
International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

DOI: 10.5121/ijcsit.2018.10503 21

SIMULATION OF SOFTWARE DEFINED NETWORKS

WITH OPEN NETWORK OPERATING SYSTEM AND

MININET

Antonio Cortes

Department of Computer Engineering, University of Panama, Panama City, Panama

ABSTRACT

With the emergence of recent technologies in the field of computer network, traditional infrastructure in the

field of networks have become obsolete and incompatible with respect to the new architectures of open

networks that emerge with force. This is how software-defined networks emerge by enabling cloud

computing ecosystem, enterprise data centers, and telecommunications service providers. The major

contribution of this paper is the simulation of an ecosystem based on a software defined network by making

use of certain types of networks topologies and using the virtualization of the open network operating

system (ONOS) and Mininet as a network emulator.

KEYWORDS

Computer Network, Software-defined Networks, Network Topologies, Simulation, Open Network Operating

System.

1. INTRODUCTION

The infrastructure of the traditional networks was developed and implemented in such a way the
flow control and the routing oversaw the devices of the network, thus allowing static structure [3],
hierarchical and dependent on the network architecture. This makes the network a complex
scenario, because there is to accommodate the structure of the network to the needs of users,
taking into consideration the policies of a network [1] and the growth of these, since they are
problems those who face these designs.

Currently, with the emergence of social networks, smart devices and cloud computing, the
various network topologies that make up these infrastructures tend to become saturated and
consume a large bandwidth due to the electronic components of these innovative technologies. In
turn, the benefits of cloud computing and virtual storage are being limited by networks since the
implementation of new networks prevents them from meeting the new needs demanded by them
and demands from the operators’ market. In turn, the above gives rise to the emergence of a new
network model that improves the capabilities in these networks called Software Defined
Networks (SDN) [2].

In this way, Software Defined Networks are a network design architecture in which the control
layer and the data layer within a network are separated. It separates the hardware management
software from the network and transfers the control to other devices called controllers that
convert the data traffic and control the network into a centralized service [4]. At the same time,
the emergence of these networks is to cover a need related to the deficiencies of current networks

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

22

because, by reducing the hardware necessary for assembly, facilitates the reuse of hardware by
facilitating the management of network control elements and makes it simpler in its configuration
process and reduces management time for administrators, speeding up the deployment of
applications, services and infrastructures.

Therefore, SND networks allow to ensure that network engineers and administrators respond
quickly to changes in business by centralizing the control console, by improving the services on
the network by making them more dynamic, economical and scalable avoiding management at a
low level. Similarly, SDN networks are composed of three essential parts. On the one hand, we
have the controller that oversees managing the network and telling the rest of the devices how to
handle the traffic on the network. The Southbound APIs is a software like the OpenFlow protocol,
responsible for managing the communication between the controller and the devices. While the
Northbound APIs is responsible for establishing communication with applications and business
logic. In this way, for a network to be functional it is required that the devices of this have
incorporated a firmware with OpenFlow or another similar protocol. This means that SDN
network flexibly manage the devices through the controller, which is responsible for recognizing
the topology of the network, thus enabling better management of traffic loads in a flexible and
efficient manner, giving priority to processes, applications and services.

In this paper, we have considered the use of the Open Network Operating System (ONOS) and
the Mininet network emulator to be able to simulate the Software Defined Network (SDN)
ecosystem and their respective network topologies. It makes use of a graphical interface for the
virtual machine VirtualBox of Oracle, version 5.2.8 r121009 (Qt 5.6.2) in which ONOS is
installed with its respective Mininet emulator, the OpenFlow controller and the Ubuntu Operating
System 16.0.4.3.

The organization of this paper is as follows. In Section 2. Methods and Materials refers to the
inputs used in the preparation of this paper. In turn, Section 3. Results and Discussion, the
analysis of SDN is illustrated through ONOS and Mininet simulation tool. Section 4. Explains the
final considerations and details the references used in this paper.

2. METHODS AND MATERIALS

A systemic process is carried out that allows the ONOS, Mininet and revision of the
documentations from the various positions proposed by each one of the different authors.

2.1. OPEN NETWORK OPERATING SYSTEM (ONOS)

The Open Network Operating System is an open source distributed SDN control platform,
developed by the Open Networking Lab (ON, Lab) [5], and sponsored by some of the leading
companies and academic institutions. In comparison with Open-DayLight [6], the ONOS Project
is specifically oriented to ISP (Internet Service Provider) networks, facilitating high availability
and scalability, due to its distributed architecture. The identification of the network topologies, as
well as our results obtained in the SDN simulations, are carried out using the version of ONOS
1.13.1 and the Mininet network emulator.

On the other hand, to establish the design of the SDN network, as well as the number of
controllers or data switches, number of switches, identification of physical links through which
the exchanged packets travel between the control plane at the application level, not only the
ONOS platform was used, but two complementary approaches were also adapted. On the one
hand, we use the SDN Mininet network emulator [7], to create a test network topology, which is
shown in Figure 1., and we proceed to execute an instance of ONOS with fwd (Simple reactive

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

23

forwarding application), application responsible of generate traffic between the nodes of the
network through the Mininet network emulator. Through a network snnifer, we analyse the data
flow due to OF messages exchanged between each emulated switch and ONOS. It must be
considered that a port of a node can be connected to many nodes, for example, through switch /
hub.

Figure 1. Example of network that connects Hx and Hy through a route Pxy = 4 switches. Dashed lines indicate the

communication between the switches and the ONOS controller

In turn, to validate the interaction in the control plane and generalize our findings to any network,
we analyzed in detail the source code of ONOS, and the number of flow rules was evaluated
based on the number of flow packets received. Both reactive applications in ONOS work in layer
2 and assume a single IP address. The data flow is identified by a pair of source and destination
addresses, respectively, both at the MAC level and at the IP level. However, a data stream may
comprise multiple sessions at higher protocol levels, for example, TCP, UDP or RIP. Inside a
swith, we find a port connected to another swith and it is declared as an internal port, while a port
connected to a node, client and/or server, is identified as a host port. The network topology that
interconnects the switches, that is; the internal ports and the communication links between them
are previously known by the controller, thanks to the preliminary phase of topology discovery
based on the LLDP [8] protocol implemented by the controller sending specific pkt_out messages
to the switches. In turn, the location of the host, is given from the port where the host is
connected, is disconnected a priori so the controller must locate it in real time.

2.2. ONOS WORKFLOW

We consider that the flow configuration process establishes a bidirectional communication
between a source node (Hx) and a destination node (Hy), assuming that the ports of the
corresponding nodes are unknown to the controller (C1 or C2). Let Psd be the number of switches
along the shortest route from Hx to Hy. Let N be the total number of controllers in the network,
and let E be the number of communication links between the hubs or switches. We evaluate the
exact number of devices, cluster nodes, nodes, links, packet processor, partitions, ports (bits per
second), port statistics (packets per second) and data flow statistics (bytes), for the fwd
application. For simplicity, we refer to the tree topology shown in Figure 1. , as a reference case,
but our results generally apply to any given network topology. We assume that the ARP tables of
both Hx, Hy and the forwarding tables of all the switches are initially empty.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

24

2.3. MININET

An emulator is software that allows programs to be run on a different platform than the one
originally designed. Unlike a simulator, it only reproduces the behavior of the program while an
emulator accurately models a device that can be compared with the original hardware.

MiniNet [9] is one of the first emulators explicitly developed to support SDN, by allowing the
efficient execution of small-scale networks with artificial traffic on computers that are not
necessarily powerful, its license is free and permissive (BSD - Berkeley Software Distribution).
In addition, implementing the network with a large number of network devices is very difficult
and expensive. Therefore, to overcome these problems, the virtual mode strategy has been carried
out in order to create prototypes and emulation of technological networks using the MiniNet
emulator. Its operation is carried out through a single Linux kernel and uses virtualization in order
to emulate a complete network using only a single system. However, the node created, as well as
the switches, routers and links are real elements although they are created by software [10].

The goal of MiniNet is to create virtual networks, running nodes, network cores and virtualized
network devices simply and quickly through a simple feature host, with an open and free
environment such as Linux. In turn, it has the ability to emulate different types of elements of the
network, such as: nodes, layer 2 switches, layer 3 routers and links.
Some features that led to the creation of MiniNet are:

• Flexibility, that is, new topologies and new features can be configured through the use of
software, by implementing common programming languages and operating systems.

• Applicability, allows correct applications made in prototypes. They should also be able to be
used in real networks based on hardware without any change in the source codes.

• Interactivity, responsible for managing and executing the simulation of the network, so it
must occur in real time as if it were happening with a real network.

• Scalability, prototyping must be scaled in large networks with hundreds or thousands of
switches on a single computer.

• Realistically, the behavior of the prototype must represent the real behavior of time with a
high degree of confidence, so the application and protocol stacks should be usable without
any code modification.

• Shareable, prototypes created should be easily shared with other collaborators, who can then
execute and modify the elements [11].

2.3.1 MININET WORKFLOW

Mininet has the capabilities that allow researchers or network programmers to create a new
software-defined network in a prototype and simple way, with the ability to interact, customize
and share, and provide a way to be executed on the hardware.

� Creating a network.

You can create a network in MININET with a single command;

$ sudo mm --switch = ovsk, protocols = OpenFlow13 --controller = remote --topo = tree, depth =
4, fanout = 2 --ipbase = 172.17.0.2 / 20

Create a virtual network of four switches or switches connected in a tree topology to two hubs

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

25

and 20 nodes, each node configured for the corresponding switch, so there would be a distribution
of 5 nodes per switch, as show in Figure 2.

Figure 2. Network topology in Tree and its components

� Interacting with a network

In Mininet, the entire virtual network can be controlled, and managed from a single console, for
example, the CLI command.
Mininet> h1 ping -c3 h2
It is used to send a ping to node h2 from node h1.
Mininet> nodes
View the list of available nodes.
Mininet> help
Allows you to see a list of available commands.
Dpctl: controls and edits flow tables.
Iperf: Test the TCP speed.

� Customize a network.

Custom networks with a few lines of Python can be created with the Mininet API. For example, ~
/ mininet / custom / topo-4sw-20host.py

These few lines of Python create a virtual network of twenty nodes connected through virtual
links to four switches.

� Share a network.

Mininet allows you to share the created, an image of VM to other researchers with the
purpose of running, evaluating or modifying it.

3. RESULTS AND DISCUSSION

Initially, the Open Network Operating System (ONOS) was activated, through the icon
named Setup ONOS Cluster. Subsequently, the network topology configuration called
Spine Leaf Topology or tree network topology is activated in such a way that activates all
the components of this topology. At the same time, the virtualization process of the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

26

network is accessed through the ONOS GUI icon, which allows the researcher to observe
the behavior of the network with all its elements in real time.

Once we have activated the virtual ecosystem of the network, we proceed to identify the
existing devices in the network topology, as shown in Table 1.

Table 1. Devices.

Device Device Id Master Port H/W

Version

S/W

Version

Protocol

Spine-1 of:0000000000000001 172.17.0.3 5 Open
vSwitch

2.5.4 OF_13

Spine-2 of:0000000000000002 172.17.0.4 5 Open
vSwitch

2.5.4 OF_13

Leaf-1 of:000000000000000b 172.17.0.4 8 Open
vSwitch

2.5.4 OF_13

Leaf-2 of:000000000000000c 172.17.0.3 8 Open
vSwitch

2.5.4 OF_13

Leaf-3 of:000000000000000d 172.17.0.3 8 Open
vSwitch

2.5.4 OF_13

Leaf-4 of:000000000000000e 172.17.0.4 8 Open
vSwitch

2.5.4 OF_13

As shown in Table 1. , a total of 6 devices have been identified, of which Spine-1 and
Spine-2 refer to controllers C1 and C2, respectively. On the other hand, the Leaf - 1, Leaf
- 2, Leaf - 3 and Leaf - 4, are the switches that are part of the tree network topology.

Also, we can observe that each device has assigned a binary identifier of 16 digits, where
the last digit is a number and in another it is a letter. This is done in order to differentiate
the controllers of the switches in the network. Similarly, we have identified the hardware
version that is the Open vSwitch, the software version 2.5.4 and the communication
protocol that is OF_13. The master IP address 172.17.0.3, assigned to C1 allows
communication to be established with S2 and S3, respectively, while 172.17.0.4, which is
the IP address configured in C2, communicates S1 and S4.

In turn, we also identify the total of links that are 8 and that are part of the network, as
shown in Table 2.

Table 2. Link.

In Table 2. , we observe the respective ports 1 and 2, the type of link assigned to each
port, which is direct and the direction taken by the data flow in the network that is full-

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

27

duplex, represented by the equation A↔ B, which means that the data bits, zeros and
ones, travel simultaneously between two or more devices.

In Table 3. , we identify the total of nodes or host that are 20, with the following
parameters.

Table 3. Host.

Host Host Id Mac Address Location

10.0.0.1 00:00:00:00:00:01 / None 00:00:00:00:00:01 of:000000000000000b/3

10.0.0.2 00:00:00:00:00:02 / None 00:00:00:00:00:02 of:000000000000000b/4

10.0.0.3 00:00:00:00:00:03/ None 00:00:00:00:00:03 of:000000000000000b/5

10.0.0.4 00:00:00:00:00:04 / None 00:00:00:00:00:04 of:000000000000000b/6

10.0.0.5 00:00:00:00:00:05 / None 00:00:00:00:00:05 of:000000000000000b/7

10.0.0.6 00:00:00:00:00:06 / None 00:00:00:00:00:06 of:000000000000000c/3

10.0.0.7 00:00:00:00:00:07 / None 00:00:00:00:00:07 of:000000000000000c/4

10.0.0.8 00:00:00:00:00:08 / None 00:00:00:00:00:08 of:000000000000000c/5

10.0.0.9 00:00:00:00:00:09 / None 00:00:00:00:00:09 of:000000000000000c/6

10.0.0.10 00:00:00:00:00:0A / None 00:00:00:00:00:0A of:000000000000000c/7

10.0.0.11 00:00:00:00:00:0B / None 00:00:00:00:00:0B of:000000000000000d/3

10.0.0.12 00:00:00:00:00:0C / None 00:00:00:00:00:0C of:000000000000000d/4

10.0.0.13 00:00:00:00:00:0D / None 00:00:00:00:00:0D of:000000000000000d/5

10.0.0.14 00:00:00:00:00:0E / None 00:00:00:00:00:0E of:000000000000000d/6

10.0.0.15 00:00:00:00:00:0F / None 00:00:00:00:00:0F of:000000000000000d/7

10.0.0.16 00:00:00:00:00:10 / None 00:00:00:00:00:10 of:000000000000000e/3

10.0.0.17 00:00:00:00:00:11 / None 00:00:00:00:00:11 of:000000000000000e/4

10.0.0.18 00:00:00:00:00:12 / None 00:00:00:00:00:12 of:000000000000000e/5

10.0.0.19 00:00:00:00:00:13 / None 00:00:00:00:00:13 of:000000000000000e/6

10.0.0.20 00:00:00:00:00:14 / None 00:00:00:00:00:14 of:000000000000000e/7

In Table 3. , we observe the IP addresses assigned to each node, as well as the respective
identifier and mac address associated with each node. In the range of IP addresses
10.0.0.10 to 10.0.0.15, hexadecimal values are assigned to both the identifier and the mac
address of the respective nodes. In the location, each IP address of each node has the
respective switch assigned by a letter and the node number.

On the other hand, in table 4. , we obtain the processing of packets at different times of
activation of the topology of the network.

Table 4. Packets Processors.

Priority Packets Average (MS)

Priority
0

P1 P2 P3 P4 P5 A1 A2 A3 A4 A5

623 36 540 676 1576 6.47826 30.17557 4.45899 3.73259 2.00214

Priority
1

623 36 540 676 1576 4.42091 0.09236 4.54083 3.63926 1.57453

Priority
1

623 36 540 676 1576 1.31084 0.00300 1.08449 0.86684 0.37290

In Table 4. , we can see that packet processing will have three priority types, 0, 1 and 1,
respectively, established for this tree network topology. We did tests in the network with different
time intervals of connection and disconnection of the same, to observe the behavior at the level of
the processing of packages and the average of them. In addition, it was possible to observe the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

28

bits per second at the ports level, the packets per second at the level of the statistics of the ports
and bytes at the level of the data flow statistics.

In Figure 3a.,and Figure 3b. , we can observe the relationship between the different
priorities with respect to the packages and the averages, respectively.

4. CONCLUSIONS

 Figure 3a. Priority vs Packets Figure 3b. Priority vs. Average

In Figure 3a. , we can see that at the level of priority 1, in gray, the maximum number of
packets sent in the network reaches its maximum trajectory in 1576 packets, while the
lowest is in 36 packets. Between P3 and P4, the oscillation tends to increase with a
difference of 136 packets ((P4 = 676) - (P3 = 540) = 136). In the case of Figure 3b. , it is
observed that the maximum average is reached when A2 = 30.17557 milliseconds (ms) in
priority 0, in blue. The lowest average is given when A2 = 0.00300 milliseconds (ms) in
priority 1, in gray. The latter is due to a decrease in the bandwidth of the network or
otherwise a disconnection in some of its links due to a fault has occurred.

In the same way, other performance metrics were taken into account to evaluate the
performance of the network. These parameters are related to the bandwidth which is
analyzed through each of the ports located in the controllers and switches, respectively, as
we can see in Table 5.

Table 5. Ports for controllers and switches.

Device Enabled ID Speed Type

Spine-1

Spine-2

False Local 0 Copper

True 1 10000 Copper

True 2 10000 Copper

True 3 10000 Copper

True 4 10000 Copper

Leaf-1

Leaf-2

Leaf-3

Leaf-4

False Local 0 Copper

True 1 10000 Copper

True 2 10000 Copper

True 3 10000 Copper

True 4 10000 Copper

True 5 10000 Copper

True 6 10000 Copper

True 7 10000 Copper

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

29

In table 5. , we can see that both for the controllers, Spine-1 and Spine-2, and for the
switches, Leaf-1 to Leaf-4, the medium used for data transmission is copper and
bandwidth is 1 Mbits per second or 10,000 transmission bits in the infrastructure of the
links. It is also observed through the ID, which ports are active, in local status, true or
false, both for the controllers and for the switches.

In turn, another performance metric to evaluate is throughput, which is evaluated through
the ports per device of those packets that are sent and received, both at the switch and
controller level through the communications network.

In the case, of the switches, identified as Leaf-1 to Leaf-4, which you have assigned 8
port, 3 flows and 0 tunnel, you have for the switch, identified as: of: 000000000000000b,
the following information as observed in Table 6.

Table 6. Port for Device (Switches)

Port

ID

PKTS

Rx

PKTS

Tx

BYTE

S Rx

BYTES

Tx

PKTS Rx

DROPPED

PRTS Tx

DROPPED

DURATION

(SEC)

1 341 362 38416 40070 0 0 753

2 327 360 37156 40252 0 0 753

3 12 365 962 40564 0 0 753

4 12 377 962 41252 0 0 753

5 12 377 962 42344 0 0 753

6 14 377 1122 42910 0 0 753

7 12 377 962 42910 0 0 753

In Table 6, we can observe that the throughput is analyzed from the received and sent
packets in a network through a communication channel. The number of packets sent is
greater than that of the received ones. Similarly, bytes sent with respect to received bytes
happen. No packets sent and transmitted dropped. All this has an estimated 753 seconds.

On the other hand, for the controllers, Spine - 1 and Spine - 2 have 5 ports of which 4 are
used, since one is local. It also has 3 flows and 0 tunnel. In Table 7, we can observe,
specifically in the Spine - 2, the sent and transmitted packets.

Table 7. Port for Device (Controllers)

Port

ID

PKTS

Rx

PKTS

Tx

BYTES

Rx

BYTES

Tx

PKTS Rx

DROPPED

PRTS Tx

DROPPED

DURATION

(SEC)

1 693 709 66113 70383 0 0 1218

2 711 705 69129 70575 0 0 1218

3 711 711 69675 70935 0 0 1218

4 705 709 69119 71115 0 0 1218

As with the switches, we can see that the transmitted packets are larger than the received
packets. In turn, the bytes transmitted are greater than the bytes received. There are no
dropped shipping and receiving packages. All this has an estimated 1218 seconds.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

30

However, and with all the above, the network topology proposed in this work is
compared with the tree topology with the MPLS topology (Multiprotocol label
switching), since it is a very popular method used for traffic control and the creation of
virtual private networks (VPNs). This method known as "tunnel-less", is a bit
complicated to understand because it lacks a point-to-point connection. In Figure 4, the
MPLS topology is shown.

Figure 4. MPLS Topology

This scenario, which is presented in Figure 4, allows us to observe that at the level of
communications infrastructure, what dominates the most are switches interconnected
with fiber optic links or, ultimately, copper. It is important to mention that in this type of
topology there is a drop in logical links due to the creation of virtual private networks.
The existence of subnets composed of nodes is not unlike the tree topology that does
exist. In this type of scenario, clients connect to the backbone of the network through
multiservice links, which provides high transport speed and connectivity.

In addition, it is important to highlight the data packet flow that occurs in this type of
topology with respect to the tree topology, as shown in Figure 5a-b.

Figure 5a. Flow packets in Tree Topology Figure 5b. Flow packets in MPLS Topology

It is observed, in Figure 5a. and 5b. , respectively, in green, the flow of data packets is
more intense in the MPLS topology than in the Tree topology. Other reasons, which may

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

31

lead to the fall of the logical links in the MPLS topology is the means by which the data
is routed since it is copper.

4. CONCLUSIONS

In this article it is proved that the Open Network Operating System (ONOS) and the
Mininet network emulator allow researchers in the field of networks to virtualize a
network topology in tree and any other, with all its main actors as are: the switches, the
controllers, the nodes connected to each switch, establish the IP address for the network
in general and the IP addresses for each subnet, among other relevant aspects. Similarly,
it could be observed in the tree network topology, when the links between different nodes
break or fall or between the controller and a node. This situation is represented in the
virtual network, as discontinuous lines in red. It was observed how the bits per second are
transmitted between the various ports of each device. This process of data transmission
was reflected in the network in green.

On the other hand, a comparison process is carried out at the level of new network
performance metrics between which the bandwidth and throughput are considered. Both
metrics are analyzed taking into account the ports enabled in each switch and controller,
packets received and transmitted at the level of these devices. Also, a comparison is made
at the level of the proposed network topology against the MPLS topology, among which
the most outstanding is the flow of data packets between both topologies and that the
MPLS topology does not have sub-networks formed by nodes but interconnections
between different linked switches by means of a communication channel formed by
copper or optical fiber.

It is important to point out that where the experiments were carried out, the Hardware and
the Software used were installed in a desktop-like technological infrastructure. We used a
Lenovo Laptop with a 64-bit Operating System (Windows 10), an Intel Celeron 3205 U
processor with a speed of 1.50 GHz and 4.00 GB RAM. In the same way, it was installed
and made use of a virtual machine, Oracle VirtualBox, where ONOS and Mininet were
installed, thus optimizing the infrastructure and improving the performance of those
elements that were available at that time.

As future lines of research, ONOS would be used with other types of network emulators
to analyze the behavior of different topologies of more extensive networks and to start
with a comparison process, thus allowing us to observe and compare new results in this
type of ecosystem.

REFERENCES

[1] Carvalho, L. Fernando, Abrão. T, Mendes L. de Souza, ProençaJr. L. Mario, An Ecosystem for

Anomaly Detection and Mitigation in Software-defined Networking, Expert Systems with
Applications (2018), doi: 10.1016/j.eswa.2018.03.027

[2] F. Keti and S. Askar, "Emulation of Software Defined Networks Using Mininet in Different
Simulation Environments," 2015 6th International Conference on Intelligent Systems, Modelling and
Simulation, Kuala Lumpur, 2015, pp. 205-210, doi: 10.1109/ISMS.2015.46

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

32

[3] Hartpence. B and Rosario. R, Software Defined Networking for Systems and Network
AdministrationPrograms, The USENIX Journal of Education in System Administration, November
2016, Volume 2, Number 1, https://www.usenix.org/jesa/0201/hartpence.

[4] Schaller. S and Hood. D, Software Defined Networking Architecture Standardization, Computer
Standards & Interfaces, (2016), doi:10.1016/j.csi.2017.01.005

[5] ONOS Controller, URL https://www.onosproject.org.

[6] A.R. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S.Banergee, Devoflow: scaling
flow management for high-performance networks, SIGCOMM Comput. Commun. Rev.41 (4) (2011)
254-265

[7] Mininet Network Emulator, (Available at http://www.mininet.org).

[8] LLDP Link Layer Discovery Protocol, (IEEE Standard 802.1 AB).

[9] J. Metzler y S. Taylor, «Network World, » 08 06 2011. [En línea]. Available
 http://www.networkworld.com/article/2177684/lan-wan/the-growth-in-eastwest-traffic.html.

[10] Mininet. An Instant Virtual Network on your Laptop.2014, Accessed: Sept. 2014[Online] Available:
http://mininet.org.

[11] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for software-defined
networks,” in Proceedings of the 9thACM SIGCOMM Workshop on Hot Topics in Networks. ACM,
2010.

Authors

Antonio Cortes Castillo is a computer engineer trained in the Latin American University of
Science and Technology (ULACIT), Costa Rica, 1995. He obtained his bachelor´s degree in
computer engineering with an emphasis in Management Information System at the
Nacional University of Heredia, Costa Rica, 2002. Adquiere his Master´s degree in
Computer Science (Telematics) at the Technological Institute of Costa Rica. He is now
teaching at the University of Panama and is with his PhD at the University of Alicante.

