and (p)(r +(1 − r)p) becomes 

 
Table 6: Distribution of Payment in Non

After the substitution of qa and q

difference equation that is a function of 
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’s residing in the better half. This is multiplied by 2 to model the duplication, 

. Equation (4) shows how the estimation of the share of cooperators in a 

forthcoming generation is modelled as a function of qa and qb. 

 

ISTRIBUTION OF PAYOFF 

If we assume a big enough population, we can estimate how the different payments will be 

distributed in the population, based on the probabilities in the model. In addition we will assume 

on how many times the agents can play in the same round. This is 

possibly a simplification and may not model exactly the way the simulation was implemented in 

[1], but the reproduction of their results indicates that such a deviation is negligible. 

obability of choosing a cooperator or a defector as the first agent is p 

respectively. To calculate the probability of the second agent (i2) given the first (i1

multiply the probability of the first player with the second agent (given the first), the latter 

probabilities we take from the model in [1] (as shown in table 3). The probabilities are 

Table 5: Probability distribution 

If we assume a big enough population, the probabilities will be equal to the distribution of payoff 

in the population. The proportion of players being paid a, b, c or d, denoted qa

respectively, may thus be calculated using the table 5. 

ill to use these expressions to substitute qa and qb in equation (4) by their equivalents from 

table 5, but first we will simplify them. (1 − p)(1 − (r +(1 − r)(1 − p))) is rewritten as 

becomes p(r +(1 − r)p). This is summarized in table 6. 

Table 6: Distribution of Payment in Non-random Environment 

 

 
 

qb with the expressions from table 6 in equation (4), we get a new 

difference equation that is a function of p and r. This is shown in equation (5). 
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to model the duplication, 

. Equation (4) shows how the estimation of the share of cooperators in a 

(4) 

If we assume a big enough population, we can estimate how the different payments will be 

distributed in the population, based on the probabilities in the model. In addition we will assume 

on how many times the agents can play in the same round. This is 

possibly a simplification and may not model exactly the way the simulation was implemented in 

 

p and 1 − p 

1), we have to 

n the first), the latter 

probabilities we take from the model in [1] (as shown in table 3). The probabilities are 

 

If we assume a big enough population, the probabilities will be equal to the distribution of payoff 

a, qb, qc or qd 

in equation (4) by their equivalents from 

is rewritten as (1 − p)(1 − 

with the expressions from table 6 in equation (4), we get a new 
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4.3 ITERATING 

 

As we are interested in the iterated version of the prisoner’s dilemma, we use an algorithm that 

loops the difference equation (5), which is implemented as the function PC(p,r). 

 

This function, PC(p,r), returns p∗. Initial values are set in the two parameters, p and r, for the rst 

round of the loop round number 0. A variable named n is used to count the number of rounds. In 

the subsequent rounds, r is set to the value returned by PC in the previous round. Only p will 

change during the run. This algorithm is repeated until p reaches 0 or 1. If this does not happens 

within max iterations (n > max), the proportion of cooperators have stopped changing from 

generation (round) to generation, and no further repetitions are done. This is presented in the lines 

3 to 9 in algorithm 4. 

 

4.4. REPRODUCING THE RESULT FROM [1] 

 
To reproduce the results from [1] (reprinted as figure 1), algorithm 3 has to be run for all the 

combinations of p and r as they vary from 0.1 to 0.9 (with the step size of 0.1), as presented in 

algorithm 4. 

 

The results of running this algorithm are shown in table 7. It clearly shows correspondence with 

the results of the simulation reported in [1]. In both the simulation and the calculation, three 

regions appear in the tables, as indicated in figure 2(a). 

 

Algorithm 3 Iterating the prisoner’s dilemma using numerical methods  

n ← 0 {counting rounds, starting at 0}  

pn ← some initial value 

    r ← some initial value repeat 

pn+1 ← PC(pn,r) {equation (5)} 

n ← n +1 

   until p = 0 or p = 1 or n >max 

return 

pn

 

Algorithm 4 Reproducing the results from the simulation 

1: for p0 = 0.1 to 0.9 (step size: 0.1) do 

  2: for r = 0.1 to 0.9 (step size: 0.1) do 

  3: tp0r ← Algorithm 3(p0,r) {store resulting p in table 7} 

  4: end for 

5: end for 
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5. THE THREE REGIONS

 
This section will give an intuitive explanation of how three regions, 

 

To get an intuitive understanding of why these three regions shown in figure 2(a) appear, we take 

a closer look at how the share of cooperators change from generation to generation. By 

comparing the values of p in two following generations, we get a value 

cooperators given p and r. We call this the growth rate of cooperators and de ne it as 

table 8 the signs of these growth rates are shown.

 

By looking at this table, it becomes clear how the three regions shown in 

 
Figure 1: Reprint of results presented in [1].

 

Table 7: Final proportion of cooperators as a function of 
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EGIONS 

This section will give an intuitive explanation of how three regions, α, βand γ, appears.

To get an intuitive understanding of why these three regions shown in figure 2(a) appear, we take 

a closer look at how the share of cooperators change from generation to generation. By 

in two following generations, we get a value representing the growth of 

cooperators given p and r. We call this the growth rate of cooperators and de ne it as 

table 8 the signs of these growth rates are shown. 

By looking at this table, it becomes clear how the three regions shown in figure 2(a) are formed.

Figure 1: Reprint of results presented in [1]. 

 

 

Table 7: Final proportion of cooperators as a function of r and p, with a truncation threshold of 

(IJCSIT) Vol 10, No 2, April 2018 

8 

, appears. 

To get an intuitive understanding of why these three regions shown in figure 2(a) appear, we take 

a closer look at how the share of cooperators change from generation to generation. By 

representing the growth of 

cooperators given p and r. We call this the growth rate of cooperators and de ne it as pn+1 − pn. In 

figure 2(a) are formed. 

, with a truncation threshold of  
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           (a) Truncation threshold: 

Figure 2: Three regions, named 

The area where the cooperators are driven to extinction, the corresponding area have negative 

growth. In the following, this region is referred to as area 

upwards in the table from generation to generation, until 

 

In addition, the second area β, is divided in two, one negative and one positive. The negative part 

is below the positive part. Players in the negat

getting positive growth rate, and switch direction. This again gives them a negative rate. In the 

stochastic simulation from [1] the rate will oscillate like this and converge to a stable situation 

containing both cooperators and defectors.

 

In the last area called γ, where the defectors are wiped out, the growth rate is positive. Here the 

players will continue downwards in the table until 
 

6. CHANGING A PARAMETER

 

This section will investigate the effect of lowering the truncation threshold below the crossover 

point found in [1]. 

 

As indicated above, the choice of 0.5 as a truncation threshold results in that no d

from one generation to the other, in the numerical analysis.

 

The simulation done in [1] has a stochastic element which is absent from the numerical analysis 

which is completely deterministic. It is established above, that the numerical analysis reproduce 

the main results of the simulation in spite of the lack of randomness.

 

Choosing a truncation threshold below 0.5 will make some of the d

The equation is now changed so that only the better third of the population is considered and 

tripled. Everything else is the same. The modified equation is shown in equation (6).
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(a) Truncation threshold:    (b) Truncation threshold:  

Figure 2: Three regions, named α, β and γ, appears in the results 

The area where the cooperators are driven to extinction, the corresponding area have negative 

growth. In the following, this region is referred to as area α.The players in this area will move 

upwards in the table from generation to generation, until p reach zero. 

, is divided in two, one negative and one positive. The negative part 

is below the positive part. Players in the negative part will rise until they reach the 

getting positive growth rate, and switch direction. This again gives them a negative rate. In the 

stochastic simulation from [1] the rate will oscillate like this and converge to a stable situation 

taining both cooperators and defectors. 

, where the defectors are wiped out, the growth rate is positive. Here the 

players will continue downwards in the table until p is 1, and no defectors are left. 

ARAMETER IN THE ALGORITHM 

This section will investigate the effect of lowering the truncation threshold below the crossover 

As indicated above, the choice of 0.5 as a truncation threshold results in that no d-s will survive 

the other, in the numerical analysis. 

The simulation done in [1] has a stochastic element which is absent from the numerical analysis 

which is completely deterministic. It is established above, that the numerical analysis reproduce 

simulation in spite of the lack of randomness. 

Choosing a truncation threshold below 0.5 will make some of the d-s survive even in the analysis. 

The equation is now changed so that only the better third of the population is considered and 

Everything else is the same. The modified equation is shown in equation (6).
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The area where the cooperators are driven to extinction, the corresponding area have negative 

The players in this area will move 

, is divided in two, one negative and one positive. The negative part 

 positive part, 

getting positive growth rate, and switch direction. This again gives them a negative rate. In the 

stochastic simulation from [1] the rate will oscillate like this and converge to a stable situation 

, where the defectors are wiped out, the growth rate is positive. Here the 

This section will investigate the effect of lowering the truncation threshold below the crossover 

s will survive 

The simulation done in [1] has a stochastic element which is absent from the numerical analysis 

which is completely deterministic. It is established above, that the numerical analysis reproduce 

s survive even in the analysis. 

The equation is now changed so that only the better third of the population is considered and 

Everything else is the same. The modified equation is shown in equation (6). 
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Table 8: Sign of growth rate as a function of 

Table 9: Final proportion of cooperators as a function of 

6.7 TRUNCATION THRESHOLD

Figure 3(a) corresponds to the benchmark case without cooperation. This corresponds to figure 3 

in [1]. Even when starting with 90% cooperators, they are quickly exterminated. We see 

when using a truncation threshold of

threshold is set to . 

 

The figures 3(b), 3(c) and 3(d), corresponds to the figures 4, 5 and 6 in [1] by having the same 

values on r and p. Where the truncation threshold is 0.5, the result of the numerical analysis 

matches the stochastic simulation. Setting the threshold to

as shown in figure 2(b), making all three of end up in area 
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Table 8: Sign of growth rate as a function of r and p, with a truncation threshold of 

 

Table 9: Final proportion of cooperators as a function of r and p, with a truncation threshold of 

 

HRESHOLD :  vs .  

Figure 3(a) corresponds to the benchmark case without cooperation. This corresponds to figure 3 

in [1]. Even when starting with 90% cooperators, they are quickly exterminated. We see 

when using a truncation threshold of , the plateau is present, just as in [1], but absent when the 

The figures 3(b), 3(c) and 3(d), corresponds to the figures 4, 5 and 6 in [1] by having the same 

truncation threshold is 0.5, the result of the numerical analysis 

matches the stochastic simulation. Setting the threshold to  makes changes to the three regions, 

as shown in figure 2(b), making all three of end up in area β. 
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, with a truncation threshold of . 

, with a truncation threshold of  

Figure 3(a) corresponds to the benchmark case without cooperation. This corresponds to figure 3 

in [1]. Even when starting with 90% cooperators, they are quickly exterminated. We see that 

, the plateau is present, just as in [1], but absent when the 

The figures 3(b), 3(c) and 3(d), corresponds to the figures 4, 5 and 6 in [1] by having the same 

truncation threshold is 0.5, the result of the numerical analysis 

makes changes to the three regions, 
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(a) Numerical analysis with r =0.0, and p=0.9 (corresponds to figure 3 in [1].) 

 

 
 
                  (b)  Numerical analysis with r =0.3, and p=0.2 (corresponds to figure 4 in [1].) 

 

 
 

(c) Numerical analysis with r =0.3, and p=0.5 (corresponds to figure 5 in [1].) 

 

 
 

(d) Numerical analysis with r =0.5, and p=0.3 (corresponds to figure 6 in [1].) 

 

Figure 3: Visualizing the result of changing the truncation threshold. 
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Table 10: Sign of growth rate as a function of 

7. CONCLUSION 
 
This paper support the conclusion from [1] that segregation plays a considerable role in evolution 

of cooperation in a game of Prisoner’s Dilemma

reciprocity. However, it argues that the choice of truncation selection 

together with a truncation threshold of 0.5 is the cause of the plateau and crossover point from 

[1]. It also explains the formation of the three regions.
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[1]. It also explains the formation of the three regions. 
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