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ABSTRACT 

 

The increasing demand for video services has made video caching a necessity to decrease download times 

and reduce Internet traffic. In addition, it is very important to store the right content at the right time in 

caches to make effective use of caching. An informative decision has to be made as to which videos are to 

be evicted from the cache in case of cache saturation. Therefore, the best cache replacement algorithm is 

the algorithm which dynamically selects a suitable subset of videos for caching, and maximizes the cache 

hit ratio by attempting to cache the videos which are most likely to be referenced in the future. In this paper 

we study the most popular cache replacement algorithms (OPT, CC, QC, LRU-2, LRU, LFU and FIFO) 

which are currently used in video caching. We use simulations to evaluate and compare these algorithms 

using video popularities that follow a Zipf distribution. We consider different cache sizes and video request 

rates. Our results show that the CC algorithm achieves the largest hit ratio and performs well even under 

small cache sizes. On the other hand, the FIFO algorithm has the smallest hit ratio among all algorithms. 
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1. INTRODUCTION 
 
At the beginning the Internet was a medium for text-based applications such as email and file 

sharing. Recently it has become a tool for major interaction between users and for providing 

different types of services, including shopping, banking, entertainment, etc. As network 

technologies improved, network bandwidth increased and service cost decreased causing an 

increase in the number of Internet users. Such rapid growth causes network congestion and has 

increased the load on servers, resulting in an increase in the access times of web documents. 

Caching provides an efficient solution to this problem by bringing documents closer to clients [1].  

 

A proxy server is a computer that is often placed near a gateway and provides a shared cache to a 

set of clients. All clients send their requests to the proxy regardless of requested service. The 

proxy can serve these requests using previously cached responses or bring the required documents 

from the original server. It optionally stores the responses in its cache for future use. One 

objective of proxy caching is to reduce the amount of external traffic that is transported over the 

wide-area network mainly from servers to clients. This also reduces the access latency for a 

document as well as the user’s perceived latency. And because the proxy caches have limited 

storage it is required to store the popular documents that users tend to request more frequently ]2 [ .  

 

Caching for streaming differs from caching web objects. The prime aim of caching for streaming 

is that it aims at decreasing the required transport capacity on the distribution network as much as 

possible.  The  dynamicity of the video library results in a different behavior in video popularities.  
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When videos are introduced, they are very popular, and then over time they deteriorate in 

popularity. As a result traditional web objects are requested more or less uniformly over 

prolonged periods but a video object is consumed over a relatively short time span. Moreover, 

video objects are usually much larger than traditional web objects. For these reasons it is very 

important in video streaming to store the right content at the right time in caches. 

 

A key component of a cache is its replacement policy, which chooses the victim video that will be 

evicted from the cache to make room for a new video. The best cache replacement algorithm is 

the algorithm which dynamically selects a suitable subset of videos for caching. It also maximizes 

the cache hit ratio, which is the fraction of requests served from the cache, by attempting to cache 

the videos which are most likely requested in the future.  

 

The work in this paper simulates a video service that employs caching where the contents of 

caches are updated using a number of cache replacement algorithms [2]. By applying the 

popularity distribution of content, the popularity of each video is determined and popular ones are 

stored in the cache. When the cache is full, the different replacement algorithms are simulated to 

choose the video to be evicted from the cache. Finally the simulation calculates output parameter 

values for comparison. 

 

The contribution of this work is summarized as follows: 

 

1. Evaluate a set of replacement algorithms under different number of videos using video 

popularities generated by a Zipf distribution to find the most efficient replacement 

algorithm that works the best for video streaming. 

 

2. Investigate the influence of apply different cache sizes; the goal here is to find the best 

cache sizes that should be used with each algorithm. 

 

The remainder of this paper is organized as follows: 

 

Section 2 is an overview of caching, cache architectures and video popularity distributions. 

Section 3 reviews popular cache replacement algorithms and their implementation and algorithm 

steps. Section 4 explains the evaluation method. Section 5 demonstrates by results the 

implementation of different replacement algorithms and compares cache hit ratios for different 

scenarios. Section 6 is the conclusions. 

 

2. CACHING AND VIDEO POPULARITY DISTRIBUTION 

 
In a video service the popularity of videos decays over time due to the release of new videos. As a 

result, the contents of caches become less popular and must be updated periodically to maintain 

the most popular videos. A cache replacement algorithm is the process in charge of selecting an 

item from the cache to be removed and substituted with a more popular item. The main goal of 

cache replacements is to maximize the cache hit ratio in order to improve other performance 

measurements. Cache replacement algorithms differ in the parameters used to select the item to 

be evicted from the cache and the way these parameters are applied. 

 

2.1 CACHE PARAMETERS   
 

Here are the basic parameters for cache design:  

 

▪ Cache hit: an incident where the data is found in the cache.  

▪ Caches miss: an incident where the data is not found in the cache. 
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▪ Hit time: time to access the cache.  

▪ Miss penalty: time to move data from server to cache.  

▪ Hit ratio: percentage of times the data is found in the cache.  

▪ Miss ratio: percentage of times the data is not found in the cache.  

▪ Cache block size or cache line size: the amount of data that gets transferred on a cache   

miss [3]. 

2.2 CACHING ARCHITECTURES 

 

There are different ways that caches can be connected to each other in order to collaborate and 

benefit when employing more than one cache. The most famous architectures are hierarchical 

caching and distributed caching [4]. 

 

2.2.1 HIERARCHICAL CACHING 

 
Hierarchical caching arranges caches in a tree-like structure where similar caches are placed on 

the same network level, and then connected to another level of caches. A request from the client 

is made at the bottom of the hierarchy and the request will first be sent to the cache at the lower 

level. If the request is found then it is returned to the client. If not, then the request is forwarded to 

the cache at the higher level of caches. This procedure will be followed until a match is found in 

one of the caches in the hierarchy. If the requested object is not found then the request is sent to 

the server.  The response will then travel back down the hierarchy leaving the object initially 

requested at each level and the response will finally reach the client at the bottom of the 

hierarchy.  

 

Although this architecture has several advantages such as reducing communication path and 

bandwidth usage, is hard to implement, as caches are required to configure neighbour caches and 

cache misses which causes extra delays. In addition, caches in higher levels must be very efficient 

and powerful to perform efficiently. Moreover, this architecture requires implementing load 

balancing algorithms to avoid the congestion of client requests to prevent delay. 
 

2.2.2 DISTRIBUTED CACHING 

 

In distributed caching all the caches in the network communicate with each other and work to 

serve each other's clients. When a user makes a request, the object will be looked up in the local 

cache. If the object is not there, then other caches are contacted. The cache with the requested 

object serves the user, lifting the burden off the server. The server is only contacted if no cache 

holds the desired object.  

 

An advantage of distributed caching is that data transmission is easy and efficient, since there is 

less congestion around caches. However in large distributed cache systems, when the transmitted 

data is not from the neighbour cache but from caches over long distances, connection time can be 

quite slow. Therefore sometimes it might be faster to connect to the server directly. 

 

2.3 THE ZIPF DISTRIBUTION 

 
The basic Zipf’s law and Zipf-like law govern many features of the WWW such as Web objects 

access distribution, the number of pages within a site, the number of links to a page and the 

number of visits to a site [5]. It is a description of the relationship between the frequency of 

occurrences of an event and its rank, when the events are ranked with respect to the frequency of 

occurrence. Let the popularity of words used in a given text be denoted by ρ, and their frequency 

of use be denoted by P, then:    
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P ~ ρ−β                                                                       (1) 

 

With β ≈ 1. More general cases are Zipf-like laws that relate the frequency of symbol use to 

popularity rank via a power-law relationship. 

 

Applied to the Web, Zipf-like distribution states that the relative probability of a request for the 

i’th most popular page is proportional to 1/ i^α, for some constant α between 0 and 1. Zipf’s Law 

is considered as a particular case, with 1 = α. In a popularity distribution of objects that conform 

to Zipf’s Law, the most popular Web object is twice as popular as the second most popular object, 

and three times as often as the third most frequent object. 

 
Figure 1: Zipf-like distribution [5] 

 

Figure 1 shows a series of Zipf-like distributions with the value of α varying from 0.05 to 1. 

When 0 = α, it’s a uniform distribution, and objects are receiving equal attention. As α approaches 

1, popular objects receive greater fraction of requests  [5]. 

 

3. CACHE REPLACEMENT ALGORITHMS  

 

This section explains a number of cache replacement algorithms for different types of video 

services. It thoroughly explains the concept and steps of the algorithms that we evaluate in our 

work. Moreover, it also explains additional cache replacement algorithms that have been 

proposed in literature.  

 

In this work we choose the three well-known replacement algorithms which are the (Fist In First 

Out Algorithm (FIFO), Least Recently Used algorithm (LRU) and the Least Frequently Used 

(LFU)). These algorithms are considered as famous algorithms that are implemented in the vast 

majority of research work. This enables easy comparison of this work to other related work in 

literature. We also added the Optimal algorithm (OPT) and other two algorithm which are 

designed especially for videos (The Chunk-based Caching algorithm (CC) and Quality-based 

video Caching algorithm (QC). These algorithms are chosen based on the fact that they have 

proven very efficient choices for video replacement algorithms. 

  

Other cache replacement algorithms that may have a slightly higher or lower performance 

compared to the algorithms in this work will result in a performance similar to the ones discussed 

here. We also include the LRU-k algorithm as one example of the LRU improved algorithms, as 
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the LRU and LFU improved algorithms result in marginal improvements over the original LRU 

and LFU algorithms. Following is an overview of these algorithms. 

 

3.1 FIRST IN FIRST OUT 

 
First In First Out (FIFO) replacement algorithm always replaces the oldest video. In other words, 

it replaces the video that has been in the cache for the longest time. Videos are inserted in a 

queue, with the most recent arrival at the back, and the oldest arrival in the front. When a new 

video needs to be replaced, the video at the front of the queue (the oldest one) is selected. The 

steps of the FIFO replacement algorithm are: 

   

Repeat  

 If (queue (cache) in not full )  

    Insert video at the end of the queue   

  Else  

   Delete the video at the front of the queue  

    Insert video at the end of the queue  

    Increment fault   

  Until end of all requests  

  Output the number of fault    

 

The FIFO disadvantage is that the oldest videos may be needed again soon, as some important 

pages may frequently be requested over a long time period.  As a result replacing them will cause 

an immediate Page Fault, and therefore, it is not a very effective algorithm However, we consider 

it in our work for comparison purposes.  

 

3.2 LEAST RECENTLY USED   

 
The Least Recently Used (LRU) algorithm replaces the least recently used items first. It requires 

keeping track of which items was used and when, and it is costly to make sure that the algorithm 

always discards the least recently used item. General implementation of this technique requires 

keeping "age bits" for cache-lines and track the "Least Recently Used" cache-line based on age-

bits. In such an implementation, every time a cache-line is used, the age of all other cache-lines 

change  [7]. The LRU steps are: 
 

Repeat  

If (current requested video is in cache) 

  Get its index  

  Count to zero (indicate it is used very recently, higher the count of the most least 

recently used video) 

Else  

  If (cache is full) 

   Get video with maximum count (LRU video) 

   Replace it with new video  

   Reset count to zero  

Increment fault  

  Else  

   Add new video to end of cache  

Increment the fault  

   Increment top of cache  

Increment all the counts  



International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 2, April 2018 

102 

 EndIf 

Until end of all requests  

Output the number of faults 

 

To fully implement LRU, it is necessary to maintain a linked list of all items in the cache, with 

the most recently used item at the front and the least recently used item at the rear. The difficulty 

is that the list must be updated on every item reference. Finding an item in the list, deleting it, and 

then moving it to the front is a very time consuming operation [8]. 

 

One advantage of the LRU algorithm is that it is amenable to full statistical analysis.  On the other 

hand, LRU's weakness is that its performance tends to degrade under many common reference 

patterns. For example, if there are N pages in the LRU pool, an application executing a loop over 

an array of N + 1 pages will cause a page fault on each and every access.  

 

3.3 LEAST FREQUENTLY USED 

 
Least Frequently Used (LFU) is a famous cache replacement algorithm. The standard 

characteristic of LFU is to track the number of times a video is referenced. When the cache is full 

the algorithm will evict the video with the lowest reference frequency. 

 

A simple method to employ an LFU algorithm is to assign a counter to every video that is loaded 

into the cache. Each time a reference is made to that video the counter is increased by one. When 

there is a new video waiting to be inserted and the cache is full, the system will search for the 

video with the lowest counter and remove it from the cache. The steps of the algorithm are: 

 
Take inputs  

Initialize cache and count array to -1  

If (cache miss) 

Find the least frequently used video from the videos in the cache  

  Replace video in cache by current video. 

Create array of counts and store it in 'count' array  

EndIf 

Increment counter  

 

The LFU algorithm may seem like an intuitive method. However in a scenario where a video is 

referenced repeatedly for a short period of time and is not accessed again for an extended period 

of time, due to how rapidly it was accessed its counter increases drastically even though it will 

not be used again for a decent amount of time. This leaves other videos which may actually be 

used more frequently susceptible to eviction simply because they were accessed through a 

different method  ]6[ . Also, new videos that just entered the cache are subject to being removed 

very soon because they start with a low counter, even though they might be used very frequently 

after that.  

 

3.4 THE OPTIMAL ALGORITHM 

 
The Optimal Page Replacement Algorithm is also known as OPT or MIN. In this algorithm, the 

video that will not be used for the longest period of time in the future is replaced. It involves the 

knowledge of future requests to predict which item in the cache will be needed again. The 

Optimal algorithm has the lowest page fault rate, but it is difficult to implement because it needs 

knowledge of future requests  ]9[ . The steps of the Optimal algorithm are: 
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Take array n of videos  

Initialize fault and cache array to -1  

If (cache miss) 

 If (cache is ful)  

   Search array n of videos to find the video that 

will not be used for  the longest period of time 

Replace that video by current video  

  Else  

 Insert video into the cache  

 EndIf 

Increase fault  

Output number of faults 

3.5 THE LRU-K ALGORITHM  

 
The LRU-K page-replacement algorithm is derived from the classical Least Recently Used 

(LRU). It incorporates both recently and frequency information when making replacement 

decisions. Since the LRU buffering algorithm drops the page from the buffer that has not been 

accessed for the longest time when a new buffer is needed, it limits itself to only the time of the 

last reference. Specifically, LRU does not discriminate well between frequently and infrequently 

referenced pages until the system has wasted a lot of resources keeping infrequently referenced 

pages in the buffer for an extended period. It was proven that LRU-K is essentially optimal 

among all replacement algorithms that are solely based on stochastic information about past 

references ]6 [ . 

 

The basic idea of LRU-K is to keep track of the times of the last K references to popular pages, 

using this information to statistically estimate the inter-arrival time of such references on a page-

by-page basis. The pseudo-code of the LRU-K algorithm is: 

 
LRU-K: on request for video p at time t  

// scan cache queue to see if p is already in cache  

q := the video at queue end  

hit := false  

While (q != null) do  

 If (q equals p) then // hit  

hit := true  

 break  

  EndIf  

  q := next video before q  

EndDo  

If (hit) then  

// update history information of p  

  

 If (t-HIST(p,1)> Correlation_Timeout) then // a new uncorrelated reference  

  For i =2 to K do  

   HIST(p,i) = HIST(p,i-1)  

  Endfor  

  HIST(p,1) = t  

  Else // a correlated reference  

  HIST(p,1) = t  

EndIf  
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  hits += 1  

Else // miss  

// select replacement victims  

  q = the video at the Cache Queue end  

 While (Free Space < p.size) do  

   If (t-HIST(q,1) > Correlation_Timeout) then // eligible for replacement  

    evict victim q from cache  

    Free Space += q.size  

  put HIST(q) into the Evict Table  

   EndIf  

   q = next video before q // vedio with next max Backward K-distance  

  EndDo  

 // cache the referenced object  

// fetch p into the cache and append p at the end of Cache Queue  

  Free Space -= p.size  

 misses += 1   

  // check the Evict Table for video p  

  If (p does not exist) then // initialize history control block  

  allocate HIST(p)  

   For i := 2 to K do  

HIST(p,i) := 0  

  Else  

retrieve stored HIST(p)  

   For i = 2 to K do  

HIST(p,i) = HIST(p,i-1)  

 EndIf  

  HIST(p,1) = t  

EndIf  

3.5 THE CHUNK-BASED CACHING ALGORITHM (CC)  

 
This algorithm is specifically for streaming video taking into account the dynamicity of the 

library  [10]. The algorithm segments each video into chunks and assumes that chunk m+1 of a 

given video will be requested with a high probability in the near future if chunk m of that video is 

currently streamed to some user.  

 

The algorithm keeps a score Sk for each video k (k=1, 2, …, K). When a new video is requested 

for the first time its score is initialized to a value B. And every time video k is requested, it score 

increases by an amount A, and the score of all other videos is decreased by 1. The algorithm re-

ranks the videos at each request time based on these scores Sk and the first L ranked videos are 

cached.  

 

Each video is segmented in m chunks and each chunk inherits the score Sk from the video it 

belongs to. For each chunk m of video k, a value Nk,m is maintained that accumulates the 

number of guaranteed hits NoT this chunk will have, knowing which videos are currently 

watched by the users and assuming that no user aborts watching a video . 

 

This counter Nk,m is maintained as follows : 

 

  1. The values Nk,m are increased by 1 for all values of the index m, each time video object k is 

requested by a user. 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 2, April 2018 

105 

  2. The value of Nk,m is decreased by 1 after a user watching video object k has consumed chunk 

m . 

The CC algorithm steps are as follows: 

 Repeat  

          Input video  

          If (current video is in cache) 

                      Update SK, NoH  

          Else  

          If (cache is full ( 

                     Get video with the minimum NoT and it compare with currentVideo NoT  

 If (currentVideo NoT is greater) then replace the video with the minimum NoT  

 If (currentVideo NoT is smaller) then no change  

 If (currentVideo NoT equal to it) then compare SK value for the 2 Videos  

 If (currentVideo SK is greater) then replace the video with the minimum NoT  

 If (currentVideo SK is smaller) then no change  

 If (currentVideo SK equal to it) then put the video with the higher chunk number in cache  

                     Page_Fault ++ 

           Else  

                     Add video to cache  

                     Page_Fault ++ 

           EndIf 

 Until end of all requests  

 Output Page_Fault  

Note that if before the end of the video object k a user aborts viewing the video (or uses other 

trick- play commands like “rewind” or “fast rewind”), the values Nk,m need to be updated 

accordingly. However, the “abort”, “rewind” or “fast rewind” events do not occur in our 

simulation. 

 

3.6 QUALITY-BASED VIDEO CACHING ALGORITHM 

 
Quality based video allows quality adaptation. A video should have a number of quality steps that 

can be obtained through operations on that video. Such quality steps can be realized through 

layers (base layer, enhancement layers…). Also in quality based there exists a metadata 

describing the possible quality steps. For each quality step the metadata describes the 

corresponding operation, such as the resulting size and the resulting quality.  

 

A quality based replacement strategy chooses the last video and reduces its quality by deleting 

one quality step. The video will be deleted if the video has only one quality step left. Otherwise 

the video stays in the cache and is repositioned in the cache list. Then the video at the end of the 

list is chosen and the above procedure is repeated  [11]. 

 

The last video in the list is chosen for quality reduction successively until it is deleted or the 

replacement stops. The last video will be deleted in the following replacement round if it is not 

requested immediately. This behavior is called the vertical replacement. The quality steps of one 

video are ordered from the top to the bottom. To overcome the strong similarity to the underlying 

strategy horizontal replacement is proposed. In horizontal replacement the highest layer of all 

videos is first removed, then the next layer and so on.  Furthermore a combination of these 

strategies is proposed in  [11]. where horizontal replacement is used to remove upper layers and 

vertical replacement is used to remove lower layers. 
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3.7 TREND-AWARE VIDEO CACHING THROUGH ONLINE LEARNING 
 
A study proposed in [12] was accomplished to optimize the cache performance according to the 

trends of video content. The algorithm (Trend-Caching) forecasts the trend of video content and 

makes cache replacement decisions based on forecasted trend. The method explicitly learns the 

popularity trend of video content which is learned in an online fashion, and uses it to determine 

which video it should store in the cache and which it should evict . 

 

The study showed that when compared to the optimal strategy, the performance loss of Trend-

Caching is sub-linear in the number of processed requests, and that guarantees a fast speed of 

learning as well as the optimal cache efficiency in the long-term. The study also provided an 

extension to the original proposed algorithm, Collaborative Trend-Caching, that can exploit the 

trend similarity among multiple locations. 

 

3.8 MIXED LFU AND FIFO FOR VIDEO POPULARITY DYNAMICS 
 
The authors of [13] studied video popularity as a dynamic system and showed that the video 

popularity can change over time according to these facts (how quickly is the passing of glory days 

of a video’s popularity, how low is the probability of replaying a video by the same user and the 

continuous arrival of new videos). These facts can also affect the optimal video caching strategy. 

 

As the dynamics of video popularity depend on the age of the video, following a pattern for each 

type of video, the relative popularity of different videos at a given time is complex, and is 

governed by many factors. The authors proposed a mixed strategy (of LFU and FIFO) that can 

handle different kinds of videos . 

 

The study results showed that the caching performance achieved by the mixed strategy is very 

close to the performance achieved by the offline strategy (offline strategy assuming tomorrow’s 

video popularity is known in advance to be used as a performance benchmark). 

 

3.9 VIDEO CACHING ALGORITHMS IN CONTENT DELIVERY NETWORKS 
 
A Content Delivery Network (CDN) delivers a significant fraction of the entire Internet traffic, 

estimated at 71% of the entire Internet traffic by 2021 [14]. Effective caching at the edge is vital 

for the feasibility of these CDNs, which can otherwise incur significant monetary costs and 

resource overload in the Internet. 

 

The study in [15] analyzed the requirement with the non-standard solutions and develop multiple 

algorithms for caching in these CDNs (LRU-based baseline solution to address the requirements, 

an intelligent ingress-efficient algorithm, an offline cache aware of future requests (greedy) to 

estimate the maximum caching efficiency that can be expected from any online algorithm, and an 

optimal offline cache for limited scales). The study used anonymized actual data from a large-

scale, global CDN to evaluate the algorithms and draw conclusions on their suitability for 

different settings. 

 

3.10 MIDDLEMAN: A VIDEO CACHING PROXY SERVER 
 
The work is [16] described MiddleMan, which is a collection of cooperating proxy servers 

connected by a local area network (LAN). MiddleMan is a proxy research that concentrates on 

video only. It reduces the start-up delays and the possibility of adverse Internet conditions 

disrupting video playback. It can also reduce the server load by intercepting a large fraction of 

server accesses. 
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The work implemented an LRUk cache replacement algorithm, which resulted in the highest hit 

rates. It also implemented the HistLRUpick, a variation of the LRUk algorithm, which achieved 

good hit rates as well as effective load balancing. The results also revealed that a relatively small 

global cache size which is about 13.7% of total video sizes, resulted in very high byte hit rates. 

The study showed that a larger number of proxies were preferable to a smaller number of proxies 

for the same global cache size. 

 

MiddleMan reduces load in servers by intercepting a large number of server accesses. Hence, the 

major effect of MiddleMan is to greatly increase the effective bandwidth of the entire video 

delivery system, allowing more clients to be serviced at any given time. 

 

3.11 TIME-BASED GREEN CACHE REPLACEMENTS FOR FUTURE HDTV 
 

The cache update algorithm proposed in [17] measure the popularity of TV programmes and 

makes use of the TV guide to predict the times of day that TV viewers watch popular 

programmes during the 24 hour period. Based on this, the work proposes updating cache contents 

several times a day with popular programmes that will be requested at each time of day. The work 

investigates the power consumption of the IPTV core network with respect to the number of times 

cache contents are updated. It also considers Standard Definition (SDTV) as well as High 

Definition TV (HDTV). 

 

The results showed that time-based content replacements increase cache hit ratios as the number 

of daily cache updates increases. The proposed strategy also reduces the network power 

consumption by up to 86% compared to no caching. Although the improvement in cache hit ratios 

is the same for SDTV and HDTV, more power savings are achieved for HDTV, as larger sizes of 

video files consume more power to be downloaded. 

 

4. SIMULATION OF CACHE REPLACEMENT ALGORITHMS  
 

The simulation in our work evaluates and compares replacement algorithms. Following is an 

explanation of the evaluation model, input data and simulation flowchart.  

 

4.1 EVALUATION MODEL 
 

In our work we generate video requests where requests are used as an input to each replacement 

algorithm. The output of our model is the hit ratio for each algorithm as shown in figure 2. 

 

 
 

Figure 2: Simple view of the model 

4.2 INPUT DATA 

 
The input data is a series of requests that are generated randomly using the Zipf distribution. We 

apply Equation (2) defined in [4][6] to find the popularity Pi of the ith video, where the harmonic 

value (skewness) of the Zipf distribution α =0.75. 
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                    (2) 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 2, April 2018 

108 

                                     Ω =	
�

∑
�

��
�
���

                    (3) 

The generated video requests are used as an input for the replacement algorithms. To evaluate all 

replacement algorithms, the same data is input to each algorithm with a specific cache size to 

compare the algorithms and find the one with the highest hit ratio. 

 

4.3 REPLACEMENT ALGORITHM FLOWCHART 

 
Figure 3 shows the simplified flowchart for all replacement algorithms. The requested video is 

searched in the cache. If the video is found in the cache the number of hits will increase by one. 

Otherwise, a miss will occur and the video will be inserted in the cache if the cache is not full. If 

no place is available in the cache, a video is evicted from the cache (victim video) and replaced 

with the newly requested video. The selection of the evicted video depends on the replacement 

algorithm.  

 

In this work, we develop seven simulation programs for the seven replacement algorithms using 

Java programming language. These simulations are run and the output is the cache hit ratio for 

each algorithm. In addition, we also consider the cache size and how it affects the hit ratio. The 

model is run using different cache sizes to evaluate how each algorithm performs having a small 

cache size and under large cache sizes. 

 
Figure 3: Flowchart for replacement algorithms 

 

5. IMPLEMENTATION AND EVALUATION OF CACHE REPLACEMENT 

ALGORITHMS 
 
A separate simulation code for each of the seven replacement algorithms is implemented and run. 

The simulation is run using different numbers of video requests ranging from small values of 

video request as 200 requests to large values of video requests (2000 and 5000) requests. Each 

value for total requests is run with different cache sizes. The output is the hit ratio for each 

algorithm under different scenarios. For the LRU-K algorithm, we select the value k=2. 
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5.1 THE HIT RATIO FOR 200 VIDEO REQUESTS WITH 

We compare the hit ratios attained by different cache replacement algorithms having 200 video 

requests under different cache sizes. The hit ratio values are shown in Table 1 and Figure 4 s

a comparison between the hit ratios. In general, as we increase the size of the cache, the hit ratio 

increases with the CC algorithm achieving the highest hit ratio with a cache size of 10. As the 

cache size reaches 50, all algorithms saturate at a hi

Observing Figure 4 and Table 1 we find the following:

� The CC algorithm outperforms all other algorithms followed by the OPT algorithm.

� The QC algorithm has a lower hit ratio compared to CC and OPT, but the hit ratio 

becomes similar to the others when the cache size increases to 50.

� Following in term of hit ratio are the LFU, LRU and LRU

ranked in a specific order, as the difference in the values of hit ratio is marginal. One 

algorithm may slightly precede t

lower hit ratio under other conditions. The resulting hit ratio depends on the popularity of 

videos and the number of requested videos.  

� The algorithm with the smallest hit ration is the FIFO.

Table 1: Values of hit ratio for 200 requests under different cache sizes

Algorithm 

OPT 

CC 

QC 

LRU-2 

LRU 

LFU 

FIFO 

 

Figure 4: Comparison of algorithm hit ratios for 200 requests under different cache sizes

5.2 THE HIT RATIOS FOR 5000

 
Here we consider 5000 video requests to evaluate the replacement algorithms with different cache 

sizes (100, 250, 300, 500 and 1000). The results are displayed in Table 2 and Figure 4 and Figure 

5. We notice here that the QC algorithm has a lower hit ratio
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VIDEO REQUESTS WITH DIFFERENT CACHE SIZES 

We compare the hit ratios attained by different cache replacement algorithms having 200 video 

requests under different cache sizes. The hit ratio values are shown in Table 1 and Figure 4 s

a comparison between the hit ratios. In general, as we increase the size of the cache, the hit ratio 

increases with the CC algorithm achieving the highest hit ratio with a cache size of 10. As the 

cache size reaches 50, all algorithms saturate at a hit ratio of over 0.7. 

Observing Figure 4 and Table 1 we find the following: 

The CC algorithm outperforms all other algorithms followed by the OPT algorithm.

The QC algorithm has a lower hit ratio compared to CC and OPT, but the hit ratio 

the others when the cache size increases to 50. 

Following in term of hit ratio are the LFU, LRU and LRU-2. These algorithms cannot be 

ranked in a specific order, as the difference in the values of hit ratio is marginal. One 

algorithm may slightly precede the others under certain conditions and achieve a slightly 

lower hit ratio under other conditions. The resulting hit ratio depends on the popularity of 

videos and the number of requested videos.   

The algorithm with the smallest hit ration is the FIFO. 

Table 1: Values of hit ratio for 200 requests under different cache sizes

C-Size 50 C-Size 30 C-Size 10 

0.73 0.73 0.7 

0.73 0.73 0.725 

0.73 0.705 0.655 

0.73 0.705 0.64 

0.73 0.705 0.61 

0.73 0.705 0.66 

0.725 0.67 0.58 

 

Figure 4: Comparison of algorithm hit ratios for 200 requests under different cache sizes

 

5000 VIDEO REQUESTS WITH DIFFERENT CACHE SIZE

Here we consider 5000 video requests to evaluate the replacement algorithms with different cache 

sizes (100, 250, 300, 500 and 1000). The results are displayed in Table 2 and Figure 4 and Figure 

5. We notice here that the QC algorithm has a lower hit ratio than the (LFU, LRU
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S  

We compare the hit ratios attained by different cache replacement algorithms having 200 video 

requests under different cache sizes. The hit ratio values are shown in Table 1 and Figure 4 shows 

a comparison between the hit ratios. In general, as we increase the size of the cache, the hit ratio 

increases with the CC algorithm achieving the highest hit ratio with a cache size of 10. As the 

The CC algorithm outperforms all other algorithms followed by the OPT algorithm. 

The QC algorithm has a lower hit ratio compared to CC and OPT, but the hit ratio 

2. These algorithms cannot be 

ranked in a specific order, as the difference in the values of hit ratio is marginal. One 

he others under certain conditions and achieve a slightly 

lower hit ratio under other conditions. The resulting hit ratio depends on the popularity of 

Table 1: Values of hit ratio for 200 requests under different cache sizes 

 

Figure 4: Comparison of algorithm hit ratios for 200 requests under different cache sizes 

DIFFERENT CACHE SIZES  

Here we consider 5000 video requests to evaluate the replacement algorithms with different cache 

sizes (100, 250, 300, 500 and 1000). The results are displayed in Table 2 and Figure 4 and Figure 

than the (LFU, LRU-2 and LRU) 
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algorithms under small cache sizes, and when we increases the cache sizes the QC algorithm has 

a hit ratio greater than the LRU-2 algorithm and the LFU algorithm.

Table 2: Hit ratio values for 5000 video request under differe

C-Size 100Algorithm 

0.6792 OPT 

0.7176 CC 

0.5932 QC 

0.6092 LRU-2 

0.5764 LRU 

0.6178 LFU 

0.5602 FIFO 

 

Figure 4: Hit ratios of algorithms having 5000 video requests under different cache sizes

Figure 5: Comparison of hit ratios of algorithms having 
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algorithms under small cache sizes, and when we increases the cache sizes the QC algorithm has 

2 algorithm and the LFU algorithm. 

Table 2: Hit ratio values for 5000 video request under different cache sizes 

C-Size 1000C-Size 500 C-Size 300 C-Size 250 Size 100 

0.7188 0.7188 0.7188 0.717 

0.7188 0.7188 0.7188 0.7188 

0.712 0.6733 0.6472 0.637 

0.7106 0.6786 0.6558 0.6482 

0.718 0.671 0.6388 0.624 

0.7064 0.6766 0.66 0.6514 

0.7018 0.656 0.6206 0.6108 

Figure 4: Hit ratios of algorithms having 5000 video requests under different cache sizes

 

Figure 5: Comparison of hit ratios of algorithms having 5000 video requests under different cache sizes
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algorithms under small cache sizes, and when we increases the cache sizes the QC algorithm has 

Size 1000 

 

Figure 4: Hit ratios of algorithms having 5000 video requests under different cache sizes 

 

5000 video requests under different cache sizes 
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5.3 THE HIT RATIO FOR DIFFERENT

 

We evaluate cache replacement algorithms considering different combinations of number of 

video requests and cache sizes (50 video requests with Cache Size=10,

Cache Size=30, 2000 video requests with Cache Size=150 and 5000 video requests with Cache 

Size=300). The resulting hit ratios are shown in Table 3 and Figure 6. We found that the QC 

algorithm always has a lower hit ratio than the O
 

Table 3: Values of hit ratios for different video requests and cache sizes

50 requests/ 

cache 10 

ALGORITHEM 

0.6OPT 

0.52CC 

0.56QC 

0.6LRU-2 

0.58LRU 

0.63LFU 

0.55FIFO 

            
 

Figure 7: Hit ratios for different video requests and cache sizes

6. CONCLUSIONS 
 
This paper has evaluated and compared a number of cache replacement algorithms in terms of 

resulting hit ratio under different number of video requests and cache sizes. Based on the 

experiment results for the seven considered cache replacement 

algorithms with respect to their achieved hit ratio. Rank one is for both the CC algorithm and 

OPT algorithm as their hit ratio values are the highest. Rank two is the QC algorithm and rank 

three is for each of (LFU, LRU and L

ratios is marginal. Rank four is for the algorithm with the smallest hit ratio, the FIFO algorithms. 

For all algorithms, increasing the cache size will increase the hit ratio, but increasing the cac

size too much (more than a specific size) does not add any significant improvement in hit ratio. 

For future work we suggest analyzing the history of requested data to find out the suitable cache 

replacement algorithm considering request history. Also e

variable video sizes produces a more complex and realistic model. Other video popularity 
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IFFERENT VIDEO REQUESTS 

We evaluate cache replacement algorithms considering different combinations of number of 

video requests and cache sizes (50 video requests with Cache Size=10, 200 video requests with 

Cache Size=30, 2000 video requests with Cache Size=150 and 5000 video requests with Cache 

Size=300). The resulting hit ratios are shown in Table 3 and Figure 6. We found that the QC 

algorithm always has a lower hit ratio than the OPT algorithm and the CC algorithm.

Table 3: Values of hit ratios for different video requests and cache sizes 

5000 requests/ 

cache 300

2000 requests/ 

cache 150 

200 requests/ 

cache 30  

50 requests/ 

cache 10  

0.71880.7135 0.73 0.6 

0.71880.7135 0.73 0.52 

0.64720.651 0.705 0.56 

0.65580.658 0.705 0.6 

0.63880.6485 0.705 0.58 

0.660.6565 0.705 0.63 

0.62060.634 0.67 0.55 

 

Figure 7: Hit ratios for different video requests and cache sizes 

 

This paper has evaluated and compared a number of cache replacement algorithms in terms of 

resulting hit ratio under different number of video requests and cache sizes. Based on the 

experiment results for the seven considered cache replacement algorithms, we can rank these 

algorithms with respect to their achieved hit ratio. Rank one is for both the CC algorithm and 

OPT algorithm as their hit ratio values are the highest. Rank two is the QC algorithm and rank 

three is for each of (LFU, LRU and LRU-2) algorithms because the difference between their hit 

ratios is marginal. Rank four is for the algorithm with the smallest hit ratio, the FIFO algorithms. 

For all algorithms, increasing the cache size will increase the hit ratio, but increasing the cac

size too much (more than a specific size) does not add any significant improvement in hit ratio. 

For future work we suggest analyzing the history of requested data to find out the suitable cache 

replacement algorithm considering request history. Also evaluating replacement algorithms using 

variable video sizes produces a more complex and realistic model. Other video popularity 
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We evaluate cache replacement algorithms considering different combinations of number of 

200 video requests with 

Cache Size=30, 2000 video requests with Cache Size=150 and 5000 video requests with Cache 

Size=300). The resulting hit ratios are shown in Table 3 and Figure 6. We found that the QC 

PT algorithm and the CC algorithm. 

5000 requests/ 

cache 300 

0.7188 

0.7188 

0.6472 

0.6558 

0.6388 

0.66 

0.6206 

 

This paper has evaluated and compared a number of cache replacement algorithms in terms of 

resulting hit ratio under different number of video requests and cache sizes. Based on the 

algorithms, we can rank these 

algorithms with respect to their achieved hit ratio. Rank one is for both the CC algorithm and 

OPT algorithm as their hit ratio values are the highest. Rank two is the QC algorithm and rank 

2) algorithms because the difference between their hit 

ratios is marginal. Rank four is for the algorithm with the smallest hit ratio, the FIFO algorithms. 

For all algorithms, increasing the cache size will increase the hit ratio, but increasing the cache 

size too much (more than a specific size) does not add any significant improvement in hit ratio.  

For future work we suggest analyzing the history of requested data to find out the suitable cache 

valuating replacement algorithms using 

variable video sizes produces a more complex and realistic model. Other video popularity 
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distributions such as the Pareto and Bimodal distributions may also be used in the evaluation to 

exemplify different video services. 
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